Paging

- operating systems resides at the beginning of memory
- OS know exactly how much physical memory thereis
- OS can address memory by its actual physical address (non-trand ated)

- processes running under an OS cannot see physical memory addresses
- addresstranslated by the OS

result: each process sees itself
- a the beginning of memory
- asthe only process in the memory

this greatly ssimplifies memory management from the program’s view, can start
addressing at #00000000 and OS takes care of translation

- each process sees more memory that it actually has (because it thinks it’s the only one
running)

- swap provides extra space (more on this later)

- capacity management is handled by the OS

Examples (on Linux, diagrams by Prof. Mann)
For smplicity, assume kernel = OS

[x) - m
m m
wa - |
w3 (3] L=}
[re] o - o
AL NY
S
xgz
R
R
TN
LG
I
/&”f/ﬂx///
R
P
SEEEE
an
S
e} -
m
uwa r=
w3
B &
ey vl SRl Sk
R A s
S R BT LR
A, UL S B
R
SRR
./Ur/../ RO VJ..,NJ. R
S S AR .w./f
(AT R GO R
...//x ./“...,V..” .xz.;z ?/..”...M.. %
g
A ol i R
i
B i ./,././../. R .w.,,./..,..,./,.
tyd 1eorshud)
j AIDLEL O] B SUEILLN —p

translated
memory

untranslated
memory

addresses

addresses

(what the
process
IISEESII)

(what the
kernel

n SEES“)

ﬁ
ilegad

i

kernekpace

frunning in

Usars
frunnin

nan

privileged mode)

i
No processes are loaded, but the trandation already set up, user programs see memory as

ma
empty, except the part taken by the OS, which appears at the end of available memory.

B5535

A
m
.y
p

m
—

22767

16383

BASH

BASH 0

translated
memory
addresses

(what the
process
Ilseesil)

userspace
(running in
non privileged
mode)

One process loaded, sees itself at the beginning, but in actuality loaded right after the
kerndl.

—.I

uniranslated mamary

(physacal Ry

gcce

BASH
KERNEL

y—

Some more processes. ..

untranslated
memory
addresses

(what the
kernel
"sees"
kﬂrnalspaoa

{running in
privileged moda)

translated
memory
addresses

(what BASH
process
"sees"

usa Ispacs

{running in

namprivileged
a)

633535

32767

63335

2A2TET

“G383

gccC

g :

translated
memory
addresses

(what GCC
process
"sees"

{running in
nonprivilegad
rnocElj

chon't hasns enaugh

P e e

LOADING
EMACS

gcc

BASH

unirarsked momony
{physical BARY

KERNEL

untranslated
memaory
addresses

(what the
kernel
"sees")

i T

-

EMA

ilgce

€S
KERNEL

[— Lrirarslabed memory
iphrsicad A6

untranslated
memary
addresses

(what the
kernel
"sees")
HioATsod S s

{naming in
pmla;c'gdrwdol

/ A
"___.-"'
Py / [

P o
/ f/.; —~——
L~

BASH 5 e S
translated translated
memary memary
addresses addresses
{what BASH (what GCC

rocess process
'seas”) "sees")
KERNEL| ~
T .
-‘-‘:-"'“-T.._

BASH P o
translated translated
memary memory
addresses addresses
(what BASH (what GCC

rocess process
'sees”) "sees"”)

KERNEL Fiﬁ;f’;—ﬁEHHEt—

KERNEL

EMA...

translated
memary
addresses

(what EMA._..

process
"sees")
L R

funi in
nrionp e
[y == =1}

(===

[=ci=x]

| =T

translated
memary
addresses

{what EMACS

process
"SEE‘S"}
LSS s

fruming in
nonprleged
o)

=)

No room for the Emacs process to load fully. It loads some, then swaps out Bash (which
was accessed last) to disk, and loads the rest. Even though the memory space taken by the
process is split, tranglation allows the process to think it’s still all together.

This allows each process to have its own memory space, thus uncontrolled behavior can
be contained.

Uncontrolled behavior by the operating system, on the other hand, makes for data loss
and other mayhem, since it can access everything directly.

Now the details: which page to swap out? We got severa possibilities...

First In First Out (FIFO)
- Store age of each page
- the page that has been in memory longest is the one offloaded

Good:

- straightforward to implement

- requireddlittle effort by the system to maintain age information (can just keep a counter,
record and increment when page |oaded)

Bad:

- say a page that has been loaded first isin heavy use

- it will be offloaded anyways, and will have to be reloaded almost right away, so
performance suffers

Optimizing FIFO (Second Chance)

- Every time apageisused, set asigna bitto 1
- When trying to swap out, if bitis O, swap it out, if 1, set to 0 and try next one

Good:
- frequently used pages will have the bit set to 1, and hopefully will not get swapped out

Bad:
- if al pages arein heavy use, system will have to try every single one
- some performance penalty to update the bit

L east Recently Used (LRU)
- record last time the page was used, i.e. update timestamp on each access

Good:
- in theory, more optimal than FIFO

Bad:
- often dows down the system so much, it’s not worth it (can increase memory access
time by factor of 5)

Real Life: UNIX pagedaemon uses a somewhat modified FIFO Second Chance.

Interrupts (hardware)

- 15 (or s0) signd lines used by hardware to tell CPU they need attention
- Example: keyboard

trivial implementation of keyboard:
- ask every few msif akey is pressed — wasteful, can miss keystroked
- thisis known as polling, very wasteful CPU use

with interrupts:

- keyboard takes the keypress, and remembers it
- sets the interrupt, so the CPU can get the data asap

Refer ences:

http://www.wearcam.org/ece385/| ecture7/pagedmemory.htm
http://home.lanet.|v/~sd70058/aboutos/node99.html

