1 Introduction

Usually, a streaming algorithm is used in scenarios in which there are a lot of data (items) arriving and there is a space or time limitation for storage of data and processing later. More precisely, streaming algorithms are on-line algorithms which process the data streams. Each data stream is a long sequence of items arriving rapidly, denoted by $I_1, I_2, ..., I_t, ..., I_m$ where I_t is the t^{th} item and m is the length of data stream. There are various data stream models depending on how to represent I_t:

- **Time Series Model.** In this model, I_t is represented as a_{i_t} where $a_{i_t} \in \{a_1, a_2, ..., a_n\}$. So the data stream is the sequence of items such that each item belongs to $\{a_1, a_2, ..., a_n\}$.

- **Cash Register Model.** In this model, $< a_1(t), a_2(t), ..., a_n(t) >$ is the state at time t. Upon arriving item I_t which is modeled as pair of (j, c_t), $a_i(t)$ will be calculated as follows:

 $$a_i(t) = \begin{cases} a_i(t-1) + c_t & \text{if } i = j \\ a_i(t-1) & \text{if } i \neq j \end{cases}$$

 Note that $c_t \geq 1$ and can not have a negative value.

- **Turnstile Model.** This model is similar to the Cash Register model with the difference that $|c_t| \geq 1$ which implies c_t can have negative value.

2 Frequency Moments Algorithms

This section focuses on time series model. Let $m_i = |\{t | I_t = a_i\}|$ denote the the number of occurrences of a_i in the sequence. For $k \geq 0$, the frequency moments F_k is defined

$$F_k = \sum_{i=1}^{n} m_i^k \quad (1)$$

The numbers F_k provide useful statistics on the sequence. For example, F_0 represents the number of distinct items appearing in the sequence, F_1 is the length of sequence, and F_2 is Gini’s index of homogeneity which can be used to show the diversity of items.

Flajolet and Martin [4] studied the algorithm for F_0. Later on, Alon et al. [2] showed that F_2 can be approximated randomly using only $\Theta(\log n + \log m)$ bits of memory. Moreover, they present a randomized approximation algorithm for F_k with $\tilde{\Theta}(n^{1-\frac{k}{2}}) = \Theta(n^{1-\frac{k}{2}}(\log n + \log m))$. Following subsections will review these algorithms.

2.1 Estimating F_k

The basic idea behind this randomized approximation algorithm is to define a random variable whose expected value is close to F_k and can be calculated under the space constraint. There are two parameters associated with the randomized approximation algorithm: (1) the error probability δ which demonstrates the probability that the algorithm fails, and (2) approximation ratio ϵ. The output of algorithm, denoted by Y, should be calculated based on space constraints and satisfy the following inequality:
\[\mathbb{P}(|Y - F_k| > \epsilon F_k) \leq \delta \]

Let constants \(s_1 \) and \(s_2 \) be defined as follows:

\[
s_1 = \frac{8k}{\epsilon^2 n^{1 - \frac{1}{k}}} \quad \quad s_2 = 2 \log \frac{1}{\delta} \quad \quad (3)
\]

The output of the algorithm \(Y \) is the median of \(s_2 \) random variables \(Y_1, Y_2, \ldots, Y_{s_2} \) where \(Y_i \) is the average of \(s_1 \) random variables \(X_{ij}, 1 \leq j \leq s_1 \). Note that all \(X_{ij} \) are independent identically distributed random variables. Each \(X = X_{ij} \) is calculated in the same way using only \(O(\log n + \log m) \) bits as follows: Choose randomly \(p \in [1, m] \), then see the value of \(a_p \). Maintain \(r = |\{q|q \geq p \text{ and } a_q = a_p\}|. \) Define \(X = m(r^k - (r - 1)^k) \). Note that in order to calculate \(X \), we only require to store \(a_p \) (log \(n \) bits) and \(r \) (at most log \(m \) bits). Now, we will show that \(E(X) = F_k \).

By definition of \(E(X) \), we have

\[
E(X) = \frac{m}{m} [((1^k + (2^k - 1)^k) + \ldots + (m_i^k - (m_1 - 1)^k))
\]
\[
\quad + (1^k + (2^k - 1)^k) + \ldots + (m_k^k - (m_2 - 1)^k)) + \ldots
\]
\[
\quad + (1^k + (2^k - 1)^k) + \ldots + (m_n^k - (m_n - 1)^k))] = \sum_{i=1}^{n} m_i^k = F_k
\]

Alon et al. [2] showed that

\[
E(X^2) \leq kF_1F_{2k-1} \leq kn^{1 - \frac{1}{k}} \left(\sum_{i=1}^{n} m_i^k \right)^2
\]

As \(\text{Var}(X) = E(X^2) - (E(X))^2 \), they can conclude that

\[
\text{Var}(X) \leq kn^{1 - \frac{1}{k}} F_k^2
\]

Thus, we have:

\[
\text{Var}(Y_i) = \frac{\text{Var}(X)}{s_1} \leq \frac{kn^{1 - \frac{1}{k}} F_k^2}{s_1}
\]

Note that \(E(Y_i) = E(X) = F_k \). Therefore, by Chebyshev’s inequality, we have:

\[
\mathbb{P}(|Y_i - F_k| > \epsilon F_k) \leq \frac{\text{Var}(Y_i)}{\epsilon^2 (F_k)^2} \leq \frac{kn^{1 - \frac{1}{k}} F_k^2}{s_1 \epsilon^2 (F_k)^2}
\]

2.2 Estimating \(F_2 \)

Using the algorithm presented in Section 2.1, \(F_2 \) can be computed employing \(O(\sqrt{n}(\log n + \log m)) \) memory bits. This section will present an improvement algorithm for \(F_2 \) which uses only \(O(\log n + \log m) \) bits of memory. Let constants \(s_1 \) and \(s_2 \) be defined as follows:

\[
s_1 = \frac{16}{\epsilon^2} \quad s_2 = 2 \log \frac{1}{\delta} \quad \quad (4)
\]
Fix a set $V = \{v_1, v_2, ..., v_h\}$ such that $|V| = h = O(n^2)$ and each $v_i \in \{1, -1\}^n$ is four-wise independent\(^1\). In other words, V is the set of $O(n^2)$ vectors of length n with 1 and -1 entities which are four-wise independent.

As with the previous algorithm, the output of the algorithm Y is the median of s_2 random variables $Y_1, Y_2, ..., Y_{s_2}$ where Y_i is the average of s_1 random variables X_{ij}, $1 \geq j \geq s_1$. Note that all X_{ij} are independent identically distributed random variables. Each $X = X_{ij}$ is calculated in the same way using only $O(\log n + \log m)$ bits as follows: Choose uniformly random $p \in [1, h]$, and then look up $v_p = (b_1, b_2, ..., b_n)$. Then, define $Z = \sum_{i=1}^n b_i m_i$ (note that Z can be computed by $O(\log n + \log m)$ memory bits). Afterward, define $X = Z^2$. We will show that $E(X) = F_2$ and $\text{Var}(X) \leq F_2$.

$$E(X) = E\left(\sum_{i=1}^n b_i m_i^2\right) = \sum_{i=1}^n m_i^2 E(b_i^2) + \sum_{i \neq j} m_i m_j E(b_i) E(b_j)$$

As random variables b_i are pair-wise independent, $E[b_i] = 0$ for all i (this is because $\text{Prob}(b_i = 1) = \text{Prob}(b_i = -1) = \frac{1}{2}$). Moreover, $E[b_i^2] = 1$ for all i. So we have:

$$E(X) = \sum_{i=1}^n m_i^2 = F_2$$

Similarly, we can conclude that

$$E(X^2) = \sum_{i=1}^n m_i^4 + 6 \sum_{1 \leq i < j \leq n} m_i^2 m_j^2$$

So we have:

$$\text{Var}(X) = E(X^2) - E(X)^2$$

$$= \sum_{i=1}^n m_i^4 + 6 \sum_{1 \leq i < j \leq n} m_i^2 m_j^2 - \left(\sum_{i=1}^n m_i^2\right)^2$$

$$= 4 \sum_{1 \leq i < j \leq n} m_i^2 m_j^2$$

$$\leq 2F_2^2$$

Thus, we have:

$$\text{Var}(Y_i) = \frac{\text{Var}(X)}{s_1} \leq \frac{2F_2^2}{s_1}$$

Note that $E(Y_i) = E(X) = F_2$. Therefore, by Chebyshev’s inequality, we have:

$$\text{Prob}[|Y_i - F_2| > \epsilon F_2] \leq \frac{\text{Var}(Y_i)}{\epsilon^2 F_2^2} \leq \frac{2F_2^2}{s_1 \epsilon^2 F_2^2}$$

\(^1\)A probability distribution over $\{-1, 1\}^n$ is 4-wise independent if for every four distinct coordinates $i_1 < i_2 < i_3 < i_4$ and every choice of $b_1, b_2, b_3, b_4 \in \{-1, 1\}$ exactly a $\frac{1}{16}$ fraction of vectors have b_j in their coordinate number i_j for $j = 1, ..., 4$ [2].
3 Count-Min Sketch

The turnstile model introduced in Section 1 uses the vector \(\vec{a}(t) = < a_1(t), ..., a_i(t), ..., a_n(t) > \).

Note that \(a_i(t) \) represents the value of variable \(a_i \) at time \(t \) and \(a_i(0) = 0 \) for all \(i \). If we have limitation in storing \(a_i(t) \) then we need to approximate the value of \(a_i(t) \). Suppose \(Q(i) \) is a function which return \(Z_i \), an estimate of \(a_i \). The goal is to produce \(Z_i \geq a_i(t) \) while satisfying the following property with the probability of \(1 - \delta \):

\[
Z_i \leq a_i(t) + \epsilon ||a||_1
\]

where \(||a||_1 = \sum_{i=1}^{n} a_i(t) \).

Data Structure. A Count-Min(CM) sketch [3] with the parameters \((\epsilon, \delta) \) is presented by a two-dimensional matrix \(Count_{d \times w} \) with \(d \) rows and \(w \) columns where \(w = \left\lceil \frac{e}{\epsilon} \right\rceil \) and \(d = \left\lceil \ln \frac{1}{\delta} \right\rceil \).

Moreover, we need \(d \) hash functions such that

\[
h_1...h_d : \{1, 2, ..., n\} \rightarrow \{1...w\}
\]

and they are a family of pair-wise independent hash functions.

Update Procedure. Upon receiving an item \(I_t = (i_t, c_t) \), we update the matrix \(Count \) as follows:

\[
Count[j, h_j(i_t)] = Count[j, h_j(i_t)] + c_t \quad \forall 1 \leq j \leq d
\]

Approximation. \(Q(i) \) is calculated as follows:

\[
Q(i) = \min_j Count[j, h_j(i_t)]
\]

4 Next Lecture Preview

Markov Chain. Given a set of states denoted by \(S = \{s_1, s_2, ..., s_n\} \), the process starts from one state and moves to other states consequently. Each move is called a step. If the chain is in state \(s_i \) at time \(t \), then it moves to state \(s_j \) at time \(t + 1 \) with \(p_{ij} \) probability. This probability is independent from which states the chain was before reaching to current state (i.e., memoryless property of Markov chain).

Random Walk on a Graph. Given a graph and a starting node, we select randomly a neighbor and move to it. Then, we select randomly a neighbor of current node and move to it and so on. The random sequence of nodes selected this way is a random walk on the graph. Every Markov chain can be viewed as random walk on a directed graph.

Suppose a uniform random walk on a directed graph. Let \(h_{ij} \) be the expected time to go from \(v_i \) to \(v_j \). Let define \(c_{ij} \) the commute time from \(v_i \) to \(v_j \) and vice versa. We have \(c_{ij} = h_{ij} + h_{ji} \) where \(h_{ij} \neq h_{ji} \). Let \(c_u(G) \) be the required time to visit every nodes in \(G \) starting at \(u \). We define \(c(G) \) as follows:

\[
c(G) = \max_u c_u(G)
\]

It has been shown that \(c(G) \leq 2m(n - 1) \) where \(m = |E| \) and \(n = |V| \). This result is used to solve USTCON problem (undirected s-t connectivity problem) which is the problem of deciding if there is a path between two nodes in an undirected graph [1].
References

