Akshayaram Srinivasan

Akshayaram Srinivasan

Akshayaram Srinivasan

You were convinced about an Assertion

You were convinced about an Assertion

You didn't learn any other information apart from the fact that the assertion is true.

Verifier V

Verifier V

Statement: *x*

Verifier V

Statement: *x*

Verifier V

Statement: *x*

Verifier V

Statement: *x*

Verifier V

Statement: *x*

Here is a witness *w*

Verifier V

Here is a witness *w*

Statement: *x*

• Completeness: If $x \in \mathcal{L}$, then prover can send a witness that makes the verifier accept.

Interactive Proofs

Verifier V

Here is a witness *w*

Statement: *x*

- verifier accept.

Interactive Proofs

Prover P

• Completeness: If $x \in \mathcal{L}$, then prover can send a witness that makes the

• Soundness: If $x \notin \mathcal{L}$, then whatever string prover sends, the verifier rejects.

Statement: *x*

- verifier accept.

Interactive Proofs

Here is a witness *w*

Prover P

• Completeness: If $x \in \mathcal{L}$, then prover can send a witness that makes the

• Soundness: If $x \notin \mathcal{L}$, then whatever string prover sends, the verifier rejects.

Can we convince the verifier that $x \in \mathscr{L}$ without leaking any information about the witness?

Verifier V

Verifier V

Statement: *x*

Verifier V

Statement: *x*

Prover P

Witness *w*
Zero-Knowledge Proofs

Verifier V

Statement: *x*

Prover P

Zero-Knowledge Proofs

Verifier V

Accepts/rejects

Statement: *x*

Prover P

Accepts/rejects

• Completeness: If $x \in \mathcal{L}$, then verifier accepts at the end of the interaction.

Zero-Knowledge Proofs

Accepts/rejects

Zero-Knowledge Proofs

Statement: *x*

• Completeness: If $x \in \mathcal{L}$, then verifier accepts at the end of the interaction.

• Soundness: If $x \notin \mathcal{L}$, then verifier accepts with probability at most 1/3.

Accepts/rejects

- Soundness: If $x \notin \mathcal{L}$, then verifier accepts with probability at most 1/3.
- Zero-knowledge: The verifier should learn no information about the witness.

• Completeness: If $x \in \mathcal{L}$, then verifier accepts at the end of the interaction.

Statement: *x*

Verifier V

Prover P

Statement: *x*

Verifier V

Witness w

Prover P

Statement: *x*

Prover P

Statement: *x*

Prover P

Verifier V

Verifier V

Verifier V

Verifier V

3-colorability is NP-complete

Verifier V

Step-1: Prover chooses a random permutation of the colors.

Step-1: Prover chooses a colors.

Step-1: Prover chooses a random permutation of the colors.

Step-2: Prover places each color behind a black-box

Step-3: Verifier chooses a random edge

Step-3: Verifier chooses a random edge

Step-4: Prover opens the colors on the endpoints of this edge.

Step-5: Verifier checks if the endpoints are colored differently.

If the graph is 3-colorable, then the verifier always accepts.

Completeness

If the graph is not 3-colorable, then there exists at least one edge that has both endpoints colored using the same color.

Soundness

If the graph is not 3-colorable, then there exists at least one edge that has both endpoints colored using the same color.

Soundness

Verifier V

Zero-Knowledge

Verifier V

Zero-Knowledge