1 The makespan problem for identical machines — continued

Last time we gave a Brute force+Greedy algorithm that runs in \(O(m^{m \cdot s} \cdot n)\)-time to get a \((1 + \frac{1}{s})\)-approximation for the minimum makespan problem on \(m\) identical machines.

If we fix \(m\), so that the number of machines is not a parameter of the problem, and take \(s \geq \frac{1}{\epsilon}\), then we get an algorithm that runs in \(O(m^{m/\epsilon} \cdot n)\)-time algorithm and gives a solution that is a \((1 + \epsilon)\) approximation. If \(m\) is fixed, this is can be considered a linear time approximation algorithm — PTAS algorithm.

We are interested in an algorithm that runs in poly time for a fixed \(\epsilon\), and arbitrary parameters \(m, n\). Our algorithm’s key ingredients will be:

1. Suppose we have a procedure that for each \(T\) will either declare that \(\nexists\) a schedule with makespan \(\leq T\), or will produce a schedule with makespan \(\leq c \cdot T\).

 \textbf{Remark} Both answers are valid for the case where \(OPT \in (T, c \cdot T]\).

 We can then get a \(c\)-approximation by running a binary search.

2. By scaling down “large jobs” we can produce a problem instance such that there exists only a small number of job types, say, \(d = s^2\) types. We let \(\{z_1, \ldots, z_d\}\) be the distinct job sizes. So:

\[
p_i \in \{z_1, \ldots, z_d\}, \text{ for each job } j
\]

3. Use DP (dynamic programming) to optimally solve the problem with \(d\) job types in time \(n^{O(d)} \sim n^{2d}\).

4. Fill in small jobs greedily.

\textbf{Theorem 1.} Given makespan problem with target \(T\), in which there exists at most \(d\) job types, there exists a \(n^{O(d)}\)-steps DP algorithm that either reports that there is no solution with makespan \(\leq T\), or finds an optimal solution.

\textbf{The DP algorithm} Let \(z_1, \ldots, z_d\) be the sizes of the job types. Define a configuration on a given machine:

\[
\vec{N} = (N_1, \ldots, N_d), \text{ where } N_i = \# \text{ of jobs of size } z_i
\]

And let \(V = \{(N_1, \ldots, N_d) | \sum_i N_i \cdot z_i \leq T\}\) be the set of configurations for a machine that do not exceed \(T\). Clearly \(|V| \leq n^d\), since \(N_i \leq n, \forall i\).

Let \(M(x_1, \ldots, x_d)\) denote the minimal number of machines required for scheduling \(x_i\) jobs of size \(z_i\) within a makespan \(T\), for every \(i \in [1, d]\). We want to know whether \(M(r_1, \ldots, r_d) \leq m\), where the input has \(r_i\) jobs of size \(z_i\), for every \(i \in [1, d]\).

Consider the following DP recursion relation:

\[
M(x_1, \ldots, x_d) = 1 + \min_{\vec{N} \in V} M(x_1 - N_1, \ldots, x_d - N_d),
\]
which considers all the possible assignments for the first machine. The DP matrix has \(O(n^d)\) entries, and filling each entry requires \(O(n^d)\) recursive calls, which gives a running time of \(O(n^{2d})\).

We now define the approximation algorithm that produces a solution within \([T, (1 + 1/s) \cdot T]\). Define a large job to be one where \(p_j > T/s\). Round \(p_j\) down to nearest the multiple of \(T/s^2\), and let the rounded size be \(p'_j\). We consider the makespan problem for the modified set of jobs.

Hand-waiving comment: Assume integrality wherever necessary.

We make the following observations:

1. For any valid solution with makespan \(T\), there exist at most \(s\) large jobs on any machine. This holds since for every job \(j\) \(p_j \leq T/s\).

2. \(p_j - p_j' \leq T/s^2\).

3. There are at most \(s^2\) job types.

We now run the DP algorithm on the set of rounded large jobs, \(T\), and \(d = s^2\). Notice that if the DP algorithm reports that no solution within makespan \(\leq T\) exists for the set of rounded down jobs, it must also be the case for the original set of jobs. On the other hand, if such a solution is produced by the DP algorithm, we can restore the job loads in it to get a makespan within:

\[
s \cdot T/s^2 = (1 + \frac{1}{s}) \cdot T,
\]

which follows from observations 1 and 2.

Then greedily assign the small jobs (of load \(\leq T/s\)) to the schedule (the task of proving that the approximation ratio remains the same is left as a homework assignment).

The algorithm:

```
Input: Jobs \(J = \{p_j\} \cup \{p'_j\}\), set of \(m\) identical unrelated machines, non-negative number \(T\).
Output: “No \(T\)-makespan solution” if no solution with makespan \(\leq T\) exists.

Otherwise: a schedule of the \(n\) jobs with a makespan \(\leq (1 + 1/s) \cdot T\).

Let \(J' = \{p'_j| p_j \in J, p_j > T/s, p_j' = \lfloor \frac{p_j}{T/s^2} \rfloor\};\)
Run DP algorithm using \(J', d = s^2, T\);
If returned “No solution” return “No solution”; Otherwise, use the returned schedule for \(J\) and fill in the remaining small jobs using the greedy algorithm.
If the greedy algorithm fails, then return “No \(T\)-makespan solution”.
```

Procedure ScheduleT((\(p_j\))\(j=1,...,n\), \(m, T\))

```
Input: Set of jobs \(J = \{p_j\}\), set of \(m\) identical unrelated machines
Output: A schedule of the \(n\) jobs with a makespan that is within a factor of \((1 + 1/s)\) of the optimum

Use binary search on \(T\) to look for the minimal makespan \(T\), using ScheduleT(J, m, T) ;
```

Algorithm 2: The \((1 + 1/s)\)-approximation algorithm
2 Integer Programming (IP) and Linear Programming (LP)

In order to introduce the method of IP/LP, we consider the following problem:

2.1 The Vertex Cover Problem

Let $G = (V, E)$ be a graph with vertex weight function: $w : V \rightarrow \mathbb{R}$. Let $|V| = n$. We say that $V' \subseteq V$ is a vertex cover if for all $(u, v) \in E$ either $u \in V'$ or $v \in V'$ (or both).

Goal: Minimize:

1. $|V'|$ (unweighted case).
2. $\sum_{u \in V'} w_i$ (weighted case).

This problem is known to be NP-hard. Furthermore, it is known to be NP-hard to approximate within a ~ 1.38 approximation. Subject to other complexity assumptions (Khot’s unique games conjecture — UGC), it is NP-hard to get a $2 - \epsilon$ approximation for any $\epsilon > 0$.

The corresponding IP for this problem:

$$\min \sum_{i \in [n]} w_i \cdot x_i$$

subject to:

$$x_u + x_v \leq 1, \forall (u, v) \in E$$

$$x_i \in \{0, 1\}, \forall i \in [n]$$

Where the intended meaning of x_i:

$$x_i = \begin{cases} 0 & v_i \notin V' \\ 1 & v_i \in V' \end{cases} \quad (4)$$

The LP relaxation of the IP would replace the last line with:

$$0 \leq x_i \leq 1 \quad (5)$$

Any instance of an LP can be solved optimally in poly-time. However, the worst case poly-time algorithms have time complexity $\sim O(n^{3.5} \cdot L)$, where $L =$ length of description of input instance. Practically, the Simplex method often beats the worst case methods.

Open problem: Does there exist a strongly poly-time (in m, n) algorithm for solving an LP with an $m \times n$ constraint matrix?

The canonical minimization problem LP

$$\min \quad \overrightarrow{c} \cdot \overrightarrow{x}$$

subject to:

$$A_{m \times n} \cdot \overrightarrow{x} \geq \overrightarrow{b}$$

This is called the canonical/standard LP form for a minimization problem.
The canonical LP form for a maximization problem:

\[
\begin{align*}
\text{max} & \quad \vec{c} \cdot \vec{x} \\
\text{subject to:} & \quad A_{m \times n} \cdot \vec{x} \leq \vec{b}
\end{align*}
\]

When all of the coefficients are non-negative, the minimization form is often referred to as a covering problem; the maximization form is referred to as a packing problem. Let \(\vec{x} \) and \(\hat{x} \) be the optimal LP and integral solutions, respectively. Clearly:

\[
\text{cost}(\vec{x}) \leq \text{cost}(\hat{x}),
\]

since the LP relaxation can have a larger solution space. Round the LP solution:

\[
\bar{x}_i = \begin{cases}
0 & x_i < 0.5 \\
1 & x_i \geq 0.5
\end{cases}
\]

Claim 2. Let \(\pi = (x_1, \ldots, x_n) \). Then:

1. \(\pi \) is an integral solution.
2. \(\text{cost}(\pi) \leq 2 \cdot \text{cost}(\vec{x}) \leq 2 \cdot \text{OPT} \).

2.2 Returning to The Makespan Problem

Unrelated machines model (non-uniform): Job \(j \) is described by a vector \((p_1, \ldots, p_{jm})\), where \(p_{ji} \) is the processing time/load on the \(j \)'th for job machine \(i \).

Special case: Restricted machines model For each job \(j \), and machine \(i \): \(p_{ji} \in \{p_j, \infty\} \). That is, each job is allowed to run on some machines, and on the allowed machines the load is the same.

Remark the natural greedy algorithm for this problem is a \(\log_2 m \) approximation and this is a very tight bound within an additive 1.

Open Problem: Is there a greedy or DP algorithm that has a \(O(1) \) approximation. A special case of the restricted machines model is:

\[
|\{i \in [m] : p_{ji} < \infty\}| \leq 2, \forall j,
\]

Consider an even more restricted case:

\[
|\{i \in [m] : p_{ji} < \infty\}| = 2, \forall j
\]

in which job is allowed to run on exactly two machines. This is often referred to as The Graph Orientation Problem.
We can view this as problem on a multigraph $G = (V,E)$.

![Multigraph representation of the job scheduling problem](image)

Figure 1: Multigraph representation of the job scheduling problem

where: $V =$ set of machines, $E =$ set of jobs.

We want to direct the edges, such that the maximal collective weight of incoming edges for any node is reduced. Lenstra, Shmoys and Tardos ([?]) showed how to use IP/LP rounding to achieve a 2-approximation (for the unrelated machines model). They also show that it is NP-hard to achieve better than a 1.5 approximation for the graph orientation problem. The gap between the 2-approximation, which has been improved to a PTAS $(1 - \frac{1}{m})$-approximation algorithm for a fixed m, and the 1.5 inapproximability result has been open for 20 years now.

In SODA2008 Ebenlendr, Kral and Sgall ([?]) were able to obtain a 1.75 approximation for the graph orientation problem. The online greedy algorithm for the restricted machines model has been shown to give a $\log_2 m$-approximation ratio, which is tight even for the graph orientation problem.