
Lecture # 12

Lecturer: Prof. Allan Borodin

Scribe: Yeleiny Bonilla

Agenda:

I. Finish discussion of Vector Program Relaxation for Max-Cut problem.

II. Briefly discuss same approach for Max-2-Sat.

III. The constructive Lovasz Local Lemma (LLL).

IV. The Miller – Rabin primality testing.

V. Multiplicative update.

I. Vector Program Relaxation for Max Cut problem

We can write the Max Cut problem as:

maximize ∑i,j∈E w ij 1/2(1-v ivj) (1)

subject to ||vi||
2
 = 1

vi∈ R
n

Consider the vectors are in a sphere

*

We are going to take a random unit vector r∈ R
n
. Set yi = +1 if (vi r ≥ 0)

As the inner product of two vectors is equal vivj = cos (θ ij) and 0 ≤ θ ≤ π. Then substituting in equation (1), we

can re-write the problem as:

maximize ∑i,j∈E w ij 1/2(1- cos (θ ij))

Where cos (π) = -1

 cos (π/2) = 0

 cos (0) = 1

Claim: The expected value of the rounded solution will be

E [rounded solution] ≥ α ∑i,j∈E w ij 1/2(1- cos (θ ij))

Main Claim: Probr [vi and vj are separated by r] = θ ij / π (Proof by picture above *)

 To get the desired expectation we want θ ij / π ≥ α ((1 - cos (θ ij)) /2)

α = min0≤θ≤π 2/π * (1 - cos (θ))/ θ) ≥ 0.87856

II. Vector Program Relaxation for Max-2-Sat problem

y0 …… yi ∈ 0≤ i ≤ n {+1, - 1}

yi ~ propositional xi

Interpretation: xi = {true if yi = y0

 false if yi = - y0}

We are trying to maximize:

maximize τ ∑C val τ (C)

val(C) -> {1 if C/ τ = true

 0 if C/ τ = false}

If C = xi then val(C) = (1+ yi y0) /2

If C = x̄i then val(C) = 1 – (yi y0)/2

And if C = xi v xj then

val(C) = 1 – val (x̄i) * val (x̄j)

 = a ((1 + yi y0) /2) + b ((1 - yi y0) /2)

maximize ∑i∈j aij (1+ yi yj) + bij (1- yi yj)

Relaxing yi yj to vi ∙ vj, with vi ∈ R
n+1

 , || vi|| =1, 0 ≤ i ≤ n.

Doing the calculations we get the same α ~ 0.87856 approximation.

III. The constructive Lovasz Local Lemma (LLL)

Having a series of events E1,...., Em

Prob [Ei] = p < 1

Prob [Ē1 ^ Ē2 ^…..^ Ēm] > 0, if all Ei are independent

Suppose that each Ei occurs with probability at most p, and such that each event is independent of all the other

events except for at most d of them.

If

(Where e = 2.718... is the base of natural logarithms), then there is a nonzero probability that none of the events

occurs.

Consider an instance of the LLL,

F= C1 ^ C2 ^ ….^ Cm

F in an exactly K – CNF,

Ei = Ci is not satisfied by a random τ, then

Prob [Ei] = 1/2
k

Ē i means Ci is satisfied, then

Prob [Ē1 ^ Ē2 ^…..^ Ēm] = Prob τ [F/ τ is satisfied] >0

Let d be the number of clauses that share a variable (with a given clause C), then to apply the LLL we want:

d + 1 ≤ 2
k
 / e which implies that d < 2

k
/e.

The Constructive Proof:

(Proof by Moser and Gabor, Tardos + Moser)

Chose any random τ

Solve,

while there exists a clause C not satisfied by τ

Call Fix(C)

end while

Fix(C)

Randomly set the bits in C

While there is a neighboring clause D that is unsatisfied

 Call Fix (D)

End while

Theorem: Let r be the size of neighborhood. If r is not to big: r ≤ 2
k
/8, then with high probability the algorithm

terminates in O (mlogm) calls to Fix(C) and hence found a satisfying assignment.

Proof:

Suppose the algorithm takes at least s recursive calls to fix,

n + s*k bits describes algorithm up to the s
th

 cell at which time we have some true assignment τ’.

Using Kolmogorov complexity, we state the fact that most random strings cannot be compressed.

Now we say that if r is sufficiently small k – log v – c > 0

Then we can describe these n + s*k bits in a compressed way.

n bits to describe τ’.

s calls to fix

 C1 ….. Cs clauses being fixed.

Claim: Solve has at most m clauses.

Any C’ satisfied before Fix(C) that is called in Solve remains satisfied.

Claim: We can recover original n + s*k bits using

 n + m logm + s (logr + c) ≥ n + s*k

 (for τ’) (calls to fix

 in solve)

m logm ≥ s (k – logr – c)

(Note: Here it is not proved, but the algorithm does not always terminates)

IV. Primality testing

Some background in primality tests and authors:

 The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen, is

a probabilistic test to determine if a number is composite or probably prime. It has been largely superseded

by the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility

of the RSA cryptosystem.

 The Miller–Rabin primality test or Rabin–Miller primality test is in an algorithm which determines

whether a given number is prime, similar to the Fermat primality test and the Solovay–Strassen primality

test. Its original version, due to Gary L. Miller, is deterministic, but the determinism relies on the

unproven generalized Riemann hypothesis; Michael O. Rabin modified it to obtain an

unconditional probabilistic algorithm.

In general those authors gave a one sided randomized algorithm.

Prob[ALG says N prime | N composite] ≤ ½

Prob [ALG says N composite | N prime] = 0

 Composite testing ∈ RP

Except for a very small (but still infinite) class of numbers, there is a very simple randomized algorithm:

 Fernat’s little theorem: N prime implies a
N-1

= 1 mod N, where gcd(a,N) = 1

Lagrange’s Theorem: If S is a subgroup of a group G, then |S| divides |G|.

Our group: Z*N = {a | gcd(a,N) = 1, under mullt’ mod N}

S = {a | gcd(a,N) = 1 and a
n-1

mod N =1, 1≤a≤n-1 } is a subgroup.

False test: choose a ∈ Z*N randomly.

If a
k-1

 mod N = 1 -> Output prime

Else -> Output composite

Carmichael number (AKA false primes):

For all a ∈ Z*N, a
k-1

 mod N = 1, and N is composite.

N- Carmichael -> N=N1N2N3, Ni square free. Gcd (Ni, NJ) = 1

 If N is prime, then Z*N is a field, and 1 has exactly 2 square roots {-1, +1}

 If N is odd then N-1 is even -> N-1 = 2
t
u, with u odd

Algorithm:

Choose a ∈ Z*N randomly,

x0 = a
u
 mod N , xt = a

N-1
 mod N

for i=1 until t

 xi = x
2
i-1 mod N

 if xi does not belong to {-1, +1} then output composite.

end for

 if xi ≠ 1 then output composite

 else output prime.

Chinese remainder theorem (CRT):

gcd(N1N2) =1 then for all u, v, N = N1N2

Exist λ: λ = u mod N1

 λ = v mod N2 and 0≤ λ < N1N2.

V. Multiplicative update

Suppose we have n experts who every day are predicting the value of a {0, 1} event.

Let m
t
i be the number of errors by experts i in first t days. We want an algorithm that will do well compared to the

best expert.

 wi will be the weight of i
th

 expert. Initially w
0

i = 1.

Algorithm:

For j=1 until t (for each day)

 For each i

 if prediction of expert i on day j is wrong then w
j
i = w

j-1
i (i- Ɛ)

 else w
j
i = w

j-1
i

 end for

end for

Output: the weighted majority of the expert predictions.

Claim: Let m
t
 be the number of errors the algorithm make. Then m

t
 ≤ 2lnn/Ɛ + 2(1+ Ɛ)m

t
i, for all i.

