
CSC2420 Algorithm Design, Analysis and Theory September 22, 2010

Lecture 2

Lecturer: Allan Borodin Scribe: Joel Oren

1 The makespan problem for identical machines — continued

Last time we gave a Brute force+Greedy algorithm that runs in O(mm·s · n)-time to get a
(1 + 1

s )-approximation for the minimum makespan problem on m identical machines.
If we fix m, so that the number of machines is not a parameter of the problem, and take

s ≥ 1
ǫ , then we get an algorithm that runs in O(mm/ǫ·n)-time algorithm and gives a solution that

is a (1 + ǫ) approximation. If m is fixed, this is can be considered a linear time approximation
algorithm — PTAS algorithm.
We are interested in an algorithm that runs in poly time for a fixed ǫ, and arbitrary parameters
m,n. Our algorithm’s key ingredients will be:

1. Suppose we have a procedure that for each T will either declare that 6 ∃ a schedule with
makespan ≤ T , or will produce a schedule with makespan ≤ c · T .

Remark Both answers are valid for the case where OPT ∈ (T, c · T ].

We can then get a c-approximation by running a binary search.

2. By scaling down “large jobs” we can produce a problem instance such that there exists
only a small number of job types, say, d = s2 types. We let {z1, . . . , zd} be the distinct
job sizes. So:

pi ∈ {z1, . . . , zd}, for each job j (1)

3. Use DP (dynamic programming) to optimally solve the problem with d job types in time
nO(d) ∼ n2d.

4. Fill in small jobs greedily.

Theorem 1. Given makespan problem with target T , in which there exists at most d job

types, there exists a nO(d)-steps DP algorithm that either reports that there is no solution with

makespan ≤ T , or finds an optimal solution.

The DP algorithm Let z1, . . . , zd be the sizes of the job types. Define a configuration on a
given machine:

−→
N = (N1, . . . , Nd), where Ni = # of jobs of size zi (2)

And let V = {(N1, . . . , Nd)|
∑

iNi · zi ≤ T} be the set of configurations for a machine that do
not exceed T . Clearly |V | ≤ nd, since Ni ≤ n, ∀i.

Let M(x1, . . . , xd) denote the minimal number of machines required for scheduling xi jobs of
size zi within a makespan T , for every i ∈ [1, d]. We want to know whether M(r1, . . . , rd) ≤ m,
where the input has ri jobs of size zi, for every i ∈ [1, d].

Consider the following DP recursion relation:

M(x1, . . . , xd) = 1 +min−→
N∈V

M(x1 −N1, . . . , xd −Nd),

1



which considers all the possible assignments for the first machine. The DP matrix has O(nd)
entries, and filling each entry requires O(nd) recursive calls, which gives a running time of
O(n2d).

We now define the approximation algorithm that produces a solution within [T, (1 + 1/s) · T ].
Define a large job to be one where pj > T/s. Round pj down to nearest the multiple of T/s2,
and let the rounded size be p′j . We consider the makespan problem for the modified set of jobs.

Hand-waiving comment: Assume integrality wherever necessary.
We make the following observations:

1. For any valid solution with makespan T , there exist at most s large jobs on any machine.
This holds since for every job j pj ≤ T/s.

2. pj − pj ≤ T/s2.

3. There are at most s2 job types.

We now run the DP algorithm on the set of rounded large jobs, T , and d = s2. Notice that if
the DP algorithm reports that no solution within makespan ≤ T exists for the set of rounded
down jobs, it must also be the case for the original set of jobs. On the other hand, if such a
solution is produced by the DP algorithm, we can restore the job loads in it to get a makespan
within:

s · T/s2 = (1 +
1

s
) · T, (3)

which follows from observations 1 and 2.
Then greedily assign the small jobs (of load ≤ T/s) to the schedule (the task of proving

that the approximation ratio remains the same is left as a homework assignment).
The algorithm:

Input: Jobs J = {pj}j=1,...,n, m identical unrelated machines, non-negative number T .
Output: “No T -makespan solution” if no solution with makespan ≤ T exists.

Otherwise: a schedule of the n jobs with a makespan ≤ (1 + 1/s) · T .
Let J ′ = {p′j |pj ∈ J, pj > T/s, p′j = ⌊

pj
T/s2

⌋};

Run DP algorithm using J ′, d = s2, T ;
If returned “No solution” return “No solution”.;
Otherwise, use the returned schedule for J and fill in the remaining small jobs using the
greedy algorithm. ;
If the greedy algorithm fails, then return “No T -makespan solution”.

Procedure ScheduleT({pj}j=1,...,n,m, T)

Input: Set of jobs J = {pj}j=1,...,n, set of m identical unrelated machines
Output: A schedule of the n jobs with a makespan that is within a factor of (1 + 1/s) of

the optimum
Use binary search on T to look for the minimal makespan T , using ScheduleT (J,m, T ) ;

Algorithm 2: The (1 + 1/s)-approximation algorithm

2



2 Integer Programming (IP) and Linear Programming (LP)

In order to introduce the method of IP/LP, we consider the following problem:

2.1 The Vertex Cover Problem

Let G = (V,E) be a graph with vertex weight function: w : V → R. Let |V | = n. We say that
V ′ ⊆ V is a vertex cover if for all (u, v) ∈ E either u ∈ V ′ or v ∈ V ′ (or both).

Goal: Minimize:

1. |V ′| (unweighted case).

2.
∑

u∈V ′ wi (weighted case).

This problem is known to be NP-hard. Furthermore, it is known to be NP-hard to approximate
within a ∼ 1.38 approximation.Subject to other complexity assumptions (Khot’s unique games
conjecture — UGC), it is NP-hard to get a 2− ǫ approximation for any ǫ > 0.

The corresponding IP for this problem:

min
∑

i∈[n]wi · xi
subject to: xu + xv ≤ 1, ∀(u, v) ∈ V

xi ∈ {0, 1}, ∀i ∈ [n]

Where the intended meaning of xi:

xi =

{

0 vi /∈ V ′

1 vi ∈ V ′
(4)

The LP relaxation of the IP would replace the last line with:

0 ≤ xi ≤ 1 (5)

Any instance of an LP can be solved optimally in poly-time. However, the worst case poly-time
algorithms have time complexity∼ O(n3.5 · L), where L = length of description of input instance.
Practically, the Simplex method often beats the worst case methods.

Open problem: Does there exist a strongly poly-time (in m,n) algorithm for solving an LP
with an m× n constraint matrix?

The canonical minimization problem LP

min −→c · −→x

subject to: Am×n · −→x ≥
−→
b

This is called the canonical/standard LP form for a minimization problem.

3



The canonical LP form for a maximization problem:

max
−→
C · −→x

subject to: Am×n · −→x ≤
−→
b

When all of the coefficients are non-negative, the minimization form is often referred to as a
covering problem; the maximization form is referred to as a packing problem.

Let −→x and x̂ be the optimal LP and integral solutions, respectively. Clearly:

cost(−→x ) ≤ cost(x̂), (6)

since the LP relaxation can have a larger solution space. Round the LP solution:

xi =

{

0 xi < 0.5
1 xi ≥ 0.5

(7)

Claim 2. Let x = (x1, . . . , xn). Then:

1. x is an integral solution.

2. cost(x) ≤ 2 · cost(−→x ) ≤ 2 ·OPT .

2.2 Returning to The Makespan Problem

Unrelated machines model (non-uniform): Job j is described by a vector (p1, . . . , pjm),
where pji is the processing time/load on the j’th for job machine i.

Special case: Restricted machines model For each job j, and machine i: pji ∈ {pj ,∞}.
That is, each job is allowed to run on some machines, and on the allowed machines the load is
the same.
Remark the natural greedy algorithm for this problem is a log2m approximation and this is
a very tight bound within an additive 1.

Open Problem: Is there a greedy or DP algorithm that has a O(1) approximation.
A special case of the restricted machines model is:

|{i ∈ [m] : pji < ∞}| ≤ 2, ∀j, (8)

Consider an even more restricted case:

|{i ∈ [m] : pji < ∞}| = 2, ∀j (9)

in which job is allowed to run on exactly two machines. This is often referred to as The Graph

Orientation Problem.

4



We can view this as problem on a multigraph G = (V,E).

i1

i2

j1
�������

i3

j2
???????

i4

j3

j4

??????? j5

�������

Figure 1: Multigraph representation of the job scheduling problem

where: V = set of machines, E = set of jobs.

We want to direct the edges, such that the maximal collective weight of incoming edges for
any node is reduced. Lenstra, Shmoys and Tardos ([?]) showed how to use IP/LP rounding
to achieve a 2-approximation (for the unrelated machines model). They also show that it is
NP-hard to achieve better than a 1.5 approximation for the graph orientation problem. The
gap between the 2-approximation, which has been improved to a PTAS (1− 1

m)-approximation
algorithm for a fixed m, and the 1.5 inapproximability result has been open for 20 years now.

In SODA2008 Ebenlendr, Krcal and Sgall ([?]) were able to obtain a 1.75 approximation
for the graph orientation problem. The online greedy algorithm for the restricted machines
model has been shown to give a log2m-approximation ratio, which is tight even for the graph
orientation problem.

5


