CSC 2401F 2003, Assignment 3 Due: Dec. 19, 4PM

1. Assume that the polynomial hierarchy does not collapase. That is, $\Sigma_k^P \subset \Sigma_{k+1}^P$ for all $k \geq 0$ where \subset denotes proper inclusion. Prove or disprove the following: If $L \in NP^B$ and $B \in NP^C$ then $L \in NP^C$.

Hint: This is mainly a definitional question and can be viewed as a Christmas gift.

- 2. Do exactly one of the following two questions:
 - Show that E^{PH} contains a language L such that $\forall n[L|_n$ requires MAXC(n) circuit size]. Conclude that
 - (a) ESPACE contains a language L such that $\forall n[L|_n$ requires MAXC(n) circuit size].
 - (b) If $\forall L \in E \exists n[L|_n \text{ can be computed with at most } MAXC(n) 1 \text{ gates}] \text{ then } P \neq NP.$

Hint: This is similar to the proof that if $P \in SIZE(O(n^k))$ for any fixed k then $P \neq NP$.

- Show that if $PSPACE \subseteq POLYSIZE$ then $PSPACE = \Sigma_2^P$. Hint: This is similar to the proof that if $NP \in POLYSIZE$ then $PH = \Sigma_2^P$. In particular, you should prove that the statement L(C) = "Circuit C computes QBF" is a Π_1 statement. Also you can use the fact that QBF is complete for PSPACE.
- 3. Consider an extension of regular expressions (which we will call squegular exprssions) which in addition to the usual language concatenation, union and Kleene closure operations, also has a "squaring" operation R^S whose semantics is defined by $L[R^S] = L[R] \circ L[R]$. Consider the language $\overline{TSRE} = \{R|R \text{ is a squegular expression and } L[R] \neq \Sigma^*.\}$. Show that \overline{TSRE} is complete for ESPACE (say wrt linear space transformations).

Hint: Just show how to modify the argument that \overline{TRE} is complete for PSPACE.