
CSC 2420: Lecture 10

Streaming Algorithms: Frequency Moments and Count-Min Sketch

Lecturer: Professor Allan Borodin Scribe: Amirali Salehi-Abari

1 Introduction

Usually, a streaming algorithm is used in scenarios in which there are a lot of data (items)
arriving and there is a space or time limitation for storage of data and processing later. More
precisely, streaming algorithms are on-line algorithms which process the data streams. Each
data stream is a long sequence of items arriving rapidly, denoted by I1, I2, ..., It, ..., Im where
It is the tth items and m is the length of data stream. There are various data stream models
depending on how to represent It:

• Time Series Model. In this model, It is represented as ait where ait ∈ {a1, a2, ..., an}.
So the data stream is the sequence of items such that each item belongs to {a1, a2, ..., an}.

• Cash Register Model. In this model, < a1(t), a2(t), ..., an(t) > is the state at time
t. Upon arriving item It which is modeled as pair of (j, ct), ai(t) will be calculated as
follows:

ai(t) =

{
ai(t− 1) + ct if i = j

ai(t− 1) if i 6= j

Note that ct ≥ 1 and can not have a negative value.

• Turnstile Model. This model is similar to the Cash Register model with the difference
that |ct| ≥ 1 which implies ct can have negative value.

2 Frequency Moments Algorithms

This section focuses on time series model. Let mi = |{t|It = ai}| denote the the number of
occurrences of ai in the sequence. For k ≥ 0, the frequency moments Fk is defined

Fk =
n∑

i=1

mk
i (1)

The numbers Fk provide useful statistics on the sequence. For example, F0 represents the
number of distinct items appearing in the sequence, F1 is the length of sequence, and F2 is
Gini’s index of homogeneity which can be used to show the diversity of items.

Flajolet and Martin [4] studied the algorithm for F0. Later on, Alon et al. [2] showed that
F2 can be approximated randomly using only Θ(log n+ logm) bits of memory. Moreover, they

present a randomized approximation algorithm for Fk with Θ̃(n1− 1

k) = Θ(n1− 1

k (log n+logm)).
Following subsections will review these algorithms.

2.1 Estimating Fk

The basic idea behind this randomized approximation algorithm is to define a random variable
whose expected value is close to Fk and can be calculated under the space constraint. There
are two parameters associated with the randomized approximation algorithm: (1) the error
probability δ which demonstrates the probability that the algorithm fails, and (2) approxima-
tion ratio ǫ. The output of algorithm, denoted by Y , should be calculated based on space
constraints and satisfy the following inequality:

1

Prob[|Y − Fk| > ǫFk] ≤ δ (2)

Let constants s1 and s2 be defined as follows:

s1 =
8k

ǫ2
n1− 1

k s2 = 2 log
1

δ
(3)

The output of the algorithm Y is the median of s2 random variables Y1, Y2,, Ys2 where
Yi is the average of s1 random variables Xij , 1 ≤ j ≤ s1. Note that all Xij are independent
identically distributed random variables. Each X = Xij is calculated in the same way using
only O(log n + logm) bits as follows: Choose randomly p ∈ [1,m], then see the value of ap.
Maintain r = |{q|q ≥ p and aq = ap}|. Define X = m(rk − (r − 1)k). Note that in order to
calculate X, we only require to store ap (log n bits) and r (at most logm bits). Now, we will
show that E(X) = Fk.

By definition of E(X), we have

E(X) =
m

m
[(1k + (2k − 1k) + ...+ (mk

1 − (m1 − 1)k))

+(1k + (2k − 1k) + ...+ (mk
2 − (m2 − 1)k)) + ...

+(1k + (2k − 1k) + ...+ (mk
n − (mn − 1)k))]

=

n∑

i=1

mk
i = Fk

Alon et al. [2] showed that

E(X2) ≤ kF1F2k−1 ≤ kn1− 1

k

(n∑

i=1

mk
i

)2

As V ar(X) = E(X2)− (E(X))2, they can conclude that

V ar(X) ≤ k.n1− 1

kF 2

k

Thus, we have:

V ar(Yi) =
V ar(X)

s1
≤ kn1− 1

kF 2

k

s1

Note that E(Yi) = E(X) = Fk. Therefore, by Chebyshev’s inequality, we have:

Prob[|Yi − Fk| > ǫFk] ≤
V ar(Yi)

ǫ2(Fk)2
≤ kn1− 1

kF 2

k

s1ǫ2(Fk)2

2.2 Estimating F2

Using the algorithm presented in Section 2.1, F2 can be computed employing O(
√
n(log n +

logm)) memory bits. This section will present an improvement algorithm for F2 which uses
only O(logn+ logm) bits of memory. Let constants s1 and s2 be defined as follows:

s1 =
16

ǫ2
s2 = 2 log

1

δ
(4)

2

Fix a set V = {v1, v2,, vh} such that |V | = h = O(n2) and each vi ∈ {1,−1}n is four-wise
independent1. In other words, V is the set of O(n2) vectors of length n with 1 and −1 entities
which are four-wise independent.

As with the previous algorithm, the output of the algorithm Y is the median of s2 random
variables Y1, Y2,, Ys2 where Yi is the average of s1 random variables Xij , 1 ≥ j ≥ s1. Note
that all Xij are independent identically distributed random variables. Each X = Xij is calcu-
lated in the same way using only O(logn + logm) bits as follows: Choose uniformly random
p ∈ [1, h], and then look up vp = (b1, b2, ..., bn). Then, define Z =

∑n
i=1

bi.mi (note that Z can
be computed by O(logn+ logm) memory bits). Afterward, define X = Z2. We will show that
E(X) = F2 and V ar(X) ≤ F2.

E(X) = E
(
(

n∑

i=1

bimi)
2

)
=

n∑

i=1

m2

iE(b2i) +
∑

i 6=j

mimjE(bi)E(bj) (5)

As random variables bi are pair-wise independent, E[bi] = 0 for all i (this is because
Prob(bi = 1) = Prob(bi = −1) = 1

2
). Moreover, E[b2i] = 1 for all i. So we have:

E(X) =
n∑

i=1

m2

i = F2 (6)

Similarly, we can conclude that

E(X2) =
n∑

i=1

m4

i + 6
∑

1≤i<j≤n

m2

im
2

j

So we have:

V ar(X) = E(X2)− E(X)2

=
n∑

i=1

m4

i + 6
∑

1≤i<j≤n

m2

im
2

j −
(n∑

i=1

m2

i

)2

= 4
∑

1≤i<j≤n

m2

im
2

j

≤ 2F 2

2

Thus, we have:

V ar(Yi) =
V ar(X)

s1
≤ 2F 2

2

s1

Note that E(Yi) = E(X) = F2. Therefore, by Chebyshev’s inequality, we have:

Prob[|Yi − F2| > ǫF2] ≤
V ar(Yi)

ǫ2F 2
2

≤ 2F 2
2

s1ǫ2F
2
2

1A probability distribution over {−1, 1}n is 4-wise independent if for every four distinct coordinates i1 <

i2 < i3 < i4 and every choice of b1, b2, b3, b4 ∈ {−1, 1} exactly a 1

16
-fraction of vectors have bj in their coordinate

number ij for j = 1, .., 4 [2].

3

3 Count-Min Sketch

The turnstile model introduced in Section 1 uses the vector ~a(t) =< a1(t), ..., ai(t), ..., an(t) >.
Note that ai(t) represents the value of variable ai at time t and ai(0) = 0 for all i. If we have
limitation in storing ai(t) then we need to approximate the value of ai(t). Suppose Q(i) is a
function which return Zi, an estimate of ai. The goal is to produce Zi ≥ ai(t) while satisfying
the following property with the probability of 1− δ:

Zi ≤ ai(t) + ǫ||a||1

where ||a||1 =
∑n

i=1
ai(t).

Data Structure. A Count-Min(CM) sketch [3] with the parameters (ǫ, δ) is presented by
a two-dimensional matrix Countd×w with d rows and w columns where w =

⌈
e
ǫ

⌉
and d =

⌈
ln 1

δ

⌉

. Moreover, we need d hash functions such that

h1...hd : {1, 2, ..., n} → {1...w} (7)

and they are a family of pair-wise independent hash functions.
Update Procedure. Upon receiving an item It = (it, ct), we update the matrix Count as

follows:

Count[j, hj(it)] = Count[j, hj(it)] + ct ∀1 ≤ j ≤ d (8)

Approximation. Q(i) is calculated as follows:

Q(i) = min
j

Count[j, hj(it)] (9)

4 Next Lecture Preview

Markov Chain. Given a set of states denoted by S = {s1, s2, ..., sn}, the process starts from
one state and moves to other states consequently. Each move is called a step. If the chain is in
state si at time t, then it moves to state sj at time t+1 with pij probability. This probability is
independent from which states the chain was before reaching to current state (i.e., memoryless
property of Markov chain).

Random Walk on a Graph. Given a graph and a starting node, we select randomly a
neighbor and move to it. Then, we select randomly a neighbor of current node and move to it
and so on. The random sequence of nodes selected this way is a random walk on the graph.
Every Markov chain can be viewed as random walk on a directed graph.

Suppose a uniform random walk on a directed graph. Let hij be the expected time to
go from vi to vj . Let define cij the commute time from vi to vj and vice versa. We have
cij = hij + hji where hij 6= hji. Let cu(G) be the required time to visit every nodes in G

starting at u. We define c(G) as follows:

c(G) = max
u

cu(G)

It has been shown that c(G) ≤ 2m(n − 1) where m = |E| and n = |V |. This result is
used to solve USTCON problem (undirected s-t connectivity problem) which is the problem of
deciding if there is a path between two nodes in an undirected graph [1].

4

References

[1] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, Laszlo Lovasz, and Charles Rackoff.
Random walks, universal traversal sequences, and the complexity of maze problems. In
Proceedings of the 20th Annual Symposium on Foundations of Computer Science, pages
218–223, Washington, DC, USA, 1979. IEEE Computer Society.

[2] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory

of computing, STOC ’96, pages 20–29, New York, NY, USA, 1996. ACM.

[3] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. J. Algorithms, 55:58–75, April 2005.

[4] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31:182–209, September 1985.

5

