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Week 7 slides

Announcements:

I have posted Assignment 2 which is due October 27, 9AM.
I will give an example of a neural net this morning so as to help with
the last question on the assignment.

The quizzes have been graded by Aniket and I will hand them back
on Wednesday after I look them over. For those that did not do well,
there are plenty of opportunities to still get a good grade for this
course. In particular, participate in class and tutorial!

On November 1, our second guest Ashkay Srinivasan, will lead a
discussion on “modern cryptography’. NOTE: I previously said
October 31 which is a Tuesday. The talk is next Wednesday,
November 1.
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The weeks agenda

This weeks agenda

A neural net computing f :

y = f (x1, x2, x3, x4, u) =

{
1 if u = xi for some i .
0 otherwise

with the same activation function

φ(z) =

{
1 if z ≥ 0
0 if z < 0

Continue discussion of Search Engines

Begin complexity theory
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Why is search so profitable?

Companies such as IBM and (initially) Microsoft did not try to
commercialize search, not recognizing the profitability of search. Indeed,
should one charge for information or should the business model be based
on advertising? Or it possible that search would not be profitable?

We now know that search has turned out to be extremely profitable for
companies based on advertising. The main way that Google and other
comapnies sell advertising for search has spawned major research in
algorithm design and auction theory. We will say more about auctions,
game theory and mechanism design.

We can view the process of assigning queries to advertisers (say wanting
to display an ad as an online biparitite graph matching problem).

When a query arrives it needs to be assigned to one (or more, depending
on how many advertising slots will be displayed) ads.
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The “adwords” assignment problem
Example: Bipartite Matching
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25

Nodes: Queries and Ads
Goal: Match queries to ads so that maximum 

number of matchings are made

Figure: Figure taken from USC lecture notes by Rafael Ferreira da Silva

Each advertsiser may have a budget (say for a given day) and indicates for
given queries (or keywords) what it is willing to pay for that query but
never exceeeding its budget for all the queries assigned to that advertiser.

The search engine adjusts this advertiser bid for a query based on how well
it thinks the ad matches the query and then decides whether or not to
assign an advertising slot to an advertiser and the price paid by the
advertiser (depending on the slot) for each click by search users for the ad.
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The semantic web

We will end our discussion of search engines about where we began when I
said, like other great ideas, sometimes these great ideas become so
entrenched that it is hard to make further progress.

Is this the case with key word search? What kinds of “information needs”
are beyond today’s search engines? See 2008 “Ontologies and the
Semantic Web” article by Ian Horrocks and also his 2005 Lecture by the
same title.

The vague goal of the semantic web is “to allow the vast range of
web-accessible information and services to be more effectively exploited by
both humans and automated tools.”

A more specific goal is to integrate information that occurs in the web but
not in one decument.

Is our experience with large language models encouraging us to use longer
queries?
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Some specific examples of information that might
not exist in any one document

One example Horrrocks gave is to retrieve a “list of all the heads of state
of EU countries”. Of course, once such an example is given, it is likley (as
in this example) that one can successfully find the required information in
a single query. (Why was this a difficult search in 2008 and an easy search
today? It was the fourth document in my search on October 17,2021.

“The classic example of a semantic web application is an automated travel
agent that, given various constraints and preferences, would offer the user
suitable travel or vacation suggestions”. This example still seems beyond
something we can easily do with current search engines.

I decided to create the following query “list of all computer scientists
whose last name is Cook”. In my first search, most of the retrieved
documents are not useful but the first of the retrieved documents is for
Stephen Cook and the second document is a very incomplete list of
computer scientists.
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Screenshot of my query for computer scientists with
last name Cook
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Another search to find other computer scientists
with last name Cook

Figure: Screen shot of first page for query “computer scientists name cook”
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October 14, 2022 search to find a computer
scientist named Cook not living in Canada.

Figure: Screen shot of first page for query “computer scientists named cook not
living in Canada”
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October 14, 2023 search to find a computer
scientist named Cook not living in Canada.

Figure: Screen shot of first page for query “computer scientists named cook not
living in Canada”
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October 14, 2023 search using Chat-GPT3.5 to find
a computer scientist named Cook not living in
Canada.

Figure: ChatGPT3.5 response to the same query
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Query: Australians doing research in theoretical
computer science

Figure: Response to query about Australians in TCS research

What would you do next? 13 / 34



Photo queries

Today we can have queries such as “find me all documents where this
exact photo exists” or “find me a document that contains a photo closest
to the query photo”. “find me all document that contain a photo like the
one in this document”

If the photo comes from a document with text an especially if the photo
has a caption, we might already have enough informartion about the photo
to do a key woed search.

What if the photo is just something you scanned? One way this can be
done (and perhaps this is the main idea) is to treat the photo as a vector
compriseds on the pixels. Then we can have a indexed list of photos (each
represensented as a vector) and then the problem becomes a well studied
problem in computational geometry; namely, the problem of nearest
neighbour search in high dimensions.

Of course, we (or the search engine) can use a deep learning algorithm to
classify a given photo before searching for similar photos.
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Complexity theory; the extended Church-Turing
thesis
We recall the Church-Turing thesis, namely that every computable
function f is Turing computable. More precisely, there is a Turing machine
M such that on every input x , M halts and outputs f (x). That is, the
Church-Turing thesis equates the informal concept of “computable” with
the matehmatically precise concept of “Turing machine computable”.

The extended Church-Turing thesis equates the informal concept of
“efficiently computable” with the mathematical precise concept of
computable by a Turing machine in polynomial time”.

More precisely, the extended Church-Turing thesis states that a function f
is efficiently computable if there is a Turing machine M and a polynomial
p(n) such that on every input x , M halts in at most p(|x |) steps and
outputs f (x).

Here we are assuming x ∈ Σ∗ for some finite alphabet Σ and |x | represents
the length of the string x .
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The extended Church Turing thesis continued
In what follows, I will use n to be the length of a an input string; n = |x |.

Do we believe the extended Church Turing Thesis?

Why we might accept the extended Church Turing thesis

We can simulate in polynomial time a random access von Neumann
random access machine if we say, as we should, that the time for
basic operations on bit operands is O(1). This is a robust definition.

That is, there is a polynomial function p2() such that if a function f
is computable in time p1(n) on a von Neumann random access
machine, then f is computable in polynomial time p(n) = p2(p1(n))
on a Turing machine. For example, if p1(n) = n3 and p2(n) = n2 then
p(n) = n6.

For problems involving say enormous graphs, we may need sublinear
time; for other problems we may need linear or near linear times. But
as an abstraction, we are saying that a polynomial time algorithm is
“efficient”.
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Why we should be less accepting of the extended
Church-Turing thesis
While we are very confidant about the Church-Turing thesis (for defining
“computable”), there are various reasons to be a little more skeptical
about the extended Chruch-Turing thesis.

An algorithm running in a polynomial time bound like n100 is not an
efficient algorithm.

An algorithm running in an exponential time bound like (1 + 1
1000)n is

an efficient algorithm for reasonably (but not too) large input lengths.
Note: (1 + 1

k )k → e ≈ 2.72

While we can simulate classical computers (i.e. von Neumann
machines) in polynomial time, we do not know how to simulate non
classical computers (e.g., quantum computers) in polynomial time.

Factoring is an example of a problem that can be computed in
polynomial time by a quantum computer whereas we do not believe
factoring is polynomial time computable on a classical computer. So
it is possible that we will have to change of definition of “efficiently
computable” to be polynomial time on a quantum computer.
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So should we accept the extended Church-Turing
thesis?
We can accept the extended Church-Turing thesis, arguing as follows:

Polynomial time computable functions usually have reasonably small
asymptotic polynomial time bounds; that is, n, n log n, n2, n3‘. There
are some exceptions (like n6, but generally speaking we don’t usually
encounter polynomial time bounds asymptotically bigger than n3.

The robustness of polynomial time (in terms of being closed under
composition is not sensitive to the precise model of computing and
definition of a time step. This enables us to define our concepts in
terms of Turing machines (once we restrict outselves to classical
computer models). Linear functions are also closed under composition
but linear time computation is very model dependent.

While non-classical models may contradict the thesis, so far we do
not have non-classical computers (e.g., quantum computers that go
beyond a small number of quantum bits) that are practical in a
commercial sense.
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End of Monday, October 23, 2023

Agenda for Wedmesday, October 25.

Discuss the quiz.

I will repeat the last few slides an then contiunue with the (literally)
million $ P vs NP question. Namely,

1 Defining the classes P and NP
2 NP cpmpleteness
3 The P 6= NP conjecture and its importance.
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The extended Church Turing thesis continued
In what follows, I will use n to be the length of a an input string; n = |x |.
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But what if quantum computers become practical?

Lets assume the quantum computers or other non-classical computers
become practical. We are about to discuss the P vs NP issue and the
P 6= NP conjecture, the central question in complexity theory.

This conjecture is formulated with respect to the extended Turing thesis.
That is, we are accepting the definition that “efficiently computable”
means polynomial time computable by a Turing machine. Will everything
about this question and conjecture become useless if we someday have
available more powerful non-classical (e.g., quantum) computers?

No, the theory we will be developing can be reformulated in terms of a new
computational model. We will have new functions (like factoring integers)
which will now become efficiently computable (assuming they were not
efficiently computable classically). But still there will be an analogous
complexity theory based on the (for now hypothetical) new computational
model. Moroever, our current belief is that there are problems in the class
NP that are not computable in polynomial time on a quantum computer.
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Polynomial time computable decision problems

We will now restrict attention to decision problems; that is
f : Σ∗ → {YES ,NO}. Σ is a finite alphabet and Σ∗ is the set of all strings
over Σ. We can also identify {YES ,NO} with say {1, 0}.

Equivalently, we are considering languages L ⊆ Σ∗.

The class of languages (decision problems) P is defined as the set of
languages L that are decideable in polynomial time on a Turing machine;
that is the languages that are “efficiently decideable”.

In what follows, I will assume we have some agreed upon way that we
represent graphs G = (V ,E ) as strings over some finite alphabet Σ.
Without refering to the representation, let Lconnected = {G = (V ,E )|G is a
connected graph}.

It is not difficult to show that Lconnected is in the class P. (For example,
we can use breadth first search.)
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A language “probably not” in the class P

Consider the following language: LHC = {G = (V ,E )|G has a simple cycle
including all nodes in V }. It is strongly believed (but not proven) that
LHC is not polynomial time computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(TSP) is to find an HC of least cost in an edge weighted graph. Have you
heard of this problem?.)

But suppose that a given graph G has Hamiltonian cycle. How can I
convince you that G has such a cycle

I can simply show you a Hamiltonian cycle C (assuming I know C ) and
you can easily and efficiently verify that C is indeed a HC. That is, I can
prove to you that G has a HC.

But can I efficiently prove to you that G does not have a HC?

““Probably not”
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NP: the class of languages which are “efficiently
verifiable”
Using the HC problem as an example, lets define what it means to be
efficiently verifiable.

Let L be a language (like LHC ) that satisfies the following conditions:
There is a polynomial time decideable relation R(x , y) and a polynomial p
such that for every x , x ∈ L if and only if there exists a y with |y | ≤ p(|x |)
and R(x , y) = TRUE .

R(x , y) is a verification relation (or predicate) and y is called a certificate
that verifies x being in L.

The class NP is the class of languages (decision problems) that have such
a verification relation and certificate.

For example HC is in NP. Namely, given a representation x of a graph
G = (V ,E ), a certificate y is an encoding of a sequence of vertices
specifying a Hamiltonian cycle C . R(x , y) checks the conditions for
y = C being a simple cycle containing all the nodes in V .
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The million $ question: Is P 6= NP

This is literally (and not just figuratively) a million $ question for someone
who solves the question. In fact, it is worth much more that just one
million $ for a proof that either P = NP or a proof that P 6= NP.

Cook defined the concept of NP-completeness and gave a couple of
examples of such problems, namely SAT and CLIQUE , problems in NP
that are believed to not be in P.

We wil define NP-completeness and the evidence for the conjecture that
P 6= NP.

The important consequence of NP completeness is that if any NP decision
problem turns out to be in P, then P = NP. Since we strongly believe
P 6= NP, this means that we strongly believe that no NP complete
problem can be in P.
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NP: the class of languages which are “efficiently
verifiable”
Using the HC problem as an example, lets define what it means to be
efficiently verifiable.

Let L be a language (like LHC ) that saitisfies the following conditions:
There is a polynomial time decidable relation R(x , y) and a polynomial p
such that for every x , x ∈ L if and only if there exists a y with |y | ≤ p(|x |)
and R(x , y) = TRUE .

R(x , y) is a verification relation (or predicate) and y is called a certificate
with respect to R that verifies x being in L.

Definition: The class NP is the class of languages (decision problems)
that have such a verification relation and certificate.
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being a simple cycle containing all the nodes in V .
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Many many decision problems are in the class NP
First we will note that the class P (decision problems decideable in
polynomial time) is a subset of NP; that is, P ⊆ NP. Is this obvious?

Consider a language L (like Lconnected) that is decideable in polynomial
time. Then in the definition of NP, we can let let R(x , y) be the relation
that is TRUE iff x ∈ L ignoring y and R(x , y) is polynomial time since we
can decide if x ∈ L in polynomial time by the assumption that L ∈ P.

In saying P ⊆ NP, we have left open the possibility that P = NP.
However, the widely believed assumption (conjecture) is that P 6= NP.
This question (conjecture) was implicitly asked by (for example) Gauss
(early 1800’s), von Neumann, Gödel (1950’s) , Cobham, and Edmonds
(1960s). The conjecture was formalized by Cook in 1971 (indpendently by
Levin in the FSU but his work was not known until about 1973).

More specifically Cook defined the concept of NP-completeness and gave
a couple of examples of such problems, namely SAT and CLIQUE ,
problems in NP that are believed to not be in P. We wil define
NP-completeness and the evidence for the conjecture that P 6= NP.
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End of slides for week 7

I am appending a few more slides for those who want to see the definition
of NP-completeness.

31 / 34



Efficient reductions

At the heart of NP completeness and more generally algorithm analysis is
the concept of (efficient) reduction of problems. When we say that
problem A “efficiently” reduces to problem B, we can conclude that an
efficient algorithm for B will result in an efficient algorithm for A (and
equivalently, the contrapositive states that A not efficiently computable
implies that B is not efficiently computable).

There are different definitions for what we mean by an efficient reduction
and the precise definition matters in terms of what we want to conclude
from the reduction.

One major distinction is between a very general type of reduction (which
we will just call poly time reduction (i.e., the poly time version of Turing
reduction) and the more restricted reduction which we will call poly time
transformation (i.e., the polynomial time version of a Turing computable
transformation).
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Two types of reductions continued
The general version of reduction A ≤poly

T B means that there is a poly
time algorithm ALG that can call a subroutine for B (as often as it likes)
and ALG computes A. Here we count each call to the subroutine as 1
step. It is not difficult to see that if A ≤poly

T B and B is computable in
polynomial time, then A is computable in polynomial time.

The ≤poly
T reduction is what Cook used in his seminal 1971 paper.

The more restricted transformation (which we call a polynomial time

transformation) A ≤poly
trans B means that there is a polynomial time function

h (transforming an input instance of A to an input instance of B) such
that x ∈ A if and only if h(x) ∈ B. Note that |h(x)| ≤ p(|x |) for some
polynomial p. Why?

It is easy to see that A ≤poly
trans B and B ∈ P implies A ∈ P.

Following Cook’s paper, Karp provided a list of 21 combinatorial and
graph theoretical problems that are NP complete. Karp used the more
restrictive ≤poly

trans . If you like names associated with these reductions then
we can denote ≤poly

T as ≤Cook and ≤poly
trans as ≤Karp.
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NP-completeness wrt reductions ≤poly
T and ≤poly

trans

Let’s first explicitly give the definition NP-complete.
Definition: A language (or decision problem) L is NP complete if

1 L ∈ NP.

2 L is NP-hard with respect to some polynomial time reduction, for
example with respect to either ≤poly

T , or ≤trans poly . That is, if we

are using ≤poly
trans , then L is NP-hard if for every A ∈ NP, there is a

polynomial time computable function h such that w ∈ A if and only if
h(w) ∈ L.
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