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Week 9 slides
Announcements:

Assignment 3 is due this Friday ar 9 AM. I am willing to delaly the
due date until Monday, November 20 (if everyone agrees) to allow
more time to discuss complexity theory.
Second and final quiz on Friday, Novemeber 24.
Final guest presentation Monday, Nov 27 by Kyros Kutalakos. He will
be discussing computer vision.

This weeks agenda

Finish discussion of complexity theory:
1 Polynomial time reducibility and polynomial time transformations
2 Definition of NP-completeness
3 The Karp tree of transformations
4 Some concluding comments on complexity theory

Complexity based cryptography. (This will probably be next week)

Question: Why does the Arts and Science Faculty have these first year
foundational courses?

To engage in discussions with different
perspectives, and learning to express your thoughts. We have four more
weeks of classes. Please participate.
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NP-completeness wrt reductions ≤poly
T and ≤poly

trans
Let’s first explicitly give the definition NP-complete.
Definition: A language (or decision problem) L is NP complete if

1 L ∈ NP.
2 L is NP-hard with respect to some polynomial time reduction, for

example with respect to either ≤poly
T , or ≤trans poly . That is, if we

are using ≤poly
trans , then L is NP-hard if for every A ∈ NP, there is a

polynomial time computable function h such that w ∈ A if and only if
h(w) ∈ L.

It is not difficult to show :

Fact: B ∈ NP and A ≤poly
trans B implies A ∈ NP.

However, we do not believe that B ∈ NP and A ≤poly
T B implies A ∈ NP.

That is, we do not believe that the class NP is closed under ≤poly
T but is

provably closed under ≤poly
trans .

If I do not say otherwise, when only considering decision problem, I will
use the more restrictive ≤poly

trans .
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The importance of NP-completeness

Basic Fact: If L is NP-complete (wrt to either ≤poly
T or ≤poly

trans), then
L ∈ P if and only if P = NP.

There are literally thousands of NP complete decision problems.

The basic fact says that in some sense all NP problems are “equivalent” in
terms of what is efficiently computable computable.

But our polynomial time reduction is not sufficiently refined to
characterize what is computable in linear time, or quadratic time, etc

And when we consider optimization problems like the TSP problem, ≤poly
T

is not sufficiently refined in terms of how well we can efficiently
approximate an optimal solution.
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End of Monday, November 13 class

Today was a review and clarification of material concerning the class NP,
polynomial time reductions and transformations, and NP-completeness.
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Some examples of NP complete decision problems
In our examples we always assume some natural way to represent the
inputs as strings over some finite alphabet. In particular, integers are
represented in say binary or decimal. Polynomial time means time bounded
by a polynomial p(n) where n is the length of the input string.

I will explain each of the following decision problems as we introduce
them. Some problems are naturally decision problems. Others are decision
variants of optimization problems and other relations or functions. Each of
these decision problems are easily seen to be in NP (i.e. it is easy to
provide a verification predicate and succinct certificate). We will soon
indicate why each of these problems is NP complete.

LHC as defined previously; i.e., the set of graphs that have a
Hamiltonian cycle.

SAT = {F |F is a propositional formula in CNF that is satisfiable}
PARTITION = {(a1, a2, . . . , an)|∃S :

∑
ai∈S ai = 1

2

∑n
i=1 ai}

VERTEX -COLOUR = {(G , k)|G = (V ,E ) can be vertex coloured
(by χ) with k colours such that χ(u) 6= χ(v) if (u, v) ∈ E }
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A example of a language in NP language that is
believed to not be NP complete and believed to not
be in P

FACTOR = {(N, k)|N is an integer that has a proper factor m ≤ k}

It is easy to see that FACTOR is in NP.

Suppose FACTOR ∈ P. Can you then see how to factor a number N (i.e.
provide the prime factorization) in polynomial time?

We have mentioned before that it is widely believed that we cannot factor
integers in polynomial time and we use that assumption for some
cryptographic applications.

The problem of efficiently factoring goes back at least two centuries to
Gauss.

We will soon see some evidence that FACTOR is not NP-complete.
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NP completeness

A decison problem (or any problem, like say an optimization problem) L is
NP-hard if every problem L′ ∈ NP can be “efficiently reduced” to L.
While for decision problems ≤poly

trans is sufficent, we will need the more
general ≤poly

T when L is not a decision problem.

A decision problem L is NP-complete if it is both in NP and NP-hard.
Here are the immediate consequences of a problem being
NP-complete.

If L is NP complete, and L ∈ P, then every L′ ∈ NP is in P

Equivalently, if any L′ ∈ NP is not in P, then every NP-complete
problem is not in P.

There are hundreds (and really thousands) of problems that are
NP-complete and since we “religously” believe P 6= NP, we believe
that none of these complete problems can be decided in polynomial
time. (I emphasize that this is in terms of worst case complexity.)
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Why the religious belief

Why do we believe so strongly that P 6= NP. It is simply that many very
talented people over literally centuries have tried to efficiently solve
problems that are in NP (and believed to not be in P and especially those
that are NP-complete) and failed to do so.

Even so, there have been surprises in complexity theory and one still has to
keep in mind that P 6= NP is still a conjecture and not a proven result.

Our confidence in this conjecture is strong enough that modern day
cryptography makes this assumption and indeed makes even stronger
assumptions. For example, cryptographic protocols usually assume that
there exist one-way functions f (and one-way permutations) for which it is
easy (i.e. poly time) to compute f (x) for any x but given y , it is difficult
to find an x such that f (x) = y .

For cryptography we also need assurance that a problem is not only hard
in a worst case sense but also hard in some “average case ” sense.
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What would happen if someone solves the P vs NP
question?

A frequent question that is asked is the following: What would be the
consequences if someone resolves the P vs NP question

While the mathematical and scientfiic impact will be enormous,
mathematics and science will not end.

If someoone proves that (as we do not believe) P = NP, then the
“practical impact” will depend on how efficiently we can solve NP
complete problems; that is, what are the polynomial time bounds.

If someone prove P 6= NP, then the “practical impact” will depend on
whether or not a given problem can be solved efficiently “in practice” (i.e.
for most inputs or for “the inputs we care about”). More about worst case
vs “practical application” later.
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But how do we prove that a decision problem is
NP-complete?

Suppose we know that some problem (for example, SAT ) is NP-complete.
Then if we can show SAT can be poly time reduced or transformed to (for
example) VC = vertex-cover , then VC must also be NP-complete.

Fact: Polytime reductions and polytime transformations are transitive
relations. That is, for example, A ≤Karp B and B ≤Karp C implies
A ≤Karp C .

In this way, thousands of decision problems L have been created by a tree
of polynomial time transformations. (On the next slide, we will show
Karp’s initial tree.) But we have to start the tree with some NP problem
that we prove is NP-complete.

Cook did this for 3SAT (the restriction of SAT to formulas with at most 3
literals per clause.
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A tree of reductions/transformations

45

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES.  Given a set of n jobs with processing time
ti, release time ri, and deadline di, is it possible to schedule all jobs on
a single machine such that job i is processed with a contiguous slot of
ti time units in the interval [ri, di ] ?

Claim.  SUBSET-SUM ! P SCHEDULE-RELEASE-TIMES.
Pf.  Given an instance of SUBSET-SUM w1, …, wn, and target W,

! Create n jobs with processing time ti = wi, release time ri = 0, and no
deadline (di =  1 + "j wj).

! Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0

Algorithm Design by Éva Tardos and Jon Kleinberg   •    Copyright © 2005 Addison Wesley   •    Slides by Kevin Wayne

8.9  A Partial Taxonomy of Hard Problems

47

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction
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3AT is NP-complete
Assuming that 3SAT is NP-complete, it follows that all the problems in
the tree are NP-complete. (Actually the reductions show that all the
problems in thre Karp tree are NP-hard but they are also NP-complete
since they are all easily seen to be in NP.)
An example in the Karp tree of a not so obvious transformation:
3SAT ≤poly

trans Independent Set. (In Cook’s paper, it was stated as 3-SAT

≤poly
T Clique.)

The problems in the Karp tree are a very small sample of the thousands of
NP-complete problems.
But how do we show that 3SAT is NP-complete? You do not have to
worry about that but here is the idea.
Suppose we have a TM M that we assume is executing in polynomial
time (poly time in terms of the length |w | of the input w to the TM.
Fixing M, the idea is to show how to encode the computation of M on
an input w by a 3CNF formuala Fw . More precisely we can show:

There is a polynomial time transformation h : M accepts w if and only if
h(w) = Fw is satsifiable. 13 / 26



3SAT reduces to Independent Set

Claim

3SAT ≤τ Independent Set

Given an instance F of 3SAT with k clauses, we construct an instance
(G , k) of Independent Set that has an independent set of size k iff F
is satisfiable.

G contains 3 vertices for each clause; i.e. one for each literal.

Connect 3 literals in a clause in a triangle.

Connect literal to each of its negations.

17

Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.

18

Ex: 

Yes:  x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form:  A propositional
formula ! that is the conjunction of clauses.

SAT:  Given CNF formula !, does it have a satisfying truth assignment?

3-SAT:  SAT where each clause contains exactly 3 literals.

Satisfiability
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3 Satisfiability Reduces to Independent Set

Claim.  3-SAT " P INDEPENDENT-SET.
Pf.  Given an instance ! of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff ! is
satisfiable.

Construction.
! G contains 3 vertices for each clause, one for each literal.
! Connect 3 literals in a clause in a triangle.
! Connect literal to each of its negations.
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3 Satisfiability Reduces to Independent Set

Claim.  G contains independent set of size k = |!| iff ! is satisfiable.

Pf.  #  Let S be independent set of size k.
! S must contain exactly one vertex in each triangle.
! Set these literals to true.
! Truth assignment is consistent and all clauses are satisfied.

Pf  $   Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k.  !
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Optimization problems

Each of the problems in the Karp tree has an associated optimization
problem or search problem. For example, the Vertex-Cover problem is
usually expressed as the following optimization problem:
Given a graph G = (V ,E ), find a minimum size vertex cover for G ; that
is, a subset V ′ ⊂ V such that for every edge e = (u, v) ∈ E , either u ∈ V ′

or v ∈ V ′. This is the inculusive “or” so that it is possible that both u, v
are in V ′.

If we can solve the optimization problem efficiently, we can immediately
solve the decision problem. Does everyone understand this?

What is not as immediate, is the fact that if we can solve the
Vertex-Cover decision problem then we can solve the Vertex-Cover
optimization problem.

We would do this by first determining (using the decision problem) the size
of the minimum vertex cover. Does everyone see how to do this?
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The vertex-cover optimization problem continued

Suppose k is the size of the minimum vertex cover. We want to create a
vertex cover V ′ one vertex at a time starting with V ′ = ∅. We iteratively
decide for each vertex v , whether or not we can include v ∈ V ′. That is,
we determine if we can remove v and all its djacent edges and if the
resulting graph G̃ has a vertex cover of size k − 1 the we add v to the
cover V ′ that we are creating. We then continue with the graph G̃ trying
to create a cover if size k − 1. If G̃ does not have a vertex cover of size
k − 1, we go back to graph G and try another node u to see if G̃ has a
vertex cover of size k − 1 if we remove u and its adjacent edges. We keep
searching for a vertex x that we can remove from G and add to V ′.

Note that while we usually restrict attention to ≤poly
trans (polynomial time

transformations) for the purpose of showing new problems are

NP-complete, we are using the more general ≤poly
T (polynomial time

reductions) to reduce the optimization problem to the decision problem.
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Another conjecture: NP 6= co-NP

FACT: If L is NP-complete wrt ≤poly
trans then L̄ ∈ NP if and only if NP =

co-NP

There is another widely believed conjecture again based on the inability of
experts to show that L̄ ∈ NP for any NP-complete problem which states
that NP 6= co-NP. For example, as stated before, we do not believe there
is a “short” certificate for showing that a graph does not have a
Hamiltonian cycle.

As I mentioned before, we believe factoring intergers is not polynomial
time computable. In fact, there is a sense in which we believe it is not
polynomial time computable “on average” (whereas the basic theory of
NP completeness is founded on worst case analysis).

Surprisingly, co-FACTOR is in NP. That is, given an input (N, k), we can
provide a certificate verifying that N does not have a proper factor m ≤ k.

Since co-FACTOR is in NP, and we conjecture that NP 6= co-NP, this
leads us then to believe that FACTOR is in NP \ P but not NP-complete.
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Returning to the two different reductions
As far as I know, there is no proof that the two reductions are different but
there is good reason to believe that they are different in general.

Clearly Ā ≤poly
T A for any language A.

A ≤poly
trans B and B ∈ NP implies A ∈ NP.

Hence our assumption that NP 6= co − NP implies that we cannot
have Ā ≤poly

trans A for any NP-complete A.

On the other hand as far as I know all known NP complete problems have
been shown to be complete using transformations ≤Karp.

I know of no compelling evidence that general reductions and
transformations are different when resticted to the class NP.

NOTE: The general reduction concept is needed when reducing say a
search or optimization problem to a decision problem (and indeed this is
what we described for Vertex-Cover and we will be doing next for SAT ).
On the other hand, transformations are what we use for decision problems
(i.e., languages).
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Finding a certificate for an NP-complete problem

One might wonder if we can always efficiently find a certificate if we can
decide whether or not a certicifcate exists. In fact, for NP-complete
problems we can polynomial time reduce finding a certificate to deciding if
a certificate exists.
Fact Let L be a NP-complete problem. We can prove that for every YES
input instance x (where we know that a certificate exists wrt some
verification predicate) that a certificate can be computed in polynomial
time assuming we can solve the decision problem in polynomial time. ‘ Of

course, we do not believe that an NP-complerte decision problem can be
solved in polynomial time so this is just a claim that it is sufficient to just
focus on the decision problem.

As an another example, consider SAT and suppose F is satisfiable. That
means we can set each propositional variable (to TRUE or FALSE) so that
the formula evaluates to TRUE. So how do we find a satsifying truth
assignment for F?
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Finding a satisfying assignment for a formula F
assuming P = NP
Once we assume P = NP, we would know that the decision problem for
SAT is satisfiable. So we would first test if the given formula F is
satisfiable. If so, we can construct a satisfying assignment one variable at
a time. Consider the following example:

F = (x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ (x̄3 ∨ x̄1) ≡ (x1 → x2) ∧ (x2 → x3) ∧ (x3 → x̄1)

Now since F is satisfiable, there must be some way to set (say) x1 to
either TRUE or FALSE so that the resulting formula still is satisfiable.

If we set x1 to TRUE, then the resulting formula F ′ = F |x1=TRUE will
become FALSE so it must be that x1 is FALSE in any satisfying
assignment.

How would we know that F ′ = F |x1=FLASE is satisfiable?

We would again
use the decision procedure SAT applied to F ′. We would continue this
way to see how to set x2, x3. In this example, x2 can be set TRUE or
FALSE and we would just choose one value. In general, a formula can
have many satisfying assignments.
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I know some (many?) students may find this to be difficult material as you
would not have seen it before. Please ask questions

I do think this material is fundamental to computer science (as a
discipline) and computing (in terms of its impact).

Some ideas are great ideas even when we are not that aware of them. I
argued that this was the case with respect to Turing’s work and the von
Neumann model.

The concept of NP completeness is something that algorithm designers
may or may not think of routinely but at some level of understanding we
do need to know that common (say optimization) problems cannot be
solved effciciently for all input instances.

I mentioned that there have been many surprises in complexity theory so I
again emphasize that a conjecture may guide our thinking but we always
have to be aware of what has and has not been proven.
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End of Week 9 slides

We ended at the previous slide. There are a few more slides following
which discusses randomization and in particular randomized polynomial
time.

While the power of randomization is not well understood (theoretically),
there is an important sense in which it is provably necessary for
cryptography.

Nexy week we begin cryptography.
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Can randomization help?

We should note that there are many other fundamental questions in
complexity theory (in addition to the P vs NP question). One such
question is can randomization help.

Consider the following problem: We are implicitly given two multivariate
polynomials p(x1, . . . , xn) and q(x1, . . . , xn). For example, the polynomials
might be the result of a polynomial time computation using the arithmetic
operations +,−, ∗. Or p and q might be the determinants of n × n
matrices with entries that are linear functions of the {xi}.

The polynomial equivalence question whether or not p ≡ q as polynomials;
that is, does p(x1, . . . , xn) = q(x1, . . . , xn) for all values of the {xi}. Lets
say that the xi are all integers or rationals.
Note that this is the same as asking whether or not p − q ≡ 0 where 0 is
the zero polynomial.

How would you solve the identically zero question for a univariate
polynomial (again given implicitly)?
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Polynomial equivalence problem continued

Fact: A non zero univariate polynomial p(x) of degree d has at most d
distinct zeros. This means that if we evaluate p(x) at say t > d random
points r1, . . . rt , the probability that p(ri ) = 0 is at most d

t .

Schwartz-Zipple Lemma: This lemma extends the above fact to
multivariate polynomials. That is,
If p(x1, . . . , xn) is a non zero polynomial of total degree d (with coeficients
in a ring or field F like the integers or rationals) then
Prob[p(r1, . . . rn) = 0] ≤ d

|S | when the ri are chosen randomly in a finite
subset S ⊆ F .
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Polynomial equaivalence and the class RP

So to test if p is identically zero, we take |S | sufficienlty large (or do
repeated independent trials with say |S | = 2d), and see if the evaluation
returns a non-zero value. If p(r1, . . . , rn) = 0, we will claim that p ≡ 0.
The error in this claim will be at most d

|S | and we will only make an error if
p 6≡ 0.

This is an example of a polynomial time randomized algorithm with
1-sided error (with say error at most 1

2) and RP is the class of languages
that have such an algorithm.

In fact the error can be as big as 1− 1
nk

for any fixed k as we can do
polynomially many repeated trials to reduce the error probability using the
fact that (1− 1/t)t → 1

e as t →∞.

Open question: Is RP = P? As a specific example, is the polynomial
equivalence problem in P?
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RP and BP
Surprisingly, some prominent complexity theorists (but not everyone)
believe P = RP. More generally, they believe BPP = P where BPP is the
class of languages that can be solved by a polynomial time randomized
algorithm with 2-sided error (with probability of error at most 1

2 −
1
nk

).

Like RP, we can amplify the probability of a correct answer by running a
polynomial number of trials and taking the “majority vote” amongst the
outcomes of the individual trials.

A langauge in RP can be formulated so that there are many certificates
and hence RP ⊆ NP.

One final comment about the conjecture P 6= NP. While we strongly
believe P 6= NP, all is not lost if P 6= NP. For example, for an
optimization problem, while it may be NP-hard to compute an optimal
solution, for many NP-hard problems there are efficient approximately
optimal algorithms. And many natural problems have efficient algorithms
when considering restricted classes of (or distributions over) instances that
tend to occur naturally.
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