
Lecture # 12 

Lecturer: Prof. Allan Borodin 

Scribe: Yeleiny Bonilla 

 

Agenda: 

I. Finish discussion of Vector Program Relaxation for Max-Cut problem. 

II. Briefly discuss same approach for Max-2-Sat. 

III. The constructive Lovasz Local Lemma (LLL). 

IV. The Miller – Rabin primality testing. 

V. Multiplicative update. 

 

 

I. Vector Program Relaxation for Max Cut problem 

 

We can write the Max Cut problem as:   

 

maximize ∑i,j∈E w ij 1/2(1-v ivj)  (1) 

subject to ||vi||
2
 =  1 

vi∈ R
n 

 

Consider the vectors are in a sphere  

* 

 

We are going to take a random unit vector r∈ R
n
. Set yi = +1 if (vi r ≥ 0) 

 

As the inner product of two vectors is equal vivj = cos (θ ij) and 0 ≤ θ ≤ π. Then substituting in equation (1), we 

can re-write the problem as: 

 

maximize ∑i,j∈E w ij 1/2(1- cos (θ ij)) 

Where cos (π) = -1 

          cos (π/2) = 0 

          cos (0) = 1 

 

Claim: The expected value of the rounded solution will be  

E [rounded solution] ≥ α ∑i,j∈E w ij 1/2(1- cos (θ ij))  

 

 



Main Claim: Probr [vi and vj are separated by r] = θ ij / π (Proof by picture above *) 

 

 To get the desired expectation we want θ ij / π  ≥ α ( (1 - cos (θ ij) ) /2  ) 

α = min0≤θ≤π 2/π * (1 - cos (θ))/ θ) ≥ 0.87856 

 

II. Vector Program Relaxation for Max-2-Sat problem 

 

y0 …… yi ∈ 0≤ i ≤ n {+1, - 1} 

yi  ~ propositional xi 

 

Interpretation: xi = {true if yi = y0 

                                 false if yi = - y0} 

 

We are trying to maximize: 

 

maximize τ ∑C val τ (C) 

 

val(C) -> {1 if C/ τ = true 

                0 if C/ τ = false} 

 

If C = xi then val(C) = (1+ yi y0) /2  

 

If C = x̄i then val(C) = 1 – (yi y0)/2 

 

And if C = xi v xj then 

 

val(C) = 1 – val (x̄i) * val (x̄j)  

          = a ((1 + yi y0) /2) + b ((1 - yi y0) /2) 

 

maximize ∑i∈j  aij (1+ yi yj) + bij (1- yi yj)   

 

Relaxing  yi yj  to vi ∙ vj, with vi ∈ R
n+1

 , || vi|| =1,  0 ≤ i ≤ n. 

 

Doing the calculations we get the same α ~ 0.87856 approximation. 

 

  

III. The constructive Lovasz Local Lemma (LLL) 

 

Having a series of events E1,...., Em   

 

Prob [Ei] = p < 1 

 

Prob [Ē1 ^ Ē2 ^…..^ Ēm] > 0, if all Ei are independent 

 

Suppose that each Ei occurs with probability at most p, and such that each event is independent of all the other 

events except for at most d of them. 

 

 



If 

 

(Where e = 2.718... is the base of natural logarithms), then there is a nonzero probability that none of the events 

occurs. 

    

Consider an instance of the LLL, 

 

F= C1 ^ C2 ^ ….^ Cm  

 

F in an exactly K – CNF,  

  

Ei = Ci is not satisfied by a random τ, then  

 

Prob [Ei] = 1/2
k
 

 

Ē i   means  Ci is satisfied, then  

 

Prob [Ē1 ^ Ē2 ^…..^ Ēm] = Prob τ [F/ τ is satisfied] >0 

 

Let d be the number of clauses that share a variable (with a given clause C), then to apply the LLL we want:  

 

d + 1 ≤ 2
k
 / e which implies that d < 2

k
/e.  

 

The Constructive Proof: 

(Proof by Moser and Gabor, Tardos + Moser) 

 

Chose any random τ  

 

Solve, 

while there exists a clause C not satisfied by τ 

Call Fix(C) 

end while     

  

Fix(C) 

 

Randomly set the bits in C 

While there is a neighboring clause D that is unsatisfied 

   Call Fix (D) 

End while  

  

Theorem: Let r be the size of neighborhood. If r is not to big: r ≤ 2
k
/8, then with high probability the algorithm 

terminates in O (mlogm) calls to Fix(C) and hence found a satisfying assignment. 

 

Proof:   

 

Suppose the algorithm takes at least s recursive calls to fix, 



 

n + s*k bits describes algorithm up to the s
th

 cell at which time we have some true assignment τ’. 

 

Using Kolmogorov complexity, we state the fact that most random strings cannot be compressed. 

 

Now we say that if r is sufficiently small k – log v – c > 0 

 

Then we can describe these n + s*k bits in a compressed way. 

 

n bits to describe τ’. 

s calls to fix 

           C1 ….. Cs  clauses being fixed. 

 

Claim: Solve has at most m clauses. 

 

Any C’ satisfied before Fix(C) that is called in Solve remains satisfied. 

 

Claim: We can recover original n + s*k bits using  

 

 n     +     m logm      +     s (logr + c) ≥    n  +   s*k  

 (for τ’)      (calls to fix 

                    in solve) 

 

m logm  ≥  s ( k – logr – c)   

 

(Note: Here it is not proved, but the algorithm does not always terminates) 

 

 

IV. Primality testing  

Some background in primality tests and authors: 

 The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen, is 

a probabilistic test to determine if a number is composite or probably prime. It has been largely superseded 

by the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility 

of the RSA cryptosystem. 

 The Miller–Rabin primality test or Rabin–Miller primality test is in an algorithm which determines 

whether a given number is prime, similar to the Fermat primality test and the Solovay–Strassen primality 

test. Its original version, due to Gary L. Miller, is deterministic, but the determinism relies on the 

unproven generalized Riemann hypothesis; Michael O. Rabin modified it to obtain an 

unconditional probabilistic algorithm. 

In general those authors gave a one sided randomized algorithm. 

Prob[ ALG says  N prime  | N composite ] ≤ ½ 

Prob [ALG says N composite | N prime] = 0 

 Composite testing ∈ RP 



Except for a very small (but still infinite) class of numbers, there is a very simple randomized algorithm: 

 Fernat’s little theorem: N prime implies a
N-1 

= 1 mod N, where gcd(a,N) = 1 

 

Lagrange’s Theorem: If S is a subgroup of a group G, then |S| divides |G|. 

 

Our group: Z*N = {a | gcd(a,N) = 1, under mullt’ mod N} 

S = {a | gcd(a,N) = 1 and a
n-1  

mod N =1, 1≤a≤n-1 } is a subgroup. 

False test: choose a ∈ Z*N randomly. 

If a
k-1

 mod N = 1 -> Output prime 

Else -> Output composite 

 

Carmichael number (AKA false primes):  

For all a ∈ Z*N, a
k-1

 mod N = 1, and N is composite. 

N- Carmichael -> N=N1N2N3, Ni square free. Gcd (Ni, NJ) = 1  

 If  N is prime, then  Z*N  is a field, and 1 has exactly 2 square roots {-1, +1} 

 If  N is odd then N-1 is even -> N-1 = 2
t
u, with u odd  

Algorithm:   

Choose a ∈ Z*N randomly, 

x0 = a
u
 mod N  , xt = a

N-1
 mod N  

for i=1 until t 

     xi = x
2
i-1 mod N 

     if xi  does not belong to {-1, +1} then output composite. 

end for 

 if xi ≠ 1 then output composite 

 else output prime.  

Chinese remainder theorem (CRT):  

gcd(N1N2) =1 then for all u, v, N = N1N2 

Exist λ: λ = u mod N1 



            λ = v mod N2 and 0≤ λ < N1N2. 

 

V.  Multiplicative update  

Suppose we have n experts who every day are predicting the value of a {0, 1} event. 

Let m
t
i be the number of errors by experts i in first t days. We want an algorithm that will do well compared to the 

best expert. 

 wi will be the weight of i
th

 expert. Initially w
0

i = 1. 

Algorithm: 

For j=1 until t (for each day) 

      For each i  

            if prediction of expert i on day j is wrong then w
j
i = w

j-1
i (i- Ɛ) 

            else  w
j
i = w

j-1
i    

     end for 

end for 

Output: the weighted majority of the expert predictions. 

Claim: Let m
t
 be the number of errors the algorithm make. Then m

t
 ≤ 2lnn/Ɛ + 2(1+ Ɛ)m

t
i, for all i.    


