
CSC2420: Algorithm Design, Analysis and Theory
Topic: Markov Chain and Randomized Rounding Date: Nov 24, 2010
Lecturer: Prof. Allan Borodin Scribe: Chun Kong Yung

22.1 Outline

In the first half of this lecture, we will cover some topics concerning Markov chains and random
walks. In the second half, we will discuss the exact Max-k-SAT problem. Then we will see how to
apply randomized rounding to a LP relaxation for (arbitrary) Max-Sat.

22.2 Markov Chain

22.2.1 The Basics

A finite Markov chain M is a discrete-time random process defined over a set of states S and a
matrix P = {Pij} of transition probabilities. Denote by Xt the state of the Markov chain at time t.
It is a memoryless process that the future behavior of a Markov chain depends only on its current
state:

Pij = Pr[Xt+1 = j|Xt = i].

Given an initial state i, denote by rtij the probability that the first time the process reaches state
j at time t:

rtij = Pr[Xt = j and Xs 6= j for 1 ≤ s ≤ t− 1|X0 = i].

Denote by fij the probability that state j is reachable from initial state i:

fij =
∑

t>0

rtij .

Denote by hij the expected number of steps to reach state j starting from state i (hitting time):

hij =
∑

t>0

t · rtij .

Finally, denote by cij the commute time, which is the expected number of steps to reach state j
starting from state i, and then return to i from j:

cij = hij + hji.

A state i is said to be transient if fii < 1; and it is said to be persistent if fii = 1.

Denote by qt = (qt1, q
t
2, . . . , q

t
n) the state probability vector (the distribution of the chain at time t),

to be a row vector whose i-th component is the probability that the Markov chain is in state i at
time t. A distribution π is a stationary distribution for a Markov chain with transition matrix P
if π = πP .

1

Define the underlying directed graph of a Markov chain as follows: each vertex in the graph
corresponds to each state of Markov chain and there is an directed edge from vertex i to vertex
j iff Pij > 0. A Markov chain is irreducible if its underlying graph consists of a single strongly
connected component. We end this section by the following theorem.

Theorem 22.2.1 For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) All states i have hii < ∞, and hii = 1/πi.

22.2.2 Uniform Random Walk on Graphs

Let G = (V,E) be a connected, non-bipartite, undirected graph with |V | = n and |E| = m. A
uniform random walk induces a Markov chain MG as follows: the states of MG are the vertices of
G; and for any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E, and Puv = 0 otherwise.

Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary distribution (d1/2m, . . . , dn/2m).
If G is a k-regular graph then it has a uniform stationary distribution.

Denote by Cu(G) the expected time to visit every vertex, starting from u. Denote by C(G) =
maxuCu(G) the cover time of G.

Theorem 22.2.2 (Theorem 6.8 in [1]) C(G) ≤ 2m(n− 1).

As an outline of the proof, consider a spanning tree of the graph G. There are n− 1 edges, and it
takes at most 2m steps to commute the end vertices of an edge (by the lemma below). Hence, it
takes at most 2m(n− 1) steps to visit all vertices.

Lemma 22.2.3 (Lemma 6.5 in [1]) Cij = hij + hji ≤ 2m for every (i, j) ∈ E.

Theorem 22.2.2 provides an application of random walks in checking connectivity. Given an undi-
rected graph G and a vertex pair (s, t) in G, the undirected s-t connectivity (USTCON) problem
asks whether s and t are in the same connected component. Since a uniform random walk is a
memoryless process, it takes only log space for a walk of length 2m(n− 1). Hence, USTCON can
be solved in randomized logarithmic-space polynomial-time, i.e. USTCON ∈ RLP (Theorem 6.11
in [1]).

We end this section with a randomized algorithm for 2-SAT. Start with any assignment of 2-SAT,
pick an unsatisfied clause and flip one of its (randomly chosen) variables; repeat this for m = O(n2)
times. Assume the input instance is satisfiable and consider a satisfying assignment τ∗. If the
current assignment matches τ∗ at k variables, then after flipping one variable, it matches τ∗ at
either k+1 or k−1 variables. In the worst case, each case happens with 1/2 probability. Hence, the
worst-case behavior of this algorithm corresponds to a random walk on a line. By Theorem 22.2.2,
the expected cover time is bounded by 2n(n− 1) = O(n2).

2

22.2.3 Expander Graphs

Consider a d-regular bipartite graph G(X,Y ;E) with |X| = |Y | = n/2. G is a (n, d, c)-expander if
for all S ⊆ X,

|N(S)| ≥ (1 + c · (1−
2|S|

n
))|S|.

Let A be the adjacency matrix of G. If G is a d-regular graph, then d = λ1 ≥ λ2 ≥ · · · ≥ λn, where
λi’s are eigenvalues of A. G is an expander if and only if (λ1 − λ2)/d is large enough (Theorem
6.16 and 6.17 in [1]).

22.2.4 Rapidly Mixing Markov Chain

Denote by qt the state probability vector of a Markov chain defined by matrix M at time t. Denote
π the stationary distribution of M . The relative pointwise distance of the Markov chain at time t
is defined as

∆(t) = max
i

|qti − πi|

πi
.

The change in ∆(t) with respect to tmeasures the rate of convergence to the stationary distribution.

Consider a (n, d, c)-expander G with adjacent matrix A = {aij}. Let P = A/d and Q = (I +P)/2,
where I is the identity matrix. The Markov chain defined by Q still has G as its underlying graph.
The eigenvalues of Q are given by

λ′

i =
1 + λi/d

2
,

where λi’s are eigenvalues of A. The following theorem states that the relative pointwise distance
for a random walk on an (n, d, c)-expander converges to zero at exponential rate.

Theorem 22.2.4 (Theorem 6.21 in [1]) ∆(t) ≤ n1.5(λ′

2)
t.

The rapidly mixing property means that after a small number of steps, the random walk is expected
to be close to a uniformly distributed vertex, independent of the choice of the initial vertex. Hence,
we can generate random strings from random walks on an expander graph. This allows us to
perform probability amplification by using a suitable random walk (refer to Section 6.8 in [1] for
more details).

22.3 Randomized Rounding

22.3.1 Max-k-SAT

Let F = C1 ∧ C2 ∧ · · · ∧ Cm and Ci = l1i ∨ l2i · · · ∨ lki is a clause having k distinct variables. The
goal of Max-k-SAT is to find an assignment τ that satisfies as many clauses in F as possible. In a
weighted version, each clause Ci has a weight wi and the goal is to maximize the total weight of
satisfied clauses. This problem is NP-hard for k ≥ 2.

As a simple randomized algorithm, we choose τ randomly, i.e. assign τ(xi) to True and False with

equal probability 1/2. The probability that a clause is satisfied is hence 2k−1

2k
. The expected weight

3

a clause Cj contributing in τ is

Eτ [Cj] =
2k − 1

2k
· wj .

The expected total weight of satisfied clauses in τ is

Eτ [F] =
2k − 1

2k
·

m∑

j=1

wj ≥
2k − 1

2k
OPT.

We can de-randomize this algorithm by using conditional expectation. First, notice that

Eτ [F] =
1

2
Eτ1 [F |x1=True] +

1

2
Eτ0 [F |x1=False].

Hence, one of Eτ1 [F |x1=True] and Eτ0 [F |x1=False] is at least
2k−1

2k
OPT . Therefore, we can set x1 to

the one getting better total weight. This gives a (deterministic) priority algorithm.

For any k ≥ 3, it is NP-hard to approximate Max-k-SAT better. However, we can do better by
using vector program rounding when k = 2. Note also that for non exact Max-k-Sat (when there
can also be unit clauses), we only get a 1/2 approximation. Using randomized rounding of an LP
we can do better as we shall see in the next section.

22.3.2 Linear Programming Relaxation and Rounding

First, we give an integer programming formulation of Max-k-SAT. Here, each zj corresponds to a
clause Cj and each yi corresponds to a variable xi.

max
∑m

j=1
wj · zj

subject to
∑

xi∈Cj
yi +

∑
xi∈Cj

(1− yi) ≥ zj , ∀j

yi ∈ {0, 1}, ∀i

zi ∈ {0, 1}, ∀j

Then, we relax the integer constraint to give a linear programming formulation. In other words,
we replace constraints yi ∈ {0, 1} and zj ∈ {0, 1} by 0 ≤ yi ≤ 1 and 0 ≤ zj ≤ 1 for all i and j.
Now, we can solve the linear program in polynomial time by the well-known methods. This gives
a solution ({y∗i }, {z

∗

j }) with objective value at least OPT. However, y∗i and z∗j may be fractional as
we relaxed the constraints.

Hence, we have to round the solution to 0-1 values. We assign xi to 1 (True) with probability yi,
and 0 (False) with probability 1 − yi. Consider (with out loss of generality by renaming) a clause
Cj = x1 ∨ · · · ∨ xk. The probability that the clause Cj is not satisfied is

k∏

i=1

(1− yi).

4

By arithmetic-geometric mean, the probability is upper bounded by

[
1

k

k∑

i=1

(1− yi)]
k = [1−

k∑

i=1

yi/k]
k ≤ [1− zj/k]

k.

Hence, the expected total weight of satisfied clauses in the rounded solution is at least

m∑

j=1

(1− [1− zj/k]
k) · wj ≥ (1−

1

e
) ·OPT.

This improves the 1/2-approximation for non exact Max-2-Sat obtained by the naive random-
ized/priority algorithm. By maximizing this LP approach with the naive randomized algorithm,
the approximation ratio is 3/4 fo arbitrary Max-Sat. The LP method (and its combination with
the naive method) can be de-randomized but the result is no longer a priority algorithm.

22.3.3 Vector Programming Relaxation

Given a weighted undirected graph, the goal of Max-Cut problem is to find a vertex set S such that
the total weight of edges crossing S and S is maximized. Denote by {xi} the set of vertices. Let
yi = 1 if xi ∈ S and yi = −1 otherwise. We have the following quadratic programming formulation.

max
∑

1

2
wij(1− yiyj)

yi ∈ {−1, 1} ∀i

We can relax it to a vector programming formulation - replace yi by a vector vi ∈ R
n with ||vi|| =

1; and replace yiyj by inner product vi · vj =
∑n

k=1
vi(k)vj(k). This is a relaxation because

vi = (yi, 0, 0, . . . , 0) is a special case of ||vi|| = 1.

max
∑

1

2
wij(1− vi · vj)

||vi|| = 1 ∀i

A vector program (in this case, a semi-definite program) can be solved (almost exactly) in polyno-
mial time. Then we apply randomized rounding to get an integral approximate solution.

References

[1] Randomized Algorithms. Rajeev Motwani and Prabhakar Raghavan. Cambridge University
Press, 1995.

5

