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1 Outline of this Lecture

• 2-approximation for 2-restricted makespan problem

• 2-approximation for unrelated machines

• Review on graph flow-based algorithms

2 2-approximation for 2-restricted Makespan Problem

Assume the scheduling problem on m machines with n jobs, where each job j has different processing
time on every machine, denote the processing times by a m-tuple (pj1 , pj2 , . . . , pjm

),where pjl
is the

processing time of job j on machine l. In the restricted model, we assume that pjl
∈ {pj ,∞}, i.e.,

each job can be scheduled only on some subset of machines and has the same processing times. In
this section we will focus on the 2-restricted model, where we also assume that for every job j

|{i | pji
<∞, i ∈ [m]}| ≤ 2.

To solve this scheduling problem we will reduce it to the following graph problem. Let G = (V, E, w)
be a undirected weighted graph (allowing self-loops and multi-edges) with positive weights we ≥ 0
for all e ∈ E. The goal is to orient each edge of G so that the maximum over all the vertices of
the sum of incoming edge weights is minimized. We call this the graph orientation problem.

The Reduction

Starting with a 2-restricted makespan instance we will constuct an instance of the graph orientation
problem. For each machine, construct a new vertex v. For each job j ∈ [n] that can scheduled
to exactly two machines, construct an (un-directed) edge with weight pj between the vertices that
correspond to these two machines. Otherwise if a job can be scheduled to only one machine, then
add a self-loop on the corresponding vertex.

It is easy to see that, by construction, an orientation on the above graph that minimizes the
maximum over all the vertices of the sum of incoming edge weights corresponds to an optimum
schedule for the 2-restricted makespan problem. Next we describe a 2-approximation algorithm for
the graph orientation problem.
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The Algorithm

We will formulate the graph orientation problem as a integer program.

min . T

subject to xeu + xev = 1, ∀e ∈ E

qv +
∑

e: v∈e

xev · pe ≤ T, ∀v ∈ V

xev ∈ {0, 1}, ∀v ∈ V

where qv is the sum of processing times of jobs that can only assigned to the machine that correspond
to the vertex v. Roughly speaking, the intuition is that if the variable xev = 1, this means that
we orient the edge e = {u, v} in direction of v. T is also the “objective value” of the graph
orientation problem. Now we relax the above program to a LP, by letting xev ∈ [0, 1]. As in the
previous lecture, we can assume that we know the optimum value T = T ∗ of the graph orientation
problem, by using binary search. Given an instance of the graph orientation problem we run the
corresponding LP. Assume that the linear program returns a solution x∗

ev for all e ∈ E, v ∈ V , say
with makespan T . In general such a solution is fractional, hence we would like to find an integral
solution xint

ev with makespan at most 2T . First set xev = 1 whenever x∗
ev = 1. Consider the graph

H of fractionally oriented edges. The rounding process consists of two steps:

(i) Adjust the fractional solution until H has no cycles while maintaining the objective value of
the fractional solution to be at most T .

(ii) Round the fractional solution of the produced acyclic graph to an integral solution by in-
creasing the objective value by an additive factor T .

Step 1: Now consider a cycle in the undirected graph H. The main observation is that one
edge in C is now not fractional, so we can remove it from H. Also, the new fractional solution
is non-negative and more importantly we haven’t increased the (fractional) cost of our fractional
solution. By iterating this process, we can eliminate all fractional cycles.

Step 2: We know that H has no cycles. Hence H is a forest. For each connected component,
which is a tree, orient the edges towards the leaves of the trees. The main observation is that
the in-degree of each vertex is increased by at most one. So, in particular each machine gets an
overhead of at most T in worst case. This observation combined with Step 1, implies that we get
a bound of 2T on the makespan.
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Algorithm 1 Cycle Elimination

1: procedure Cycle Elimination(Directed graph H = (V, E, xev), cycle C in H)
2: Orient the cycle arbitrarily (clock-wise or counter-clock-wise).
3: Let δ ← mine∈C x∗

evpe (minimum over all e : v → u that agree with the above orientation
of C) and eδ the edge that minimizes the above.

4: Set x∗
eu ← x∗

ev − δ/peδ
for every edge that has the same orientation with Step 2.

5: Set x∗
ev ← x∗

ev + δ/peδ
for every edge in opposite direction w.r.t. the orientation of Step 2.

6: Output: The graph H with C cycle eliminated.
7: end procedure

3 2-approximation for Unrelated Machines

Find feasible solution

subject to
∑

i∈[m]

xji = 1, ∀e ∈ E

∑

i∈[m]

xjipji ≤ T ∗, ∀i ∈ [m]

xji ∈ {0, 1}, ∀(j, i) ∈ [n]× [m]

Again, the approach here is to relax the above integer program to an LP by allowing xji ∈ [0, 1].
Then solve the LP to get a fractional solution x∗

ji, and finally round the fractional solution to find
an integral solution with makespan at most 2T .

We will give a sketch of the proof. We use the following two results that exploit the structure
of the above specific LP.

Lemma 1. If there exists a solution to the LP, then there exists a solution with at most m + n
non-zero variables.

Also we can give a bound on the number of fractionally assignment jobs.

Theorem 2. There are at most m fractionally assigned jobs.

The main idea of the proof is as follows: Construct a bipartite graph of size m + n where the
left vertices correspond to the fractionally assigned jobs, and the right side of vertices correspond
to the machines. We put an edge between a fractionally assigned job to a machine with fractional
weight. Then we can prove the following claim.

Claim 3. There is perfect matching between the fractionally assigned jobs and the machines.

Hence we can round according to this perfect matching. So, each machine gets at most one
extra job, and therefore the total makespan is at most 2T .

4 Review on graph flow-based algorithms

We start by defining a flow network. A flow network F = (G, E, s, t) consists of a bidirected graph
G = (V, E), a capacity function c : E → R≥0, and two vertices of G, s and t that are the source
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and terminal of the flow network. A flow is a function f : E → R which satisfies that following
properties:

(i) f(e) ≤ c(e), ∀e ∈ E. This means that we can’t “transmit” more flow than the capacity of
each edge.

(ii) f(u, v) = −f(v, u), ∀e = (u, v), i.e., the flow is preserved over each edge.

(iii) ∀u ∈ V \ {s, t},
∑

f(u,v) = 0. This is similar with Kirchhoff’s circuit law for electrical flows,
i.e., the amount of incoming flow equals the amount of outcoming flow for every vertex.

Given a flow network F , we define the value of the flow as val(F) =
∑

v∈N(s) f(s, v), where
N(s) = {v | (s, v) ∈ E}. Our goal is to find a maximum flow on a flow network. To continue our
discussion we need the following list of definitions.

Residual Graph: Given a flow f , we define the residual graph Gf on the same vertex set with
the flow network as E(Gf ) = {e | cf (e) > 0, e ∈ E} where cf (e) = c(e)− f(e).

Residual Network: The residual network is defined as F = (Gf , cf , t, s).

Augmenting Path: A path Π from s to t in Gf is called an augmenting path. We will also denote
by cf (Π) = mine∈Π cf (e), the “left-over” capacity of the path Π.

Augmenting flow An augmenting flow fΠ with respect to a augmenting path Π is defined as
follows

fΠ(e) :=

{

cf (Π) if e ∈ Π,

0 otherwise.

The following greedy algorithm finds a maximum flow of a given flow network by adding to the
current flow greedily an augmenting flow. The following theorem proves the correctness of the

Algorithm 2 Ford-Fulkerson

1: procedure Max-flow(A flow network F = (G, E, s, t))
2: Initialize f(e) = 0 for all e ∈ E.
3: while There exists an augmenting path Π in Gf do

4: Update f ← f + fΠ

5: end while

6:

7: Output: A maximum flow f : E → R.
8: end procedure

above algorithm (proof omitted).

Theorem 4. The following are equivalent:

(a) f is a maximum flow.

(b) There is no augmenting path for f .

(c) There is a cut s− t with value exactly val(f).

Remark 1. If the capaticites of the flow network are integral, then there exists a maximum flow
with integral value.
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