CSC 2401F 2007, Assignment 2 Due: November 22, 1:10 PM

- 1. Let G = (V, E) be a directed graph and let $ODDSTCON = \{(G, u, v) | \exists$ a path from u to v and all paths from uto v have odd length}. Show that ODDSTCON is complete for \mathcal{NL} wrt $\leq_{log-space}$ by showing:
 - (a) ODDSTCON is in \mathcal{NL} .
 - (b) ODDSTCON is hard for \mathcal{NL} wrt $\leq_{log-space}$.

10 points

10 points

- 2. Do one of the following
 - Consider regular expressions with a "concatenation squaring operator" R^2 such that $L[(R)^2] = L[R] \circ L[R]$. Call such expressions Sregular expressions. Show that $\{R|R \text{ is a Sregular expression} over \Sigma$ such that $L[R] \neq \Sigma^*\}$ is hard for exponential space.

10 points

20 points

- Consider extended regular expressions which are regular expressions with the addition of an intersection operator. Show that $\{R|R \text{ is an extended regular expression over } \Sigma \text{ such that } L[R] \neq \Sigma^*\}$ is hard for exponential space.
- 3. (a) Show that for every k, there is a language L in PH such that L ∉ SIZE(O(n^k)).
 Hint: by a counting argument show that there exists a language L such that for sufficiently large n, L is in SIZE(n^{k+2}) but not in SIZE(n^{k+1}) and hence not in SIZE(O(n^k).
 20 points
 - (b) Using the first part of this question, show that $P \subseteq SIZE(O(n^k))$ for some fixed k implies $P \neq NP$.

10 points