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Independence systems:

Let M = (E, ), where E is a set of elements, c 2F and, ifl € F, | is called an independent set.
An independence system satisfies the following properties:

10eF

2)SCT,TeF >SeF

A matroid is an independence system that also satisfies:
3)S,T e F,|S| < |T|,thendxe T \ SsuchthaS U {x} € F

Admissibility system satisfy propertiy (1) and the following property:
2YA+£0eF =>AXe AA\{X}eF

A greedoid(introduced by Korte and Lovasz) is an admissibility system thatsatisfies (3).

Example of matroids:

- linear independence in a vector system

-{S: Sis an acyclic set of edges in a given graph
- uniform matroid:{S : |S| < k}

A maximal independent set is calledasis.
Fact(equivalent definition):
Every basis in a matroid has the same cardinality.

Consider the following two basic problems:
P1. Computing a maximum weight basis in a matroid.
P2. Maximizing a submodular function subject to a matroid constraint.

The natural(standard) greedy algorithm for P1 is optimal.

Sort so thatvy > wy > ... > W,
Fori=1..m

fSulgleF

ThenS =S U {g}
End for

The proof of optimality is similar to the proof of correctness for Kruskal’salym.

Submodular set functions:
A function f: 28 — R (i.e. which takes subsets of E infbis submodular if:



f(AuB)+ f(AnB) < f(A) + f(B)
Equivalently, ifA C B, thenf(AU {x}) — f(A) > f(BU {x}) — f(B). (decreasing marginal utility).

fis monotone if for allA C B, f(A) < f(B).
fis normalized iff (0) = O.

Applications of monotone submodular function:

Influence in social networks:

Two models for behaviour adoption in social networks:

1. Threshold model: nodes become influenced because fa@antly large weighted proportion of their
neighbors have been influenced.

2. Cascade model: The influence process unfolds in discrete steps. When a node fi@tles influenced
in step t, it gets a single chance to influence each of its neighbors, angesiscwith a certain probabil-
ity(which depends on the two nodes).

Under both models, the total number of influenced nodes is a monotone sulamfehction.

Greedy algorithms for maximizing submodular functions are studied in:

1. An analysis of approximations for maximizing submodular set functionsNidemhauser, Wolsey and
Fisher

2. An analysis of approximations for maximizing submodular set functionyg Fibher, Nemhauser and
Wolsey

Results:

1. The standard greedy algorithm for maximizing a submodular functionaubjan uniform matroid is a
557 approximation.

2. The standard greedy algorithm for maximizing a submodular functionaubjan arbitrary matroid is a
2-approximation.

3. The standard greedy algorithm for maximizing a submodular function gubjé& matroids (k matroid
intersection problem) is a ¢kl)-approximation.

Note that for k=2, the problem can be solved in polynomial time, but it's NP-harckfar3.

Example: maximum matching in a bipartite graph is the intersection of two matroidssfauéfies each
vertex on one side has degree at most one, the other one does the stmaefber side).

The natural(standard) greedy algorithm for P2:
S=0
Whiledx: SuU{x} e F:
Letux = maxeeg F(SU {€}) — T(S)
% Note we assume the algorithm has access to an "incremental oracle” whichsu:
% If ux is ana-approximation, we call it and-approximative incremental oracle”
If SU{usx} e F
S = S U {ux}
E=E\ {ux}
End While

Results:
1. If the standard greedy algorithm for maximizing a submodular functiojesuto an uniform matroid
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1
has access to anapproximative incremental oracle, it’s—%"—1 approximation(and this bound is tight).
. . ex — .. .
2. If the standard greedy algorithm for maximizing a submodular functiojestuto k matroids has access
to ana-approximative incremental oracle, it'sa £ 1)k—approximation.

The greedy algorithm is optimal in an independent systéthé system is a matroid.
The greedy algorithm is optimal in an admissibility systéhthe system is a greedoid.
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k-independent set systems(E) - as defined and first studied by Jenkins
VY C E:

mf_iXSQY,SET|S| S k
Minscyser S | . .
In a matroid k= 1 (all basis have the same size).

The standard greedy algorithm for maximum weigkt 7 (1 is a k-independent set) is a k-approximation.
The standard greedy algorithm for maximizing a submodular function sutgecidependence in a k-
independence set system constraint is+gl{kapproximation.

Using local search, we can get better approximations for linear and swienddnction maximization
in many frameworks;

Results by Halldorsson:

1. "izl approximation for unweighted MIS on-ld)-claw free graphs.

X + e using t-local search.
t-local search for weighted k-set packing is exactlka @ + %)-approximation.



2. For unweighted versions of the matroid problems (up to k-uniform matrotdiimg) we can get a

k . .
3 + e approximation.

Berman:
1. We can get é;—l + € approximation for weighted MIS on {K.)-claw free graphs.

Proof that Halldorsson’s algorithm for unweighted MIS ié%‘é approximation:
While Au,v: |S" = SU{u,v} \ N(u) \ N(V)| > |S]| or

du: S’ = SU{u}\ N(u)| > |S]|

S=¢
End While

Let A be the independent set produced by the greedy algorithm, andiBria&iimum independent set.

LetA’ = A\ (AN B),
B' =B\ (ANB).

Let B; = {v e B’|v has exactly one neighbor injA

B, = {v e B'|v has at least two neighbors in A

A1 = {u € A’|u has at exactly one neighbor By}
Note that
|B1] + 2+ |Bg| < k]Al(since the graph is (kl)-claw free)

By the defintion ofB1, we havegBy| > As. If |B1| > |A1], then, by pigeon hole property,
there existx € A; such that at least twg in B; are adjacent to X, and therefore A is not
2-local optimum.

So we must haviB| = |Aq]

Therefore:

2- 1Byl +2- |Bol < (k+ 1)|A

So, 2B| < (k+ 1)Al

This shows that the algorithm is%l approximation.

Chandra and Halldorsson also shov%%i)-approximation for weighted MIS.
They use a greedy algorithm to approximate a max weight independenteettfiey use local search:
While there exists claw C such thatS U C \ N(C, S)) > w(S):
S=SUC\N(C,S)
End While

Berman uses a non-oblivious local search algorithm:

While there exists claw C such that(S U C \ N(C, S)) > w(S):
S=SUC\N(C,S)

End While



