CSC 2420: Lecture 10

Streaming Algorithms: Frequency Moments and Count-Min Sketch

Lecturer: Professor Allan Borodin

Scribe: Amirali Salehi-Abari

1 Introduction

Usually, a streaming algorithm is used in scenarios in which there are a lot of data (items) arriving and there is a space or time limitation for storage of data and processing later. More precisely, streaming algorithms are on-line algorithms which process the data streams. Each data stream is a long sequence of items arriving rapidly, denoted by $I_{1}, I_{2}, \ldots, I_{t}, \ldots, I_{m}$ where I_{t} is the $t^{t h}$ items and m is the length of data stream. There are various data stream models depending on how to represent I_{t} :

- Time Series Model. In this model, I_{t} is represented as $a_{i_{t}}$ where $a_{i_{t}} \in\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. So the data stream is the sequence of items such that each item belongs to $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
- Cash Register Model. In this model, $<a_{1}(t), a_{2}(t), \ldots, a_{n}(t)>$ is the state at time t. Upon arriving item I_{t} which is modeled as pair of $\left(j, c_{t}\right), a_{i}(t)$ will be calculated as follows:

$$
a_{i}(t)= \begin{cases}a_{i}(t-1)+c_{t} & \text { if } i=j \\ a_{i}(t-1) & \text { if } \quad i \neq j\end{cases}
$$

Note that $c_{t} \geq 1$ and can not have a negative value.

- Turnstile Model. This model is similar to the Cash Register model with the difference that $\left|c_{t}\right| \geq 1$ which implies c_{t} can have negative value.

2 Frequency Moments Algorithms

This section focuses on time series model. Let $m_{i}=\left|\left\{t \mid I_{t}=a_{i}\right\}\right|$ denote the the number of occurrences of a_{i} in the sequence. For $k \geq 0$, the frequency moments F_{k} is defined

$$
\begin{equation*}
F_{k}=\sum_{i=1}^{n} m_{i}^{k} \tag{1}
\end{equation*}
$$

The numbers F_{k} provide useful statistics on the sequence. For example, F_{0} represents the number of distinct items appearing in the sequence, F_{1} is the length of sequence, and F_{2} is Gini's index of homogeneity which can be used to show the diversity of items.

Flajolet and Martin [4] studied the algorithm for F_{0}. Later on, Alon et al. [2] showed that F_{2} can be approximated randomly using only $\Theta(\log n+\log m)$ bits of memory. Moreover, they present a randomized approximation algorithm for F_{k} with $\widetilde{\Theta}\left(n^{1-\frac{1}{k}}\right)=\Theta\left(n^{1-\frac{1}{k}}(\log n+\log m)\right)$. Following subsections will review these algorithms.

2.1 Estimating F_{k}

The basic idea behind this randomized approximation algorithm is to define a random variable whose expected value is close to F_{k} and can be calculated under the space constraint. There are two parameters associated with the randomized approximation algorithm: (1) the error probability δ which demonstrates the probability that the algorithm fails, and (2) approximation ratio ϵ. The output of algorithm, denoted by Y, should be calculated based on space constraints and satisfy the following inequality:

$$
\begin{equation*}
\operatorname{Prob}\left[\left|Y-F_{k}\right|>\epsilon F_{k}\right] \leq \delta \tag{2}
\end{equation*}
$$

Let constants s_{1} and s_{2} be defined as follows:

$$
\begin{equation*}
s_{1}=\frac{8 k}{\epsilon^{2}} n^{1-\frac{1}{k}} \quad s_{2}=2 \log \frac{1}{\delta} \tag{3}
\end{equation*}
$$

The output of the algorithm Y is the median of s_{2} random variables $Y_{1}, Y_{2}, \ldots ., Y_{s_{2}}$ where Y_{i} is the average of s_{1} random variables $X_{i j}, 1 \leq j \leq s_{1}$. Note that all $X_{i j}$ are independent identically distributed random variables. Each $X=X_{i j}$ is calculated in the same way using only $O(\log n+\log m)$ bits as follows: Choose randomly $p \in[1, m]$, then see the value of a_{p}. Maintain $r=\mid\left\{q \mid q \geq p\right.$ and $\left.a_{q}=a_{p}\right\} \mid$. Define $X=m\left(r^{k}-(r-1)^{k}\right)$. Note that in order to calculate X, we only require to store a_{p} ($\log n$ bits) and r (at most $\log m$ bits). Now, we will show that $E(X)=F_{k}$.

By definition of $E(X)$, we have

$$
\begin{aligned}
E(X)= & \frac{m}{m}\left[\left(1^{k}+\left(2^{k}-1^{k}\right)+\ldots+\left(m_{1}^{k}-\left(m_{1}-1\right)^{k}\right)\right)\right. \\
& +\left(1^{k}+\left(2^{k}-1^{k}\right)+\ldots+\left(m_{2}^{k}-\left(m_{2}-1\right)^{k}\right)\right)+\ldots \\
& \left.+\left(1^{k}+\left(2^{k}-1^{k}\right)+\ldots+\left(m_{n}^{k}-\left(m_{n}-1\right)^{k}\right)\right)\right] \\
= & \sum_{i=1}^{n} m_{i}^{k}=F_{k}
\end{aligned}
$$

Alon et al. [2] showed that

$$
E\left(X^{2}\right) \leq k F_{1} F_{2 k-1} \leq k n^{1-\frac{1}{k}}\left(\sum_{i=1}^{n} m_{i}^{k}\right)^{2}
$$

As $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}$, they can conclude that

$$
\operatorname{Var}(X) \leq k \cdot n^{1-\frac{1}{k}} F_{k}^{2}
$$

Thus, we have:

$$
\operatorname{Var}\left(Y_{i}\right)=\frac{\operatorname{Var}(X)}{s_{1}} \leq \frac{k n^{1-\frac{1}{k}} F_{k}^{2}}{s_{1}}
$$

Note that $E\left(Y_{i}\right)=E(X)=F_{k}$. Therefore, by Chebyshev's inequality, we have:

$$
\operatorname{Prob}\left[\left|Y_{i}-F_{k}\right|>\epsilon F_{k}\right] \leq \frac{\operatorname{Var}\left(Y_{i}\right)}{\epsilon^{2}\left(F_{k}\right)^{2}} \leq \frac{k n^{1-\frac{1}{k}} F_{k}^{2}}{s_{1} \epsilon^{2}\left(F_{k}\right)^{2}}
$$

2.2 Estimating F_{2}

Using the algorithm presented in Section 2.1, F_{2} can be computed employing $O(\sqrt{n}(\log n+$ $\log m)$) memory bits. This section will present an improvement algorithm for F_{2} which uses only $O(\log n+\log m)$ bits of memory. Let constants s_{1} and s_{2} be defined as follows:

$$
\begin{equation*}
s_{1}=\frac{16}{\epsilon^{2}} \quad s_{2}=2 \log \frac{1}{\delta} \tag{4}
\end{equation*}
$$

Fix a set $V=\left\{v_{1}, v_{2}, \ldots, v_{h}\right\}$ such that $|V|=h=O\left(n^{2}\right)$ and each $v_{i} \in\{1,-1\}^{n}$ is four-wise independent ${ }^{1}$. In other words, V is the set of $O\left(n^{2}\right)$ vectors of length n with 1 and -1 entities which are four-wise independent.

As with the previous algorithm, the output of the algorithm Y is the median of s_{2} random variables $Y_{1}, Y_{2}, \ldots ., Y_{s_{2}}$ where Y_{i} is the average of s_{1} random variables $X_{i j}, 1 \geq j \geq s_{1}$. Note that all $X_{i j}$ are independent identically distributed random variables. Each $X=X_{i j}$ is calculated in the same way using only $O(\log n+\log m)$ bits as follows: Choose uniformly random $p \in[1, h]$, and then look up $v_{p}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Then, define $Z=\sum_{i=1}^{n} b_{i} \cdot m_{i}$ (note that Z can be computed by $O(\log n+\log m)$ memory bits). Afterward, define $X=Z^{2}$. We will show that $E(X)=F_{2}$ and $\operatorname{Var}(X) \leq F_{2}$.

$$
\begin{equation*}
E(X)=E\left(\left(\sum_{i=1}^{n} b_{i} m_{i}\right)^{2}\right)=\sum_{i=1}^{n} m_{i}^{2} E\left(b_{i}^{2}\right)+\sum_{i \neq j} m_{i} m_{j} E\left(b_{i}\right) E\left(b_{j}\right) \tag{5}
\end{equation*}
$$

As random variables b_{i} are pair-wise independent, $E\left[b_{i}\right]=0$ for all i (this is because $\left.\operatorname{Prob}\left(b_{i}=1\right)=\operatorname{Prob}\left(b_{i}=-1\right)=\frac{1}{2}\right)$. Moreover, $E\left[b_{i}^{2}\right]=1$ for all i. So we have:

$$
\begin{equation*}
E(X)=\sum_{i=1}^{n} m_{i}^{2}=F_{2} \tag{6}
\end{equation*}
$$

Similarly, we can conclude that

$$
E\left(X^{2}\right)=\sum_{i=1}^{n} m_{i}^{4}+6 \sum_{1 \leq i<j \leq n} m_{i}^{2} m_{j}^{2}
$$

So we have:

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-E(X)^{2} \\
& =\sum_{i=1}^{n} m_{i}^{4}+6 \sum_{1 \leq i<j \leq n} m_{i}^{2} m_{j}^{2}-\left(\sum_{i=1}^{n} m_{i}^{2}\right)^{2} \\
& =4 \sum_{1 \leq i<j \leq n} m_{i}^{2} m_{j}^{2} \\
& \leq 2 F_{2}^{2}
\end{aligned}
$$

Thus, we have:

$$
\operatorname{Var}\left(Y_{i}\right)=\frac{\operatorname{Var}(X)}{s_{1}} \leq \frac{2 F_{2}^{2}}{s_{1}}
$$

Note that $E\left(Y_{i}\right)=E(X)=F_{2}$. Therefore, by Chebyshev's inequality, we have:

$$
\operatorname{Prob}\left[\left|Y_{i}-F_{2}\right|>\epsilon F_{2}\right] \leq \frac{\operatorname{Var}\left(Y_{i}\right)}{\epsilon^{2} F_{2}^{2}} \leq \frac{2 F_{2}^{2}}{s_{1} \epsilon^{2} F_{2}^{2}}
$$

[^0]
3 Count-Min Sketch

The turnstile model introduced in Section 1 uses the vector $a \overrightarrow{(t)}=<a_{1}(t), \ldots, a_{i}(t), \ldots, a_{n}(t)>$. Note that $a_{i}(t)$ represents the value of variable a_{i} at time t and $a_{i}(0)=0$ for all i. If we have limitation in storing $a_{i}(t)$ then we need to approximate the value of $a_{i}(t)$. Suppose $Q(i)$ is a function which return Z_{i}, an estimate of a_{i}. The goal is to produce $Z_{i} \geq a_{i}(t)$ while satisfying the following property with the probability of $1-\delta$:

$$
Z_{i} \leq a_{i}(t)+\epsilon\|a\|_{1}
$$

where $\|a\|_{1}=\sum_{i=1}^{n} a_{i}(t)$.
Data Structure. A Count-Min(CM) sketch [3] with the parameters (ϵ, δ) is presented by a two-dimensional matrix Count ${ }_{d \times w}$ with d rows and w columns where $w=\left\lceil\frac{e}{\epsilon}\right\rceil$ and $d=\left\lceil\ln \frac{1}{\delta}\right\rceil$. Moreover, we need d hash functions such that

$$
\begin{equation*}
h_{1} \ldots h_{d}:\{1,2, \ldots, n\} \rightarrow\{1 \ldots w\} \tag{7}
\end{equation*}
$$

and they are a family of pair-wise independent hash functions.
Update Procedure. Upon receiving an item $I_{t}=\left(i_{t}, c_{t}\right)$, we update the matrix Count as follows:

$$
\begin{equation*}
\operatorname{Count}\left[j, h_{j}\left(i_{t}\right)\right]=\operatorname{Count}\left[j, h_{j}\left(i_{t}\right)\right]+c_{t} \quad \forall 1 \leq j \leq d \tag{8}
\end{equation*}
$$

Approximation. $Q(i)$ is calculated as follows:

$$
\begin{equation*}
Q(i)=\min _{j} \operatorname{Count}\left[j, h_{j}\left(i_{t}\right)\right] \tag{9}
\end{equation*}
$$

4 Next Lecture Preview

Markov Chain. Given a set of states denoted by $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, the process starts from one state and moves to other states consequently. Each move is called a step. If the chain is in state s_{i} at time t, then it moves to state s_{j} at time $t+1$ with $p_{i j}$ probability. This probability is independent from which states the chain was before reaching to current state (i.e., memoryless property of Markov chain).

Random Walk on a Graph. Given a graph and a starting node, we select randomly a neighbor and move to it. Then, we select randomly a neighbor of current node and move to it and so on. The random sequence of nodes selected this way is a random walk on the graph. Every Markov chain can be viewed as random walk on a directed graph.

Suppose a uniform random walk on a directed graph. Let $h_{i j}$ be the expected time to go from v_{i} to v_{j}. Let define $c_{i j}$ the commute time from v_{i} to v_{j} and vice versa. We have $c_{i j}=h_{i j}+h_{j i}$ where $h_{i j} \neq h_{j i}$. Let $c_{u}(G)$ be the required time to visit every nodes in G starting at u. We define $c(G)$ as follows:

$$
c(G)=\max _{u} c_{u}(G)
$$

It has been shown that $c(G) \leq 2 m(n-1)$ where $m=|E|$ and $n=|V|$. This result is used to solve USTCON problem (undirected s-t connectivity problem) which is the problem of deciding if there is a path between two nodes in an undirected graph [1].

References

[1] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and Charles Rackoff. Random walks, universal traversal sequences, and the complexity of maze problems. In Proceedings of the 20th Annual Symposium on Foundations of Computer Science, pages 218-223, Washington, DC, USA, 1979. IEEE Computer Society.
[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, STOC '96, pages 20-29, New York, NY, USA, 1996. ACM.
[3] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the countmin sketch and its applications. J. Algorithms, 55:58-75, April 2005.
[4] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications. J. Comput. Syst. Sci., 31:182-209, September 1985.

[^0]: ${ }^{1}$ A probability distribution over $\{-1,1\}^{n}$ is 4 -wise independent if for every four distinct coordinates $i_{1}<$ $i_{2}<i_{3}<i_{4}$ and every choice of $b_{1}, b_{2}, b_{3}, b_{4} \in\{-1,1\}$ exactly a $\frac{1}{16}$-fraction of vectors have b_{j} in their coordinate number i_{j} for $j=1, . ., 4$ [2].

