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4.1 Introduction

In the first three lectures we have reviewed the fundamental algorithmic approaches including
Greedy, Brute Force , Dynamic Programming and Local Search algorithms. At today’s lecture,
we will cover Linear Programming (LP) duality, which is a widely used class of algorithms for
optimization problems. LP covers a wide variety of problems for which both the objective function
and the constraints can be represented as linear functions. LP is also interesting from the historical
development point of view. Simplex Method , which was developed by George Dantzig in 1947, was
the first method developed for LP and is still a widely used algorithm for solving LP problems.
However, Simplex (for known oivot rules) is not a polynomial algorithm and it is possible to come
up with cases where it takes exponential time. The Ellipsoid Algorithm (Khachiyan, 1979) on the
other hand is a polynomial algorithm in theory but in practice it usually performs poorly compared
to Simplex. Later in 1984, Narenda Karmarkar came up with the Interrior Point Method, which is
both provably polynomial and works well in practice.

4.1.1 Recommended Reading

• The Primal-Dual Method for Approximation Algorithms by David P. Williamson

• Lecture notes from Shuchi Chawla’s course

4.2 Duality

Since, we briefly went over Linear Programming (LP) and Integer Programming (IP) in the context
of set cover, graph orientation and makespan problems, we will start with Duality.

Assume we have a minimization LP problem in canonical from.

min
∑

j∈{1,...,n}

xjcj

s.t.
∑

j∈{1,...,n}

aijxj ≥ bj for all i ∈ {1, . . . , m}

xj ≥ 0

We call this the primal (P) in the canonical form. The matrix-vector notation is as follows:

1

http://www.cs.toronto.edu/~bor/2420f10/williamson-primal-dual.pdf
http://pages.cs.wisc.edu/~shuchi/courses/880-S07/


min ~cT~x

s.t. A~x ≥ ~b

~x ≥ ~0

The dual (D) of the primal is given as follows:

max ~bT ~y

s.t. AT ~y ≤ ~c

~y ≥ ~0

which corressponds to :

max
∑

i∈{1,...,m}

yibi

s.t.
∑

i∈{1,...,m}

aijyi ≤ cj for all j ∈ {1, . . . , n}

yi ≥ 0

The primal problem and the dual problem are complementary. A finite optimal value to either
one determines an optimal value to both. The relation between these two can sometimes be easy
to interpret for example in the case of cover vs packing, max flow vs min-cut, etc. However, the
interpretation of the dual may not always be intuitively meaningful. Still, duality is very useful
because the duality principle states that optimization problems may be viewed from either of two
perspectives and this might be useful as the solution of the dual might be much cheaper to calculate
than the solution of the primal. Moreover, the relation between P and D will give us the Primal-
Dual algorithm, in which we start with feasible solutions x and y and iteratively change the values
to satisfy the conditions more and more until we hit the optimal solutions.

4.3 Examples

4.3.1 Set Cover

Given S = {S1, S2,..., Sm} such that Si ∈ E, E = {e1, e2, ..., en} and wj is the weight of Sj , we
would like to find S′ ⊆ S s.t. ∪Sj∈S′ = E and

∑
Sj∈S′ wj is minimum.

Note that, Vertex Cover is a special case of Set Cover because each vertex v becomes a set Sj that
contains vj ’s edges. Every universe element, i.e. edge, occurs in exactly 2 sets. Hence, vertex cover
is a 2-Frequency set cover problem.

More generally, in an f -Frequency set cover problem, no universe element can occur in more than
f sets. For d-Degree (or d-Cardinality) set cover problem, i.e. |Sj | ≤ d, it is possible to get an Hd

approximation, where:
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Hd = 1 + 1

2
+ . . . + 1

d
≈ ln d

Next we define the primal and the dual of the set cover problem.

(P)

min
∑m

j wjxj

s.t.
∑

j:ej∈Sj
xj ≥ 1 i ∈ {1, . . . , n}

(IP ) xj ∈ {0, 1}
(LP ) 1 ≥ xj ≥ 0

(D)

max
∑n

i yi

s.t.
∑

i:ei∈Sj
yi ≤ wj

yi ≥ 0

4.3.2 Toy example

(P)

min x + 4z

s.t. x + 2z ≥ 5
2x + z ≥ 4
x, z ≥ 0

As a starting point:

x + 4z ≥ x + 2x ≥ 4
x + 4z ≥ 1

2
(x + 2z) + 1

4
(2x + z)

x + 4z ≥ 2.5 + 1
x + 4z ≥ 3.5

In general,

(x + 2z)u ≥ 5u

(2x + z)v ≥ 4v

u, v ≥ 0

We can now define the dual.

(D)
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max 5u + 4v

s.t. u + 2v ≤ 1
2u + v ≤ 4
u, v ≥ 0

4.4 Weak and Strong Duality

Theorem 4.4.1 (Weak Duality) If x and y are primal and resp. dual solutions, then D(y) ≤
P (x).

Proof:

All we need to do is to show that D(y) = bty ≤ ctx = P (x)

bT y =
∑m

j=1
bjyj

≤
∑m

j=1
(
∑n

i=1
Ajixi)yj

≤
∑n

i=1

∑m
j=1

(Ajijj)xi

≤
∑n

i=1
cixi

≤ cT x

Theorem 4.4.2 (Strong Duality) If x∗ and y∗ are (finite) optimal primal and resp. dual solu-
tions, then D(y∗) = P (x∗).

Proof: Omitted.

Corollary 4.4.3 (Complementary Slackness) Let x and y be finite feasible solutions to (P)
and resp. (D). Then x and y are optimal iff the following hold

• ∀i (bi −
∑

j Aijxj))yi = 0

• ∀j (
∑

i Aijii) − cj)xj = 0

Proof: Note that the fact that x and y are feasible implies that (bi −
∑

j Aijxj))yi ≥ 0 and
(
∑

i Aijii) − cj)xj ≥ 0. If we sum these over all i and j, we get:

∑
i biyi −

∑
i,j Aijxjyi +

∑
i,j Aijyixj −

∑
j cjxj

=
∑

i biyi −
∑

j cjxj

= 0

As such, the inequalites must indeed be equalities.

This corollary implies that feasible solutions that satisfy complementary slackness conditions are
optimal. As such, for a given problem we can start with feasible solutions x and y and iteratively
change the values to satisfy the conditions more and more. This is the core of the Primal-Dual
algorithm.
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Note that the primal dual method avoids solving the LP and is usually much more efficient that
LP rounding.

Now we can give the f -Approximation algorithm for the f -Frequency set cover problem.

procedure Primal Dual Set Cover(S, E, W )

1: while (P) is not feasible, i.e. ∃ek not covered do
2: Raise yk so that some dual constraint (containing yk) say jth becomes tight
3: Freeze all other yi in jth constraint
4: xj = 1, i.e. place Sj in the cover and therefore cover xk

5: end while

The above algorithm works becaue if ek is not covered, that means sets containing ek are not covered
yet. This in turn means the corresponding yk must have some slack, i.e. yk can be increased without
violating constraints.

Next, we give the Greedy algorithm for the set cover. The core idea is that at each iteration we
select the set that minimizes the cost per new additional item to be covered.

procedure Greedy Set Cover(S, E, W )

1: I = ∅
2: Ŝj = Sj ∀j

3: while ∃ek that is not covered do
4: l = argmin

j:Ŝj 6=∅
wj

|Ŝj |

5: I = I ∪ {l}
6: Ŝj = Ŝj − Sl ∀j

7: end while
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