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1 Introduction

This is a graduate level course on Algorithm Design, Analysis and Theory.
We used to have many specialized courses, such as advanced graph theory,
approximation algorithms, linear programming etc. This is the first graduate
“foundational” course in algorithms, attempting to give a broad overview of the
material.

1.1 Focus of the course

“Algorithms” is a very general topic, which runs throughout computer science.
Obviously, not all of it can be covered in a single course.

In this course, we will not emphasize specific problems (such as algorithms
for a particular type of graph), but will rather try to focus on general methods:
meta algorithms, algorithmic paradigms.

The focus of this course is in:

• Discrete algorithms (as opposed to, for eg, numerical methods)

• Finite inputs, finite outputs, terminating computation (as opposed to, for
eg, operating systems with continuous input and output stream)

• Sequential RAM model; centralized computation (not distributed, paral-
lel, quantum, biological, etc)

1.2 Material

An undergraduate courses in algorithms, such as CSC373 and its analogues,
usually focus on search and optimization. The following are the topics usually
covered in such a course:

• greedy algorithms

• divide and conquer

• dynamic programming

• local search
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• flow algorithms

• linear programming

Othogonal to these paradigms are general ideas such as reduction, random-
ization, scaling, embedding, etc.

Note that all of the paradigms, except perhaps the divide-and-conquer paradigm,
are mostly concerned with search and optimization. We will do a lot of search
and optimization as well, but might also touch upon other problem domains.

The course will start with an overview of the above undergraduate con-
tent (using some less standard examples) and then will go into the more ad-
vanced material, which might include: a deeper view of linear programming; pri-
mal/dual algorithms; streaming algorithms; social networks; algorithmic game
theory.

Usually, the undergraduate course introduces a paradigm, and then provides
examples to demonstrate it. Here, we will initially go a different route: we will
start with a problem, and then look at how different paradigms can be used to
solve it. Our first problem is the Makespan Scheduling Problem.

2 Makespan Scheduling Problem

Problem. Given a set of jobs I = {J1, J2, · · · , Jn}, where each job Ji is repre-
sented by a “load” or processing time pi, and the number of available machines
m, assign n jobs to the m machines so as to minimize the maximum load on
any machine. The output is a mapping τ : {1, 2, · · · , n} → {1, 2, · · · ,m}.

The optimal solution will have the cost:

min
τ

max
i

∑

j:τ(j)=i

pj

Note: Usually the load pi is considered to be the processing time for the
job. In that case, the objective is to simply minimize the latest finishing time.
However, sometimes people make the distinction between the load and the pro-
cessing time, so that additional timing constraints can be introduced.

Problem variants The above problem definition is for the Makespan Schedul-
ing problem with a uniform machine model. Other models include the following:

Related machines model. Each machine i is operated as speed si. In
this case, the optimal cost is

min
τ

max
i

∑

j:τ(j)=i

pj/si

Restricted machines model. Each job is represented by a pair (pj ,SSSj),
where SSSj ⊆ {1, 2, · · · ,m} and represents the set of machines on which job
i can execute. We restrict the solution to only include mappings τ such
that for all relevant i, τ(i) ∈ sssi.
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Unrelated machines model. Here each job might have a different load
depending upon which machine it is executed. Let pji be the cost of the
job j executing on machine i. Then the optimal cost is

min
τ

max
i

∑

j:τ(j)=i

pji

The problem was originally introduced in [2] and [1], before results on NP-
completeness. This problem is obviously NP-complete: it can be solved by
brute force in exponential time, and for the case of two machines it reduces to
a well-known NP-complete problem SUBSET-SUM.

2.1 The “Natural” Online Greedy Algorithm

The following is a greedy algorithm to solve this problem.

Take the inputs p1, p2, · · · , pn “in the order given”.1

for i = 1, · · · , n do2

schedule τ(Ji) in the currently least loaded machine3

end4

2.1.1 Approximation ratio

How good is the algorithm? For a minimization problem, we say that an algo-
rithm ALG is a c-approximation if for all inputs I,

Cost(ALG[I]) ≤ c × Cost(OPT[I])

Where OPT is the optimal algorithm for solving the problem, and Cost(ALG[I])
is the cost of the solution provided by algorithm ALG on input I. Note: since
it’s impossible to do better than the optimal, c will be ≥ 1.

For maximization problems, there are unfortunately two ways of defining a
c-approximation. We say that for all inputs I:

Profit(ALG[I]) ≥ c̃ × Profit(OPT[I])

or
Profit(OPT[I]) ≤ c × Profit(ALG[I])

Note that in the first case c̃ ≤ 1, and in the second c ≥ 1.
There is no standard notation, so both definitions might be used, and should

be distinguished by context.
Note 1: There is another type of approximation ratio, called asymptotic

approximation, which allows a “slow growing” overhead:

∀ICost(ALG[I]) ≤ c × Cost(OPT[I]) + o(OPT[I])
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For online algorithms the analogue of the asymptotic approximation ratio
is called the competitive ratio. Unless it is specifically stated, we will not use
asymptotic approximation.

Note 2: This is the worst-case approximation. Other varieties exist, prob-
ably most common one being average-case approximation: the approximation
for the average case, assuming some distribution on the input. However, usu-
ally the real distribution is unknown, and average case analysis assumptions are
often pretty naive. For example, in the makespan scheduling problem, if pj is
uniformly distributed in [0, 1], it is possible to get a much better approximation
ratio.

A more involved variety is the worst average case (WAC) approximation.
This considers the case where an adversary chooses the input (selecting the
worst for the algorithm), but the order in which inputs from this set appear is
chosen randomly. The WAC approximation for the above algorithm is obviously
worse than the average-case, and is again close to 2.

2.1.2 Proving inapproximation bounds

Theorem 1. For the uniform machine model the natural online greedy algo-
rithm always produces a solution within a factor of (2− 1

m ) of optimal solution
for all possible sequences [1]. Also, this bound is tight.

In general, the methods for proving inapproximation bounds for an algorithm
include:

Charging argument. Argument based on reassigning solution costs/profits.

“Promising” solutions. Show that at any point in time the partial
solution can be extended to a “good” solution. Note: This method is
essentially for greedy algorithms.

Observing properties of the optimal solution. Say something about
the properties that OPT has to observe and reason within those parame-
ters.

On the following proof we will use the third method.

Proof. Assume some general input I. We note that the optimal latest finishing
time (OPT[I]) must be at least as large as the duration of the longest process:

OPT[I] ≥ max
j

pj

Another lower bound on the optimal solution can be obtained by taking the
combined load and dividing it evenly across the machines:

OPT[I] ≥ (
∑

j

pj)/m
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Now, let us consider the solution given by the natural online greedy algorithm
ALG. Let Cmax be the cost of that solution. That means that on some machine
the largest finishing time is Cmax, and let pk be (the cost of) the last process
on that machine (break ties arbitrarily). We can say that pk determines the
makespan.

At the time that pk is scheduled, its machine was the one with the smallest
load. Let C = Cmax − pk be the load on that machine when the kth job was
scheduled. By the definition of the algorithm, the kth job was scheduled on the
least loaded machine and hence we have C ≤ (

∑

j 6=k pj)/m.
Then the maximum cost of the solution is:

Cmax = C + pk (1)

≤ (
∑

j 6=k

pj)/m + pk (2)

(3)

Recall that OPT[I] ≥ (
∑

j pj)/m = (
∑

j 6=k pj)/m + pk/m.
Then

Cmax ≤ (
∑

j 6=k

pj)/m + pk (4)

=
∑

j

pj/m − pk/m + pk (5)

≤ OPT − pk/m + pk (6)

= OPT + (pk)(1 − 1/m) (7)

≤ OPT + OPT (1 − 1/m) (8)

= (2 − 1/m)OPT (9)

So, for all I, ALG[I] ≤ (2 − 1/m)OPT[I]
The bound is tight. Worst case example: let I = (1, 1, · · · , 1,m) contain

m(m − 1) unit processes (with load 1), followed by a single process with load
m. The online algorithm will distribute the unit processes uniformly, and then

schedule the last process on one of the machines. This obtains the cost m(m−1)
m +

m = 2m − 1.
The optimal solution is to distribute the unit processes among m − 1 ma-

chines, and assign the last process to the remaining machine. This obtains a
solution of cost m.

So, for this I, ALG[I] = 2m − 1 = (2 − 1/m)m = (2 − 1/m)OPT[I].

3 Longest Processing Time (LPT) algorithm

The following algorithm is still greedy in the following sense: it processes the
jobs one at a time. It is customary to call those kinds of algorithms greedy,
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although perhaps a better word would be “myopic”: the algorithm is not able
to see the input beyond the current task.

Here the algorithm first sorts the jobs according to the processing time.

Sort the inputs so that p1 ≥ p2 ≥ · · · ≥ pm.1

for i = 1, · · · , n do2

schedule τ(Ji) in the currently least loaded machine3

end4

This is a
(

4
3 − 1

3m

)

-approximation algorithm. This bound is tight.
For m = 2, the online algorithm has approximation ratio 3/2, and LPT –

7/6. As m → ∞, the ratio for the online algorithm becomes 2, and for LPT it
is 4/3.

Whether or not this is the best greedy algorithm for the problem is still an
open question. It has been shown that an online algorithm can beat the ratio
of 2, although an exact optimal ratio has not been shown yet.

4 Combining brute force and greediness

The main idea of the algorithm is to optimally solve the problem for the large
processes, and then greedily assign the remaining ones. A job Ji is large iff:

pi ≥

∑

j pj

sm

where s is a parameter to the algorithm. So, the algorithm is as follows:

Optimally schedule all large jobs using brute force algorithm.1

Use online greedy algorithm to fill in small jobs.2

Let the job Jk be the one that determines makespan.
Case 1. Jk is a large job. In this case, ALG = OPT, since brute force

algorithm is optimal.
Case 2. Jk is a small job. Then pk ≤

∑

pi/(sm).
Then,

ALG ≤ (
∑

i6=k

pi

m
) + pk (10)

≤ (
∑

i6=k

pi

m
) +

∑

pi

sm
(11)

≤ (1 + 1/s)OPT (12)

If we want an algorithm with a ratio 1 + ǫ, we need to set s ≥ 1
ǫ .

Then the complexity, dominated by the brute force algorithm, is mm/ǫ. Even
for a fixed ǫ, this is exponential in m.
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5 Local search

Another technique for computing a 2 − 1
m aproximation is the following local

search algorithm.

Choose any initial solution S.1

while There exists a job Ji that defines the maekspan which can be2

moved so as to decrease the makespan do

Move Ji to decrease makespan3

end4

Local search finds a local optimum. The largest ratio between a local opti-
mum and the global optimum is called the locality gap. In this case, the locality
gap is 2− 1

m and hence this algorithm is a 2− 1
m approximation, and this bound

is tight. Proving this is part of the assigned exercise.
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