Lecture # 12
Lecturer: Prof. Allan Borodin

Scribe: Yeleiny Bonilla

Agenda:

I
Il.
1.
V.
V.

Finish discussion of Vector Program Relaxation for Max-Cut problem.
Briefly discuss same approach for Max-2-Sat.

The constructive Lovasz Local Lemma (LLL).

The Miller — Rabin primality testing.

Multiplicative update.

Vector Program Relaxation for Max Cut problem

We can write the Max Cut problem as:

maximize Zi,jEE Wi; 1/2(1'V iVj) (1)
subject to |jvil|* = 1
Vi€ R"

Consider the vectors are in a sphere

We are going to take a random unit vector re R". Set y; = +1 if (vi r > 0)

As the inner product of two vectors is equal vivj = cos (0 ;) and 0 < 6 < z. Then substituting in equation (1), we
can re-write the problem as:

maximize Y jeg Wj; 1/2(1- cos (8 5))

Where cos (n) = -1

cos (n/2) =0
cos (0)=1

Claim: The expected value of the rounded solution will be
E [rounded solution] > a Y jee Wij 1/2(1- cos (0 )



Main Claim: Prob, [v; and v; are separated by r] = 6 ;/ © (Proof by picture above *)

=> To get the desired expectation we want 6/ m > o ((1-cos (85))/2 )
o = miNg<y<, 2/ * (1 - cos (0))/ 6) > 0.87856

Vector Program Relaxation for Max-2-Sat problem

Yo ooennn Vi€ o<i<n{tl, -1}
yi ~ propositional X;

Interpretation: x; = {true if y; = y,
false if y; = - yo}

We are trying to maximize:
maximize . Y cval ;. (C)

val(C) -> {1 if C/ t =true
0if C/ t = false}

If C = x; then val(C) = (1+y; yo) /2
If C = X; then val(C) = 1 — (yi yo)/2
And if C = x; v x;then

val(C) =1 —val (x;) * val (k)
=a((L+yiyo)12) + b ((1-yiyo) 12)

maximize Yicj &; (1+ yiy)) + by (1- viyy)
Relaxing yiy; to v;.v;, with v; € R™ || vi]| =1, 0<i<n.

Doing the calculations we get the same a ~ 0.87856 approximation.

The constructive Lovasz Local Lemma (LLL)
Having a series of events Eg,...., Ey,
Prob [El=p<1

Prob [E, » E»*....~0 Ey] > 0, if all E; are independent

Suppose that each E; occurs with probability at most p, and such that each event is independent of all the other

events except for at most d of them.



ep(d+1) <1

(Where e = 2.718... is the base of natural logarithms), then there is a nonzero probability that none of the events

occurs.

Consider an instance of the LLL,

F=Ci"Cy" ... A Cpy

F in an exactly K — CNF,

E; = C; is not satisfied by a random t, then

Prob [E;] = 1/2%

E; means C;is satisfied, then

Prob [E; » Ey*....~ Ey] = Prob , [F/tis satisfied] >0

Let d be the number of clauses that share a variable (with a given clause C), then to apply the LLL we want:
d +1<2%/ e which implies that d < 2“/e.

The Constructive Proof:
(Proof by Moser and Gabor, Tardos + Moser)

Chose any random ¢

Solve,
while there exists a clause C not satisfied by z
Call Fix(C)
end while
Fix(C)

Randomly set the bits in C
While there is a neighboring clause D that is unsatisfied
Call Fix (D)
End while

Theorem: Let r be the size of neighborhood. If r is not to big: r < 2¥/8, then with high probability the algorithm
terminates in O (mlogm) calls to Fix(C) and hence found a satisfying assignment.

Proof:

Suppose the algorithm takes at least s recursive calls to fix,



n + s*k bits describes algorithm up to the s™ cell at which time we have some true assignment 7.
Using Kolmogorov complexity, we state the fact that most random strings cannot be compressed.
Now we say that if r is sufficiently small k —logv—-c¢c >0

Then we can describe these n + s*k bits in a compressed way.

n bits to describe ©’.
s calls to fix
C; ..... Cs clauses being fixed.

Claim: Solve has at most m clauses.
Any C’ satisfied before Fix(C) that is called in Solve remains satisfied.
Claim: We can recover original n + s*k bits using

n + mlogm + s(logr+c)> n + s*k
(forz)  (calls to fix
in solve)

m logm > s (k- logr—c)

(Note: Here it is not proved, but the algorithm does not always terminates)

Primality testing
Some background in primality tests and authors:

e The Solovay-Strassen primality test, developed by Robert M. Solovay and Volker Strassen, is
a probabilistic test to determine if a number is composite or probably prime. It has been largely superseded
by the Miller—Rabin primality test, but has great historical importance in showing the practical feasibility
of the RSA cryptosystem.

e The Miller-Rabin primality test or Rabin—Miller primality testis in an algorithm which determines
whether a given number is prime, similar to the Fermat primality test and the Solovay-Strassen primality
test. Its original version, due to Gary L. Miller, is deterministic, but the determinism relies on the
unproven generalized Riemann hypothesis; Michael O. Rabin modified it to obtain an
unconditional probabilistic algorithm.

In general those authors gave a one sided randomized algorithm.
Prob[ ALG says N prime | N composite ] < %

Prob [ALG says N composite | N prime] =0

= Composite testing € RP



Except for a very small (but still infinite) class of numbers, there is a very simple randomized algorithm:

= Fernat’s little theorem: N prime implies a"* = 1 mod N, where gcd(a,N) = 1

Lagrange’s Theorem: If S is a subgroup of a group G, then |S| divides |G|.

Our group: Z*y={a| gcd(a,N) = 1, under mullt’ mod N}
S={a|gcd(aN)=1and a"* mod N =1, 1<a<n-1 } is a subgroup.
False test: choose a € Z*\ randomly.

If &“* mod N = 1 -> Output prime

Else -> Output composite

Carmichael number (AKA false primes):

Foralla € Z*y,a“* mod N = 1, and N is composite.
N- Carmichael -> N=N;N,N3, N; square free. Ged (N;, Nj) =1

o If Nisprime, then Z*y is afield, and 1 has exactly 2 square roots {-1, +1}
e If Nisodd then N-1 is even -> N-1 = 2'u, with u odd

Algorithm:

Choose a € Z*yrandomly,
Xo=a'"mod N , x,=a""* mod N
for i=1 until t
X; = X%, mod N
if X; does not belong to {-1, +1} then output composite.
end for
if x; # 1 then output composite
else output prime.

Chinese remainder theorem (CRT):

gcd(N;N,) =1 then for all u, v, N = N;N,

Exist X: A =u mod N;



A=vmod N,and 0< X < N;N,,

V. Multiplicative update
Suppose we have n experts who every day are predicting the value of a {0, 1} event.

Let m"; be the number of errors by experts i in first t days. We want an algorithm that will do well compared to the
best expert.

w; will be the weight of i expert. Initially w’ = 1.
Algorithm:
For j=1 until t (for each day)
For each i
if prediction of expert i on day j is wrong then wi; = W', (i- €)
else W =w,
end for
end for
Output: the weighted majority of the expert predictions.

Claim: Let m' be the number of errors the algorithm make. Then m' < 2Inn/€ + 2(1+ €)m", for all i.



