CSC 2401F 2007, Assignment 1 Due: Oct. 18, 1:10 PM

- 1. (10 points) Let's define a more "honest" measure of T.M. space complexity for which the space compression result does not hold. Suppose we consider a deterministic Turing machines with a read-only binary input tape and one work tape with work tape alphabet Γ . If a T.M. \mathcal{M} has q states and visits s worktape squares on input w then we will say that \mathcal{M} uses $HSPACE s \log_2 |\Gamma| + \log_2 |w| + \log_2 s + \log_2 q$. Show that there exists a constant c such that there is a decision problem in $HSPACE(c \cdot n) - HSPACE(n)$.
- 2. (10 points) Suppose $NL \subseteq DSPACE(\log^{1.5})$. Show that for every space constructible $S(n) \ge \log n$ that $NSPACE(S) \subseteq DSPACE(S^{1.5})$. Hint: see Theorem 2.25
- 3. (a) (10 points) Exercise 13 of Chapter 2.
 - (b) (10 points) Exercise 23 of Chapter 2. Note that this result and the previous result can be viewed as an alternative to Ladner's result which states that " $P \neq NP$ implies there exists a non complete $L \in NP P$ ". We now get the same conclusion of a (unary) language $L \in NP P$ but now we need the stronger assumption that $EXP \neq NEXP$.
- 4. (10 points) Exercise 2 of chapter 3. Hint: Consider a language L and its polynomial padded language $L^{pad} = \{ \langle w, 1^{n^2} \rangle | w \in L \}.$