1 The makespan problem for identical machines - continued

Last time we gave a Brute force+Greedy algorithm that runs in $\mathrm{O}\left(m^{m \cdot s} \cdot n\right)$-time to get a $\left(1+\frac{1}{s}\right)$-approximation for the minimum makespan problem on m identical machines.

If we fix m, so that the number of machines is not a parameter of the problem, and take $s \geq \frac{1}{\epsilon}$, then we get an algorithm that runs in $\mathrm{O}\left(m^{m / \epsilon} \cdot n\right)$-time algorithm and gives a solution that is a $(1+\epsilon)$ approximation. If m is fixed, this is can be considered a linear time approximation algorithm - PTAS algorithm.
We are interested in an algorithm that runs in poly time for a fixed ϵ, and arbitrary parameters m, n. Our algorithm's key ingredients will be:

1. Suppose we have a procedure that for each T will either declare that \nexists a schedule with makespan $\leq T$, or will produce a schedule with makespan $\leq c \cdot T$.
Remark Both answers are valid for the case where $O P T \in(T, c \cdot T]$.
We can then get a c-approximation by running a binary search.
2. By scaling down "large jobs" we can produce a problem instance such that there exists only a small number of job types, say, $d=s^{2}$ types. We let $\left\{z_{1}, \ldots, z_{d}\right\}$ be the distinct job sizes. So:

$$
\begin{equation*}
p_{i} \in\left\{z_{1}, \ldots, z_{d}\right\}, \text { for each job } j \tag{1}
\end{equation*}
$$

3. Use DP (dynamic programming) to optimally solve the problem with d job types in time $n^{O(d)} \sim n^{2 d}$.
4. Fill in small jobs greedily.

Theorem 1. Given makespan problem with target T, in which there exists at most d job types, there exists a $n^{O(d)}$-steps DP algorithm that either reports that there is no solution with makespan $\leq T$, or finds an optimal solution.

The DP algorithm Let z_{1}, \ldots, z_{d} be the sizes of the job types. Define a configuration on a given machine:

$$
\begin{equation*}
\vec{N}=\left(N_{1}, \ldots, N_{d}\right), \text { where } N_{i}=\# \text { of jobs of size } z_{i} \tag{2}
\end{equation*}
$$

And let $V=\left\{\left(N_{1}, \ldots, N_{d}\right) \mid \sum_{i} N_{i} \cdot z_{i} \leq T\right\}$ be the set of configurations for a machine that do not exceed T. Clearly $|V| \leq n^{d}$, since $N_{i} \leq n, \forall i$.

Let $M\left(x_{1}, \ldots, x_{d}\right)$ denote the minimal number of machines required for scheduling x_{i} jobs of size z_{i} within a makespan T, for every $i \in[1, d]$. We want to know whether $M\left(r_{1}, \ldots, r_{d}\right) \leq m$, where the input has r_{i} jobs of size z_{i}, for every $i \in[1, d]$.

Consider the following DP recursion relation:

$$
M\left(x_{1}, \ldots, x_{d}\right)=1+\min _{\vec{N} \in V} M\left(x_{1}-N_{1}, \ldots, x_{d}-N_{d}\right),
$$

which considers all the possible assignments for the first machine. The DP matrix has $O\left(n^{d}\right)$ entries, and filling each entry requires $O\left(n^{d}\right)$ recursive calls, which gives a running time of $O\left(n^{2 d}\right)$.
We now define the approximation algorithm that produces a solution within $[T,(1+1 / s) \cdot T]$. Define a large job to be one where $p_{j}>T / s$. Round p_{j} down to nearest the multiple of T / s^{2}, and let the rounded size be p_{j}^{\prime}. We consider the makespan problem for the modified set of jobs.

Hand-waiving comment: Assume integrality wherever necessary.
We make the following observations:

1. For any valid solution with makespan T, there exist at most s large jobs on any machine. This holds since for every job $j p_{j} \leq T / s$.
2. $p_{j}-p_{j} \leq T / s^{2}$.
3. There are at most s^{2} job types.

We now run the DP algorithm on the set of rounded large jobs, T, and $d=s^{2}$. Notice that if the DP algorithm reports that no solution within makespan $\leq T$ exists for the set of rounded down jobs, it must also be the case for the original set of jobs. On the other hand, if such a solution is produced by the DP algorithm, we can restore the job loads in it to get a makespan within:

$$
\begin{equation*}
s \cdot T / s^{2}=\left(1+\frac{1}{s}\right) \cdot T, \tag{3}
\end{equation*}
$$

which follows from observations 1 and 2.
Then greedily assign the small jobs (of load $\leq T / s$) to the schedule (the task of proving that the approximation ratio remains the same is left as a homework assignment).

The algorithm:
Input: Jobs $J=\left\{p_{j}\right\}_{j=1, \ldots, n}, m$ identical unrelated machines, non-negative number T.
Output: "No T-makespan solution" if no solution with makespan $\leq T$ exists.
Otherwise: a schedule of the n jobs with a makespan $\leq(1+1 / s) \cdot T$.
Let $J^{\prime}=\left\{p_{j}^{\prime} \mid p_{j} \in J, p_{j}>T / s, p_{j}^{\prime}=\left\lfloor\frac{p_{j}}{T / s^{2}}\right\rfloor\right\}$;
Run DP algorithm using $J^{\prime}, d=s^{2}, T$;
If returned "No solution" return "No solution".;
Otherwise, use the returned schedule for J and fill in the remaining small jobs using the greedy algorithm. ;
If the greedy algorithm fails, then return "No T-makespan solution".

$$
\text { Procedure ScheduleT }\left(\left\{p_{j}\right\}_{j=1, \ldots, n}, m, T\right)
$$

Input: Set of jobs $J=\left\{p_{j}\right\}_{j=1, \ldots, n}$, set of m identical unrelated machines
Output: A schedule of the n jobs with a makespan that is within a factor of $(1+1 / s)$ of the optimum
Use binary search on T to look for the minimal makespan T, using $\operatorname{Schedule} T(J, m, T)$;
Algorithm 2: The $(1+1 / s)$-approximation algorithm

2 Integer Programming (IP) and Linear Programming (LP)

In order to introduce the method of IP/LP, we consider the following problem:

2.1 The Vertex Cover Problem

Let $G=(V, E)$ be a graph with vertex weight function: $w: V \rightarrow \mathbb{R}$. Let $|V|=n$. We say that $V^{\prime} \subseteq V$ is a vertex cover if for all $(u, v) \in E$ either $u \in V^{\prime}$ or $v \in V^{\prime}$ (or both).

Goal: Minimize:

1. $\left|V^{\prime}\right|$ (unweighted case).
2. $\sum_{u \in V^{\prime}} w_{i}$ (weighted case).

This problem is known to be NP-hard. Furthermore, it is known to be NP-hard to approximate within a ~ 1.38 approximation.Subject to other complexity assumptions (Khot's unique games conjecture - UGC), it is NP-hard to get a $2-\epsilon$ approximation for any $\epsilon>0$.
The corresponding IP for this problem:

$$
\begin{array}{cl}
\min & \sum_{i \in[n]} w_{i} \cdot x_{i} \\
\text { subject to: } & x_{u}+x_{v} \leq 1, \forall(u, v) \in V \\
& x_{i} \in\{0,1\}, \forall i \in[n]
\end{array}
$$

Where the intended meaning of x_{i} :

$$
x_{i}= \begin{cases}0 & v_{i} \notin V^{\prime} \tag{4}\\ 1 & v_{i} \in V^{\prime}\end{cases}
$$

The LP relaxation of the IP would replace the last line with:

$$
\begin{equation*}
0 \leq x_{i} \leq 1 \tag{5}
\end{equation*}
$$

Any instance of an LP can be solved optimally in poly-time. However, the worst case poly-time algorithms have time complexity $\sim O\left(n^{3.5} \cdot L\right)$, where $L=$ length of description of input instance. Practically, the Simplex method often beats the worst case methods.

Open problem: Does there exist a strongly poly-time (in m, n) algorithm for solving an LP with an $m \times n$ constraint matrix?

The canonical minimization problem LP

$$
\begin{array}{cl}
\min & \vec{c} \cdot \vec{x} \\
\text { subject to: } & A_{m \times n} \cdot \vec{x} \geq \vec{b}
\end{array}
$$

This is called the canonical/standard LP form for a minimization problem.

The canonical LP form for a maximization problem:

$$
\begin{array}{cl}
\max & \vec{C} \cdot \vec{x} \\
\text { subject to: } & A_{m \times n} \cdot \vec{x} \leq \vec{b}
\end{array}
$$

When all of the coefficients are non-negative, the minimization form is often referred to as a covering problem; the maximization form is referred to as a packing problem.
Let \vec{x} and \hat{x} be the optimal LP and integral solutions, respectively. Clearly:

$$
\begin{equation*}
\operatorname{cost}(\vec{x}) \leq \operatorname{cost}(\hat{x}) \tag{6}
\end{equation*}
$$

since the LP relaxation can have a larger solution space. Round the LP solution:

$$
\bar{x}_{i}= \begin{cases}0 & x_{i}<0.5 \tag{7}\\ 1 & x_{i} \geq 0.5\end{cases}
$$

Claim 2. Let $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$. Then:

1. \bar{x} is an integral solution.
2. $\operatorname{cost}(\bar{x}) \leq 2 \cdot \operatorname{cost}(\vec{x}) \leq 2 \cdot O P T$.

2.2 Returning to The Makespan Problem

Unrelated machines model (non-uniform): $\quad \mathrm{Job} j$ is described by a vector $\left(p_{1}, \ldots, p_{j m}\right)$, where $p_{j i}$ is the processing time/load on the j 'th for job machine i.

Special case: Restricted machines model For each job j, and machine $i: p_{j i} \in\left\{p_{j}, \infty\right\}$. That is, each job is allowed to run on some machines, and on the allowed machines the load is the same.
Remark the natural greedy algorithm for this problem is a $\log _{2} m$ approximation and this is a very tight bound within an additive 1.

Open Problem: Is there a greedy or DP algorithm that has a $O(1)$ approximation.
A special case of the restricted machines model is:

$$
\begin{equation*}
\left|\left\{i \in[m]: p_{j i}<\infty\right\}\right| \leq 2, \forall j, \tag{8}
\end{equation*}
$$

Consider an even more restricted case:

$$
\begin{equation*}
\left|\left\{i \in[m]: p_{j i}<\infty\right\}\right|=2, \forall j \tag{9}
\end{equation*}
$$

in which job is allowed to run on exactly two machines. This is often referred to as The Graph Orientation Problem.

We can view this as problem on a multigraph $G=(V, E)$.

Figure 1: Multigraph representation of the job scheduling problem
where: $V=$ set of machines, $E=$ set of jobs.
We want to direct the edges, such that the maximal collective weight of incoming edges for any node is reduced. Lenstra, Shmoys and Tardos ([?]) showed how to use IP/LP rounding to achieve a 2-approximation (for the unrelated machines model). They also show that it is NP-hard to achieve better than a 1.5 approximation for the graph orientation problem. The gap between the 2-approximation, which has been improved to a PTAS $\left(1-\frac{1}{m}\right)$-approximation algorithm for a fixed m, and the 1.5 inapproximability result has been open for 20 years now.

In SODA2008 Ebenlendr, Krcal and Sgall ([?]) were able to obtain a 1.75 approximation for the graph orientation problem. The online greedy algorithm for the restricted machines model has been shown to give a $\log _{2} m$-approximation ratio, which is tight even for the graph orientation problem.

