Due: Monday October 20, beginning of tutorial.

This assignment is worth 10% of final grade

- 1. Here are the total scores from the vote on the list of possible course topics (in alphabetical order).
 - Artificial Intelligence (AI) 31
 - Computing as a Commodity (COMMODITY) 29
 - Cryptography (CRYPT) 15
 - Fortran (and programming languages) (FORTRAN) 6
 - Human Computer Interaction (HCI) 16
 - Linear Programming (LP) 17
 - Model Checking (MC) 3
 - Relational Data Bases (RDB) 22
 - Search Engines (SEARCH) 44
 - Social Networks (SN) 49
 - TCP/IP (TCP) 8
 - Turing machines (TM) 10
 - (a) Draw a "balanced" binary search tree T for this list of topics using the abbreviated topic name as the key. By balanced we want the depth of any node in the tree T to be k or k + 1 for some positive integer k.
 - (b) Convert each total vote into a probability p_i of being accessed. That is, let v_i be the total vote for topic i and let $V = \sum_i v_i$. Then the probability of accessing the i^{th} topic is $p_i = \frac{v_i}{V}$. Compute the expected search time of an access to a topic for your binary search tree T. The expected length of a search (when we are assuming all searches are successful) is $\sum_i [(d_i + 1) \cdot p_i]$ where d_i is the depth of the node representing the i^{th} keyword.
 - (c) Can you construct another binary search tree T' (perhaps not balanced) that has a smaller expected search time?
- 2. Design a Turing machine that will decide membership in the following set of strings: Let $\Sigma = \{a, b\}$ and then define $bE2a = \{w \in \Sigma^* | w = a^n b^{2n} \text{ for some integer } n \ge 0\}$. Desribe your Turing machine by the kind of state diagram provided for the example of palindromes.