Lecture \# 12

Agenda:

I. Finish discussion of Vector Program Relaxation for Max-Cut problem.
II. Briefly discuss same approach for Max-2-Sat.
III. The constructive Lovasz Local Lemma (LLL).
IV. The Miller - Rabin primality testing.
V. Multiplicative update.

I. Vector Program Relaxation for Max Cut problem

We can write the Max Cut problem as:

$$
\begin{gathered}
\operatorname{maximize} \sum_{\mathrm{i}, \mathrm{j} \in \mathrm{E}} \mathrm{~W}_{\mathrm{ij}} 1 / 2\left(1-\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \\
\text { subject to }\left\|\mathrm{v}_{\mathrm{i}}\right\|^{2}=1 \\
\mathrm{v}_{\mathrm{i}} \in \mathrm{R}^{\mathrm{n}}
\end{gathered}
$$

Consider the vectors are in a sphere

*

We are going to take a random unit vector $r \in R^{n}$. Set $y_{i}=+1$ if $\left(v_{i} r \geq 0\right)$

As the inner product of two vectors is equal $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}=\cos \left(\theta_{\mathrm{ij}}\right)$ and $0 \leq \theta \leq \pi$. Then substituting in equation (1), we can re-write the problem as:

$$
\operatorname{maximize} \sum_{\mathrm{i}, \mathrm{j} \in \mathrm{E}} \mathrm{~W}_{\mathrm{ij}} 1 / 2\left(1-\cos \left(\theta_{\mathrm{ij}}\right)\right)
$$

Where $\cos (\pi)=-1$

$$
\begin{aligned}
& \cos (\pi / 2)=0 \\
& \cos (0)=1
\end{aligned}
$$

Claim: The expected value of the rounded solution will be
E [rounded solution] $\geq \alpha \sum_{\mathrm{i}, \mathrm{j} \in \mathrm{E}} \mathrm{W}_{\mathrm{ij}} 1 / 2\left(1-\cos \left(\theta_{\mathrm{ij}}\right)\right)$

Main Claim: $\operatorname{Prob}_{\mathrm{r}}\left[\mathrm{v}_{\mathrm{i}}\right.$ and v_{j} are separated by r$]=\theta_{\mathrm{ij}} / \pi$ (Proof by picture above *)
\rightarrow To get the desired expectation we want $\theta_{\mathrm{ij}} / \pi \geq \alpha\left(\left(1-\cos \left(\theta_{\mathrm{ij}}\right)\right) / 2\right)$ $\left.\alpha=\min _{0 \leq \theta \leq \pi} 2 / \pi *(1-\cos (\theta)) / \theta\right) \geq 0.87856$

II. Vector Program Relaxation for Max-2-Sat problem

```
\(\mathrm{y}_{0} \ldots \ldots \mathrm{y}_{\mathrm{i}} \in_{0 \leq \mathrm{i} \leq \mathrm{n}}\{+1,-1\}\)
\(y_{i} \sim\) propositional \(x_{i}\)
Interpretation: \(\mathrm{x}_{\mathrm{i}}=\left\{\right.\) true if \(\mathrm{y}_{\mathrm{i}}=\mathrm{y}_{0}\)
                        false if \(y_{i}=-y_{0}\) \}
We are trying to maximize:
\[
\operatorname{maximize}_{\tau} \sum_{\mathrm{C}} \operatorname{val}_{\tau}(\mathrm{C})
\]
\(\operatorname{val}(\mathrm{C})->\{1\) if \(\mathrm{C} / \tau=\) true 0 if \(\mathrm{C} / \tau=\) false \(\}\)
If \(\mathrm{C}=\mathrm{x}_{\mathrm{i}}\) then \(\operatorname{val}(\mathrm{C})=\left(1+\mathrm{y}_{\mathrm{i}} \mathrm{y}_{0}\right) / 2\)
If \(\mathrm{C}=\overline{\mathrm{x}}_{\mathrm{i}}\) then \(\operatorname{val}(\mathrm{C})=1-\left(\mathrm{yi} \mathrm{y}_{0}\right) / 2\)
And if \(\mathrm{C}=\mathrm{x}_{\mathrm{i}} \vee \mathrm{x}_{\mathrm{j}}\) then
\(\operatorname{val}(\mathrm{C})=1-\operatorname{val}\left(\overline{\mathrm{x}}_{\mathrm{i}}\right) * \operatorname{val}\left(\overline{\mathrm{x}}_{\mathrm{j}}\right)\) \(=a\left(\left(1+y_{i} y_{0}\right) / 2\right)+b\left(\left(1-y_{i} y_{0}\right) / 2\right)\)
\(\operatorname{maximize} \sum_{i \in j} a_{i j}\left(1+y_{i} y_{j}\right)+b_{i j}\left(1-y_{i} y_{j}\right)\)
Relaxing yi \(y_{j}\) to \(v_{i} \cdot v_{j}\), with \(v_{i} \in R^{n+1},\left\|v_{i}\right\|=1,0 \leq i \leq n\).
Doing the calculations we get the same \(\alpha \sim 0.87856\) approximation.
```


III. The constructive Lovasz Local Lemma (LLL)

Having a series of events $E_{1}, \ldots ., E_{m}$
$\operatorname{Prob}\left[\mathrm{E}_{\mathrm{i}}\right]=\mathrm{p}<1$
$\operatorname{Prob}\left[\overline{\mathrm{E}}_{1} \wedge \overline{\mathrm{E}}_{2} \wedge \ldots . . \wedge \overline{\mathrm{E}}_{\mathrm{m}}\right]>0$, if all E_{i} are independent

Suppose that each E_{i} occurs with probability at most p , and such that each event is independent of all the other events except for at most d of them.

$$
e p(d+1) \leq 1
$$

(Where $e=2.718 \ldots$ is the base of natural logarithms), then there is a nonzero probability that none of the events occurs.

Consider an instance of the LLL,
$\mathrm{F}=\mathrm{C}_{1} \wedge \mathrm{C}_{2} \wedge \ldots{ }^{\wedge} \mathrm{C}_{\mathrm{m}}$

F in an exactly $\mathrm{K}-\mathrm{CNF}$,
$\mathrm{E}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}$ is not satisfied by a random τ, then
$\operatorname{Prob}\left[\mathrm{E}_{\mathrm{i}}\right]=1 / 2^{\mathrm{k}}$
\bar{E}_{i} means C_{i} is satisfied, then
$\operatorname{Prob}\left[\overline{\mathrm{E}}_{1} \wedge \overline{\mathrm{E}}_{2} \wedge \ldots . . \wedge \overline{\mathrm{E}}_{\mathrm{m}}\right]=\operatorname{Prob}_{\tau}[\mathrm{F} / \tau$ is satisfied $]>0$

Let d be the number of clauses that share a variable (with a given clause C), then to apply the LLL we want:
$d+1 \leq 2^{k} /$ e which implies that $d<2^{k} / e$.

The Constructive Proof:
(Proof by Moser and Gabor, Tardos + Moser)
Chose any random τ

Solve,
while there exists a clause C not satisfied by τ Call Fix(C)
end while

Fix(C)

Randomly set the bits in C
While there is a neighboring clause D that is unsatisfied Call Fix (D)
End while

Theorem: Let r be the size of neighborhood. If r is not to big: $r \leq 2^{k} / 8$, then with high probability the algorithm terminates in O (mlogm) calls to $\mathrm{Fix}(\mathrm{C})$ and hence found a satisfying assignment.

Proof:

Suppose the algorithm takes at least s recursive calls to fix,
$\mathrm{n}+s^{*} \mathrm{k}$ bits describes algorithm up to the $s^{\text {th }}$ cell at which time we have some true assignment τ.

Using Kolmogorov complexity, we state the fact that most random strings cannot be compressed.

Now we say that if r is sufficiently small $k-\log v-c>0$

Then we can describe these $\mathrm{n}+s^{*} \mathrm{k}$ bits in a compressed way.
n bits to describe τ^{\prime}.
s calls to fix
$\mathrm{C}_{1} \ldots \ldots \mathrm{C}_{\mathrm{s}}$ clauses being fixed.

Claim: Solve has at most m clauses.

Any C' satisfied before Fix(C) that is called in Solve remains satisfied.

Claim: We can recover original $\mathrm{n}+s^{*} \mathrm{k}$ bits using

```
n + m logm + s(logr + c)\geq n + s*k
(for \tau) (calls to fix
    in solve)
m logm}\geqs(\textrm{k}-\operatorname{logr}-\textrm{c}
```

(Note: Here it is not proved, but the algorithm does not always terminates)

IV. Primality testing

Some background in primality tests and authors:

- The Solovay-Strassen primality test, developed by Robert M. Solovay and Volker Strassen, is a probabilistic test to determine if a number is composite or probably prime. It has been largely superseded by the Miller-Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem.
- The Miller-Rabin primality test or Rabin-Miller primality test is in an algorithm which determines whether a given number is prime, similar to the Fermat primality test and the Solovay-Strassen primality test. Its original version, due to Gary L. Miller, is deterministic, but the determinism relies on the unproven generalized Riemann hypothesis; Michael O. Rabin modified it to obtain an unconditional probabilistic algorithm.

In general those authors gave a one sided randomized algorithm.
$\operatorname{Prob}[$ ALG says N prime $\mid N$ composite $] \leq 1 / 2$
Prob [ALG says N composite $\mid \mathrm{N}$ prime] $=0$
\rightarrow Composite testing $\in \mathrm{RP}$

Except for a very small (but still infinite) class of numbers, there is a very simple randomized algorithm:
\rightarrow Fernat's little theorem: N prime implies $\mathrm{a}^{\mathrm{N}-1}=1 \bmod \mathrm{~N}$, where $\operatorname{gcd}(\mathrm{a}, \mathrm{N})=1$

Lagrange's Theorem: If S is a subgroup of a group G, then $|S|$ divides $|G|$.

Our group: $\mathrm{Z}^{*}{ }_{\mathrm{N}}=\{\mathrm{a} \mid \operatorname{gcd}(\mathrm{a}, \mathrm{N})=1$, under mullt' $\bmod \mathrm{N}\}$
$\mathrm{S}=\left\{\mathrm{a} \mid \operatorname{gcd}(\mathrm{a}, \mathrm{N})=1\right.$ and $\left.\mathrm{a}^{\mathrm{n}-1} \bmod \mathrm{~N}=1,1 \leq \mathrm{a} \leq \mathrm{n}-1\right\}$ is a subgroup.

False test: choose $\mathrm{a} \in \mathrm{Z}^{*}{ }_{\mathrm{N}}$ randomly.

$$
\text { If } \mathrm{a}^{\mathrm{k}-1} \bmod \mathrm{~N}=1->\text { Output prime }
$$

Else -> Output composite

Carmichael number (AKA false primes):
For all $\mathrm{a} \in \mathrm{Z}^{*}{ }_{\mathrm{N}}, \mathrm{a}^{\mathrm{k}-1} \bmod \mathrm{~N}=1$, and N is composite.
N - Carmichael -> $\mathrm{N}=\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}, \mathrm{~N}_{\mathrm{i}}$ square free. $\operatorname{Gcd}\left(\mathrm{N}_{\mathrm{i}}, \mathrm{N}_{\mathrm{J}}\right)=1$

- If N is prime, then $\mathrm{Z}^{*}{ }_{\mathrm{N}}$ is a field, and 1 has exactly 2 square roots $\{-1,+1\}$
- If N is odd then $\mathrm{N}-1$ is even $->\mathrm{N}-1=2^{\mathrm{t}} \mathrm{u}$, with u odd

Algorithm:

Choose $\mathrm{a} \in \mathrm{Z}^{*}{ }_{\mathrm{N}}$ randomly,

$$
\mathrm{x}_{0}=\mathrm{a}^{\mathrm{u}} \bmod \mathrm{~N}, \mathrm{x}_{\mathrm{t}}=\mathrm{a}^{\mathrm{N}-1} \bmod \mathrm{~N}
$$

for $\mathrm{i}=1$ until t

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}-1}^{2} \bmod \mathrm{~N}
$$

if x_{i} does not belong to $\{-1,+1\}$ then output composite.
end for
if $\mathrm{x}_{\mathrm{i}} \neq 1$ then output composite
else output prime.
Chinese remainder theorem (CRT):
$\operatorname{gcd}\left(\mathrm{N}_{1} \mathrm{~N}_{2}\right)=1$ then for all $\mathrm{u}, \mathrm{v}, \mathrm{N}=\mathrm{N}_{1} \mathrm{~N}_{2}$
Exist $\lambda: \lambda=u \bmod N_{1}$

```
\lambda=v mod N
```


V. Multiplicative update

Suppose we have n experts who every day are predicting the value of a $\{0,1\}$ event.
Let $\mathrm{m}_{\mathrm{i}}^{\mathrm{t}}$ be the number of errors by experts i in first t days. We want an algorithm that will do well compared to the best expert.
w_{i} will be the weight of $\mathrm{i}^{\text {th }}$ expert. Initially $\mathrm{w}_{\mathrm{i}}^{0}=1$.
Algorithm:
For $\mathrm{j}=1$ until t (for each day)
For each \mathbf{i}
if prediction of expert \mathbf{i} on day \mathbf{j} is wrong then $w_{i}^{j}=w_{i}^{j-1}(i-\varepsilon)$
else $w_{i}^{j}=w^{j-1}{ }_{i}$
end for
end for
Output: the weighted majority of the expert predictions.
Claim: Let m^{t} be the number of errors the algorithm make. Then $\mathrm{m}^{\mathrm{t}} \leq 2 \ln n / \varepsilon+2(1+\varepsilon) \mathrm{m}_{\mathrm{i}}^{\mathrm{t}}$, for all i.

