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Announcements
Announcements

As you know, this is the last week of classes for the fall term. We will
not avail ourselves of the makeup Monday class as I am sure everyone
would rather have the time to study for exams.

Please promptly submit any regrade requests for quiz 2.

I have some quizzes that were not picked up last Wednesday. Any
unclaimed quizzes after the last class this Wednesday (December 6)
will be given to the undergraduate office.

The final assignment is due December 6 at 9AM. There will not be
any extensions past this new due date. I am sure that Aniket will
grade them as fast as possible. After the Assignments and grades are
posted on Quercus, I will calculate the participation grade and then
calculate final grades. I will post (on Quercus) these grades before
submitting. Please notify (by email) within two days if you notice any
errors. I am supposed to submit final grades within a week of the end
of classes for courses not having a final exam.
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This weeks agenda

The topic this week is social networks.

In particular, the main theme will be how graph structure can reveal
personal and individual information as well as communities. In
particular, we will discuss

Floretine marriages and “centrality”. Why were the Medici’s so
influential?

The Bearman et al study of romantic relations in a US high school
which we mentioned briefly before.

The Backstrom and Kleinberg method for discovering the romantic
relation in a subgraph of facebook.

Bearman and Moody discussion of low triadic closure

Modelling and understanding the small worlds phenomena. The
Watts-Strogaatz, and Kleinberg models and analysis.

More realistic georgraphic models.

Extending geographic distance to social distance.
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Social networks
A social network is a network G = (V ,E ) where the nodes in V are people
or organizations. Social networks can be undirected or directed networks.

The edges can be relations between people (e.g. friendship) or
membership of an individual in an organization.

Social networks can be of any size (e.g., a small network like the Karate
Club on slide 16, later in todays slides) or enormous networks like
Facebook and Twitter. We usually think of Facebook as an undirected
graph (where friendship is an undirected edge) and Twitter as a directed
graph (i.e., where follows is a directed edge).

Understanding how networks evolve, the resulting structure of social
networks, and computational aspects for dealing with large networks is an
active field of study in CS as well as in sociology, political science,
economics, epidemiology, and any field that studies human behaviour. J.
Kleinberg’s 2000 analysis with regard to the six degrees of separation
phenomena is an early result that sparked interest in algorithmic aspects of
social networks.
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The computational challenge presented by super
large networks

The size of some modern networks such as the web and social networks
such as Facebook are at an unprecedented scale.

As of Februay, 2022, xThe average facebook user has about 155 friends
which then implies about 2.9 · 1552 ≈ 200 billion edges. It is interesting to
note that 90% of daily active users are outside USA and Canada. See
https://www.omnicoreagency.com/facebook-statistics/
for lots of interesting demographic and other facts about Facebook.

What does this imply for the complexity of algorithms involving such super
large networks?
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Linear is the new exponential

In complexity theory (e.g. in the P vs NP) we say (as an abstraction) that
polynomial time algorithms are “efficient” and “exponential time” is
infeasible. There are, of course, exceptions but as an abstraction this has
led to invaluable fundamental insights.

As problem instances have grown, there was a common saying that
“quadratic (time) is the new exponential”.

But with the emergence of networks such as the web graph and the
Facebook network, we might now say that “linear is the new exponential”
when it comes to extracting even the most basic facts about these
networks. For example, how do we even estimate the average node degree
in a giant network?

There are many facts about large networks that we would like to extract
from the network. For example, how do we find “influential” or
“interesting nodes” in a social network?
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Sublinear time algorithms

What is sublinear time?
In general when we measure complexity, we do so as a funtion of the
input/output size. For graphs G = (V ,E ), the size of the input is usually
the number of edges E . (An exception is that when the graph is presented
say as an adjacency matrix, the size is n2 where n = |V |.)
Since our interest is in massive information and social networks, we
consider sparse graphs (e.g. average constant degree) so that
|E | = O(|V |) and hence we will mean sublinear time as a function of n
(equivalently m = |E |). The desired goal will be time bounds of the form
O(nα) with α < 1 and in some cases maybe even O(log n) or polylog(n).

Given that optimal algorithms for almost any graph property will depend
on the entire graph, we will have to settle for approximations to an
optimum solution. Furthermore, we will need to sample the graph so as to
avoid having to consider all nodes and edges. And we will need a way to
efficiently access these massive graphs,
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Coping with massive social graphs continued

One way to help coping with massive networks is to hope to utilize some
substantial amount of parallelism. There is an area of current research
concerning massive parallel computation (MPC) models where (in
principle) we can achieve sublinear time by distributing computation
amongst a large (i.e., conceptually a non constant) number of processors.

But even if we could muster and organize thousands of machines, we will
still need random samplng, approximation, and have highly efficient “local
information algorithms” (e.g., where say each processor is responsible for
some nodes and learns about its local neighbourhood).

Finally, in addition to random sampling and parallelism, we will have to
hope that social networks have some nice structural properties that can be
exploited to as to avoid complexity barriers that exist for arbitrary (even
sparse) graphs. These complexity barriers are hopefully clear from our
discussion of complexity theory, NP completeness and NP hardness.
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Preferential attachment models
Preferential attachnment models (also called “rich get richer” models) are
probabilistic generative models explaining how various networks can be
generated. Namely, after starting with some small graph, when we add a
new node u, we create a number of links between u to some number m of
randomly chosen existing nodes v1, v2, . . . , vm. The probability of choosing
a vi is proportional to the current degree of vi .

These models have been used to help explain the structure of the web as
well as social networks. Furthermore, networks generated by such a
process have some nice structural properties allowing for substantially
more efficient algorithms than one can obtain for arbitrary graphs.

For such models, there are both provable analytic results as well as
experimental evidence on synthetic and real networks that support
provable results that follow from the model. (Remember, a model is just a
model and is not “reality”; as models are implifications of real networks,
they may not account for many aspects in a real network. For example, in
this basic model, all the edges for a new node are set upon arrival.)
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Consequences for networks generated by a
preferential attachment process

There are many properties, believed and sometimees proven. about
preferential attachment network models that do not hold for uniformly
generated random graphs (e.g., if we create random sparse graphs with
constant average degree by choosing each possible edge with say
probability proportional to 1

n ).

One of the most interesting and consequential proerties is that vertex
degrees satisfy a power law distribution in expectation. Specifically, the
expectation fraction P(d) of nodes whose degree is d is proportional to
d−γ for some γ ≥ 1. Such a distribution is said to have a fat tail.

In a uniformaly random sparse graph (with average degree davg ), with high
probability , the fraction of nodes having a large degree d > davg is
proportional to c−d for some c > 1.
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The Barabasi and Albert preferential model
Barabasi and Albert [1999] specified a particular preferential attachment
model and conjectured that the vertex degrees satisfy a power law in
which the fraction of nodes having degree d is proportional to d−3.

They obtained γ ≈ 2.9 by experiments and gave a simple heuristic
argument suggesting that γ = 3. That is, P(d) is proportional to d−3

Bollobas et al [2001] prove a result corresponding to this conjectured
power law. Namely, they show for all d ≤ n1/15 that the expected degree
distribution is a power law distribution with γ = 3 asymptotically (with n)
where n is the number of vertices.

Note: It is known that an actual realized distribution may be far from its
expectation, However, for small degree values, the degree distribution is
close to expectation.

When we say that a distribution P(d) is a power law distribtion this is
often meant to be a ”with high probability” whereas many results for
networks generated by a preferential attachment process the power law is
usually only in expectation. 11 / 14



Proven or observed properties of nodes in a social
network generated by preferential attachment
models

In addition to the power law phenomena suggesting many nodes with high
degree, other properies of social networks have been observed such as a
relatively large number of nodes u having some or all of properties such as
the following: .

high clustering coefficient defined as : (u,v),(u,w),(v ,w)∈E
(u,v),(u,w)∈E . That is,

mutual friends of u are likely to be friends.

high centrality ; e,g, nodes on many pairs of shortest paths.

Brautbar and Kearns refer to such nodes (as above) as “interesting
indiviudals” and these individuals might be candidates for being “highly
influential individuals”. Bonato et al [2015] refers to such nodes as the
elites of a social network.
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Other proven or observed properties of networks
generated by preferentical attachment models

correlation between the degree of a node u and the degrees of the
neighboring nodes.

the graph has small diameter; suggesting “6 degrees of separation
phenomena”

relatively large dense subgraph communities.

rapid mixing (for random walks to approach stationary distribution)

relatively small (almost) dominating sets. What do we mean by
“almost”?

On my spring 2020 CSC303 web page, I posted a paper by Avin et al
(2018) that shows that preferential attachment is the only “rational
choice” for players (people) playing a simple natural network formation
game. It is the rational choice in the sense that the strategy of the players
will lead to a unique equilibrium (i.e. no player will want to deviate
assumming other players do not deviate). For those intersted, I have
posted (in my CSC303 webpage) a number of other papers on elites in a
social network and preferential attachment.
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End of Monday, December 4 class

—
On Wednesday, we will quickly present a number of studies that illustrate
the use of graph structure in obtaining information in a social-network.
This is just meant to generate interest in the computational study of social
networks. We will quickly consider:

The centrality and influence of a node.

Detecting communities and influential nodes.

Detecting the romantic relation in a Facebook network

The importance of triadic closure and low clustering coefficient.

The six degrees of separation phenomena
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Florentine marriages and “centrality”
Medici connected to more families, but not by much
More importantly: lie between most pairs of families

I shortest paths between two families: coordination, communication
I Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%

Figure: see [Jackson, Ch 1]
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Example of communities and central nodes

Mining Social Network Data

Mining social networks also has long history in social sciences.

E.g. Wayne Zachary’s Ph.D. work (1970-72): observe social
ties and rivalries in a university karate club.

During his observation, conflicts intensified and group split.

Split could be explained by minimum cut in social network.

Jon Kleinberg Challenges in Mining Social Network Data

Figure: Zachary Karate Club [1977]. The figure illustates a min cut partitiuoning
the network. Also not the centrality of nodes 1 and 34. 16 / 14



How graph structure can reveal personal
information: Detecting the romantic relation in
Facebook

There is an interesting paper by Backstrom and Kleinberg
(http://arxiv.org/abs/1310.6753) on detecting “the” romantic
relation in a subgraph of facebook users who specify that they are in
such a relationship.

Backstrom anbd Kleinberg construct two datasets of randomly
sampled Facebook users: (i) an extended data set consisting of 1.3
million users declaring a spouse or relationship partner, each with
between 50 and 2000 friends and (ii) a smaller data set extracted
from neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

The main experimental results are nearly identical for both data sets.
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Detecting the romantic relation (continued)

They consider various graph strucutral features of edges, including
1 the embeddedness of an edge (A,B) which is the number of mutual

friends of A and B.
2 various forms of a new dispersion measure of an edge (A,B) where high

dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

3 One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of u and v such that (s, t) /∈ E and s, t have no
common neighbours except for u and v .

They also consider various “interaction features” including
1 the number of photos in which both A and B appear.
2 the number of profile views within the last 90 days.
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Embeddedness and disperison example from paper

Figure 1. A network neighborhood, contributed by a Facebook em-
ployee (drawn as the circled node at the center), and displayed as an
example in the work of Marlow et al [21]. Two clear clusters with highly
embedded links are visible at the top and right of the diagram; in the
lower left of the diagram are smaller, sparser clusters together with a
node that bridges between these clusters.

gests a natural predictor for identifying a user u’s partner: se-
lect the link from u of maximum embeddedness, and propose
the other end v of this link as u’s partner.

We will evaluate this embeddedness-based predictor, and oth-
ers, according to their performance: the fraction of instances
on which they correctly identify the partner. Under this mea-
sure, embeddedness achieves a performance of 24.7% —
which both provides evidence about the power of structural
information for this task, but also offers a baseline that other
approaches can potentially exceed.

Next, we show that it is possible to achieve more than twice
the performance of this embeddedness baseline using our new
network measure, dispersion. In addition to this relative im-
provement, the performance of our dispersion measure is very
high in an absolute sense — for example, on married users in
our sample, the friend who scores highest under this disper-
sion measure is the user’s spouse over 60% of the time. Since
each user in our sample has at least 50 friends, this perfor-
mance is more than 30 times higher than random guessing,
which would produce a performance of at most 2%.

Theoretical Basis for Dispersion.
We motivate the dispersion measure by first highlighting a
basic limitation of embeddedness as a predictor, drawing on
the theory of social foci [10]. Many individuals have large
clusters of friends corresponding to well-defined foci of in-
teraction in their lives, such as their cluster of co-workers or
the cluster of people with whom they attended college. Since
many people within these clusters know each other, the clus-
ters contain links of very high embeddedness, even though
they do not necessarily correspond to particularly strong ties.
In contrast, the links to a person’s relationship partner or other
closest friends may have lower embeddedness, but they will
often involve mutual neighbors from several different foci, re-
flecting the fact that the social orbits of these close friends are
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Figure 2. A synthetic example network neighborhood for a user u; the
links from u to b, c, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from u to h has an embeddedness
of 4. On the other hand, nodes u and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, c, and f .

not bounded within any one focus — consider, for example, a
husband who knows several of his wife’s co-workers, family
members, and former classmates, even though these people
belong to different foci and do not know each other.

Thus, instead of embeddedness, we propose that the link be-
tween an individual u and his or her partner v should display a
‘dispersed’ structure: the mutual neighbors of u and v are not
well-connected to one another, and hence u and v act jointly
as the only intermediaries between these different parts of the
network. (See Figure 2 for an illustration.)

We now formulate a sequence of definitions that captures this
idea of dispersion. To begin, we take the subgraph Gu in-
duced on u and all neighbors of u, and for a node v in Gu we
define Cuv to be the set of common neighbors of u and v. To
express the idea that pairs of nodes in Cuv should be far apart
in Gu when we do not consider the two-step paths through
u and v themselves, we define the absolute dispersion of the
u-v link, disp(u, v), to be the sum of all pairwise distances
between nodes in Cuv , as measured in Gu − {u, v}; that is,

disp(u, v) =
∑

s,t∈Cuv

dv(s, t),

where dv is a distance function on the nodes of Cuv . The
function dv need not be the standard graph-theoretic distance;
different choices of dv will give rise to different measures
of absolute dispersion. As we discuss in more detail below,
among a large class of possible distance functions, we ulti-
mately find the best performance when we define dv(s, t) to
be the function equal to 1 when s and t are not directly linked
and also have no common neighbors in Gu other than u and
v, and equal to 0 otherwise. For the present discussion, we
will use this distance function as the basis for our measures
of dispersion; below we consider the effect of alternative dis-
tance functions. For example, in Figure 2, disp(u, h) = 4 un-
der this definition and distance function, since there are four
pairs of nodes in Cuh that are not directly linked and also
have no neighbors in common in Gu − {u, h}. In contrast,
disp(u, b) = 1 in Figure 2, since a and e form the only pair
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Qualitative results from Backstrom and Kleinberg
The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%

Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?

By itself, dispersion outperforms various interaction features.

For most measures, performance is better for male users and also
better for data when restricted to marriage as the relationship.

By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.

There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct
predictions

Recall that we argue that the fraction might be .005 when randomly
choosing an edge. Do you find anything surprising?
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Figure 3. Performance of (disp(u, v) + b)↵/(emb(u, v) + c) as a func-
tion of ↵, when choosing optimal values of b and c.

type embed rec.disp. photo prof.view.
all 0.247 0.506 0.415 0.301
married 0.321 0.607 0.449 0.210
married (fem) 0.296 0.551 0.391 0.202
married (male) 0.347 0.667 0.511 0.220
engaged 0.179 0.446 0.442 0.391
engaged (fem) 0.171 0.399 0.386 0.401
engaged (male) 0.185 0.490 0.495 0.381
relationship 0.132 0.344 0.347 0.441
relationship (fem) 0.139 0.316 0.290 0.467
relationship (male) 0.125 0.369 0.399 0.418

Figure 4. The performance of different measures for identifying spouses
and romantic partners: the numbers in the table give the precision at the
first position — the fraction of instances in which the user ranked first by
the measure is in fact the true partner. Averaged over all instances, re-
cursive dispersion performs approximately twice as well as the standard
notion of embeddedness, and also better overall than measures based on
profile viewing and presence in the same photo.

of non-neighboring nodes in Cub that have no neighbors in
common in Gu � {u, b}.

Strengthenings of Dispersion.
We can learn a function that predicts whether or not v is
the partner of u in terms of the two variables disp(u, v)
and emb(u, v), where the latter denotes the embeddedness
of the u-v link. We find that performance is highest for
functions that are monotonically increasing in disp(u, v) and
monotonically decreasing in emb(u, v): for a fixed value of
disp(u, v), increased embeddedness is in fact a negative pre-
dictor of whether v is the partner of u. A simple combina-
tion of these two quantities that comes within a few percent
of more complicated functional forms can be obtained by the
expression disp(u, v)/emb(u, v), which we term the normal-
ized dispersion norm(u, v) since it normalizes the absolute
dispersion by the embeddedness. Predicting u’s partner to
be the individual v maximizing norm(u, v) gives the correct
answer in 48.0% of all instances.

There are two strengthenings of the normalized dispersion
that lead to increased performance. The first is to rank nodes
by a function of the form (disp(u, v) + b)↵/(emb(u, v) + c).
Searching over choices of ↵, b, and c leads to maximum per-
formance of 50.5% at ↵ = 0.61, b = 0, and c = 5; see
Figure 3. Alternately, one can strengthen performance by ap-

type embed rec.disp. photo prof.view.
all 0.391 0.688 0.528 0.389
married 0.462 0.758 0.561 0.319
married (fem) 0.488 0.764 0.538 0.350
married (male) 0.435 0.751 0.586 0.287
engaged 0.335 0.652 0.553 0.457
engaged (fem) 0.375 0.674 0.536 0.492
engaged (male) 0.296 0.630 0.568 0.424
relationship 0.277 0.572 0.460 0.498
relationship (fem) 0.318 0.600 0.440 0.545
relationship (male) 0.239 0.546 0.479 0.455

Figure 5. The performance of the four measures from Figure 4 when
the goal is to identify the partner or a family member in the first position
of the ranked list. The difference in performance between the genders
has largely vanished, and in some cases is inverted relative to Figure 4.

plying the idea of dispersion recursively — identifying nodes
v for which the u-v link achieves a high normalized disper-
sion based on a set of common neighbors Cuv who, in turn,
also have high normalized dispersion in their links with u. To
carry out this recursive idea, we assign values to the nodes
reflecting the dispersion of their links with u, and then update
these values in terms of the dispersion values associated with
other nodes. Specifically, we initially define xv = 1 for all
neighbors v of u, and then iteratively update each xv to be

P
w2Cuv

x2
w + 2

P
s,t2Cuv

dv(s, t)xsxt

emb(u, v)
.

Note that after the first iteration, xv is 1+2 ·norm(u, v), and
hence ranking nodes by xv after the first iteration is equiv-
alent to ranking nodes by norm(u, v). We find the highest
performance when we rank nodes by the values of xv after
the third iteration. For purposes of later discussion, we will
call this value xv in the third iteration the recursive disper-
sion rec(u, v), and will focus on this as the main examplar
from our family of related dispersion-based measures. (See
the Appendix for further mathematical properties of the re-
cursive dispersion.)

PERFORMANCE OF STRUCTURAL AND INTERACTION
MEASURES
We summarize the performance of our methods in Figure 4.
Looking initially at just the first two columns in the top row of
numbers (‘all’), we have the overall performance of embed-
dedness and recursive dispersion — the fraction of instances
on which the highest-ranked node under these measures is
in fact the partner. As we will see below in the discussion
around Figure 6, recursive dispersion also has higher perfor-
mance than a wide range of other basic structural measures.

We can also compare these structural measures to features de-
rived from a variety of different forms of real-time interaction
between users — including the viewing of profiles, sending of
messages, and co-presence at events. The use of such ‘inter-
action features’ as a comparison baseline is motivated by the
way in which tie strength can be estimated from the volume of
interaction between two people [8, 17]. Within this category
of interaction features, the two that consistently display the
best performance are to rank neighbors of u by the number of

type max. max. all. all. comb.
struct. inter. struct. inter.

all 0.506 0.415 0.531 0.560 0.705
married 0.607 0.449 0.624 0.526 0.716
engaged 0.446 0.442 0.472 0.615 0.708
relationship 0.344 0.441 0.377 0.605 0.682

Figure 10. The performance of methods based on machine learning
that combine sets of features. The first two columns show the highest
performing individual structural and interaction features; the third and
fourth columns show the highest performance of machine learning clas-
sifiers that combine structural and interaction features respectively; and
the fifth column shows the performance of a classifier that combines all
structural and interaction features together.

links over their time on Facebook, and it is also correlated
with the time since the relationship was first reported. (As we
will see later in Figure 11, performance varies as a function
of this latter quantity as well.) To understand whether there
is any effect of a user’s time on site beyond its relation to
these other parameters, we consider a subset of users where
we restrict the neighborhood size to lie between 100 and 150,
and the time since the relationship was reported to lie between
100 and 200 days. Figure 9 shows that for this subset, there is
a weak increase in performance as a function of time on site;
while the effect is not strong, it points to a further source of
enhanced performance for users with mature neighborhoods.

COMBINING FEATURES USING MACHINE LEARNING
Different features may capture different aspects of the user’s
neighborhood, and so it is natural to ask how well we can pre-
dict partners when combining information from many struc-
tural or interaction features via machine learning.

Machine Learning Techniques.
For our machine learning experiments, we compute 48 struc-
tural features and 72 interaction features for all of the nodes
in the neighborhoods from our primary dataset. This gives us
a total of approximately 18.7 million labeled instances with
120 features each — each instance consists of a node v in
a neighborhood Gu, with a positive label indicating v is the
partner of u, or a negative label indicating v is not.

The 48 structural features are the absolute and normalized
dispersion based on six distinct distance functions defined for
Figure 6, as well as the recursive versions using iterations 2
through 7 (recall that the recursive dispersion corresponds to
the third iteration, and is hence included). The 72 interac-
tion features represent a broad range of properties including
the number of photos in which u and v are jointly tagged,
the number of times u has viewed v’s profile over the last 30,
60, and 90 days, the number of messages sent from u to v,
the number of times that u has ‘liked’ v’s content and vice
versa, and measures based on a number of forms of interac-
tion closely related to these.

To improve the performance of the learning algorithms, we
transformed each of the 120 features into 4 different versions:
(a) the raw feature, (b) a normalized version of the feature
with mean 0 and standard deviation 1, (c) a rank version of
the feature (where the individual with highest score on this
feature has rank 1, and other individuals are sorted in ascend-
ing rank order from there), and (d) a rank-normalized version

where we divide (c) by total number of friends a user has.
Thus, the input to our machine learning algorithms has 480
features derived from 120 values per instance. In addition to
the full set of features, we also compute performance using
only the structural features, and only the interaction features.

We performed initial experiments with different machine
learning algorithms and found that gradient tree boosting [13]
out-performed logistic regression, as well as other tree-based
methods. Thus, all of our in-depth analysis is conducted with
this algorithm. In our experiments, we divide the data so that
50% of the users go into a training set and 50% go into a test
set. We perform 12 such divisions into sets A and B; for each
division we train on set A and test on B, and then train on B
and test on A. For each user u, we average over the 12 runs in
which u was a test user to get a final prediction.

Performance of Machine Learning Methods.
We find (Figure 10) that by using boosted decision trees to
combine all of the 48 structural features we analyzed, we can
increase performance from 50.8% to 53.1%. We can use the
same technique to predict relationships based on interaction
features. We find that, overall, interaction features perform
slightly better than structural features (56.0% vs. 53.1%),
though for married users, structural features do much better
(62.4% vs. 52.6%). In addition, on all categories we find that
the combination of interaction features and structural features
significantly outperforms either on its own. When combining
all features with boosted trees, the top predicted friend is the
user’s partner 70.5% of the time.

Machine Learning to Predict Relationship Status.
Earlier we noted that our focus is on the problem of identify-
ing relationship partners for users where we know that they
are in a relationship. It is natural to ask about the connec-
tion to a related but distinct question — estimating whether
an arbitrary user is in a relationship or not.

This latter question is quite a different issue, and it seems
likely to be more challenging and to require a different set of
techniques. To see why, consider a user u who has a link of
high dispersion to a user v. If we know that u is in a rela-
tionship, then v is a good candidate to be the partner. But our
point from the outset has been that methods based on disper-
sion are useful more generally to identify individuals v with
interesting connections to u, in the sense that they have been
introduced into multiple foci that u belongs to. A user u can
and generally will have such friends even when u is not in
a romantic relationship. For example, Figure 5 suggests that
family members often have this property, and this can apply
to users who are not in romantic relationships as well as to
users in such relationships. Thus, simply knowing that u has
links of high dispersion should not necessarily give us much
leverage in estimating whether u is in a relationship.

We now describe some basic machine-learning results that
bear out this intuition. We took approximately 129,000 Face-
book users, sampled uniformly over all users of age at least
20 with between 50 and 2000 friends. 40% of these users
were single, while the remaining were either in a relation-
ship, engaged, or married. We attempt two different predic-
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Triadic closure (undirected graphs)48 CHAPTER 3. STRONG AND WEAK TIES
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(a) Before B-C edge forms.
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the effects of triadic
closure, since they have a common neighbor A.

seeking, and offers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, offering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.

How do we measure the extent to which triadic closure is occurring?

How can we know why a new friendship tie is formed? (Friendship
ties can range from “just knowing someone” to “a true friendship” .)
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Measuring the extent of triadic closure

The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

∣∣{(B,C ) ∈ E : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

∣∣{{B,C} : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

The numerator is the number of all edges (B,C ) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

The denominator is the total number of all unordered pairs {B,C}
such that B and C are adjacent to A.
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Example of clustering coefficient
3.1. TRIADIC CLOSURE 49
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(a) Before new edges form.
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(b) After new edges form.

Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.

the fact that the B-C edge has the effect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coefficient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coefficient [320, 411]. The clustering coefficient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coefficient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coefficient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coefficient will tend to be.

The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C ,D) among the six pairs of friends:
{B,C}, {B,D}, {B,E}, {C ,D}, {C ,E}, and {D,E}). We
sometimes refer to a pair of adjacent edges like (A,B), (A,C ) as an
“open triangle” if (B,C ) does not exist.
The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B,C ), (C ,D), and (D,E )).
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Interpreting triadic closure

Does a low clustering coefficient suggest anything?

Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
contemplating suicide (compared to those with high clustering
coeficient). Note:The value of the clustering coefficient is also
referred to as the intransitivity coefficient.

They report that “ Social network effects for girls overwhelmed other
variables in the model and appeared to play an unusually significant
role in adolescent female suicidality. These variables did not have a
significant impact on the odds of suicidal ideation among boys. ”

How can we understand these findings?
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Bearman and Moody study continued

Triadic closure (or lack thereof) can provide some plausible
explanation.

Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
As far as I can tell, no conclusions are being made about why there is
such a difference in gender results.

The study by Bearman and Moody is quite careful in terms of identifying
many possible factors relating to suicidal thoughts. Clearly there are many
factors involved but the fact that network structure is identified as such an
important factor is striking.
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Bearman and Moody factors relating to suicidal
thoughts

January 2004, Vol 94, No. 1 | American Journal of Public Health Bearman and Moody | Peer Reviewed | Research and Practice | 93

⏐ RESEARCH AND PRACTICE ⏐

TABLE 3—Logistic Regression of Suicide Attempts, Among Adolescents With Suicidal
Ideation, on Individual, School, Family and Network Characteristics

Suicide Attempts, OR (95% CI)

Males Females

Demographic
Age 0.956 (0.808, 1.131) 0.920 (0.810, 1.046)
Race/ethnicity

Black 0.872 (0.414, 1.839) 1.086 (0.680, 1.736)
Other 1.069 (0.662, 1.728) 1.134 (0.810, 1.586)

Socioeconomic status 0.948 (0.872, 1.031) 1.008 (0.951, 1.069)
School and community

Junior high school 1.588 (0.793, 3.180) 1.271 (0.811, 1.993)
Relative density 0.049 (0.005, 0.521) 0.415 (0.086, 1.996)
Plays team sport 0.985 (0.633, 1.532) 1.020 (0.763, 1.364)
Attachment to school 1.079 (0.823, 1.414) 1.066 (0.920, 1.235)

Religion
Church attendance 0.975 (0.635, 1.496) 0.818 (0.618, 1.082)

Family and household
Parental distance 0.925 (0.681, 1.256) 0.955 (0.801, 1.139)
Social closure 1.004 (0.775, 1.299) 0.933 (0.781, 1.115)
Stepfamily 1.058 (0.617, 1.814) 1.368 (0.967, 1.935)
Single-parent household 1.142 (0.698, 1.866) 1.117 (0.800, 1.560)
Gun in household 1.599 (1.042, 2.455) 1.094 (0.800, 1.494)
Family member attempted suicide 1.712 (0.930, 3.150) 1.067 (0.689, 1.651)

Network
Isolation 0.767 (0.159, 3.707) 1.187 (0.380, 3.708)
Intransitivity index 0.444 (0.095, 2.085) 1.076 (0.373, 3.103)
Friend attempted suicide 1.710 (1.095, 2.671) 1.663 (1.253, 2.207)
Trouble with people 1.107 (0.902, 1.357) 1.119 (0.976, 1.284)

Personal characteristics
Depression 1.160 (0.960, 1.402) 1.130 (0.997, 1.281)
Self-esteem 1.056 (0.777, 1.434) 0.798 (0.677, 0.942)
Drunkenness frequency 1.124 (0.962, 1.312) 1.235 (1.115, 1.368)
Grade point average 0.913 (0.715, 1.166) 0.926 (0.781, 1.097)
Sexually experienced 1.323 (0.796, 2.198) 1.393 (0.990, 1.961)
Homosexual attraction 1.709 (0.921, 3.169) 1.248 (0.796, 1.956)
Forced sexual relations 1.081 (0.725, 1.613)
No. of fights 0.966 (0.770, 1.213) 1.135 (0.983, 1.310)
Body mass index 0.981 (0.933, 1.032) 1.014 (0.982, 1.047)

Response profile (n = 1/n = 0) 139/493 353/761
F statistic 1.84 (P = .0170) 2.88 (P < .0001)

Note. OR = odds ratio; CI = confidence interval. Logistic regressions; standard errors corrected for sample clustering and
stratification on the basis of region, ethnic mix, and school type and size.

alent to running a global interaction with gen-
der in a pooled model.

Suicidal Thoughts
Table 2 shows the odds ratios and 95%

confidence intervals for models that regressed

suicidal ideation on the full set of explanatory
variables. The overall model fits were quite
good (F=17.08 for males, F=16.28 for fe-
males; P<.0001 for both males and females).
Close examination of the odds ratios reveals
that although some general similarities exist

in the pattern of risk factors by gender, strik-
ing differences are also evident.

Both boys and girls were more likely to
have suicidal thoughts if they engaged in
fewer activities with their parents (male odds
ratio [OR]=1.57, female OR=1.74), if there
was a gun in the household (male OR=1.33,
female OR=1.54), and if a family member
had attempted suicide in the past year (male
OR=2.14, female OR=1.48). Similarly, the
odds of having suicidal thoughts increased for
both boys and girls when a friend has at-
tempted suicide in the past year (male OR=
2.73, female OR=2.37). The effect of a
friend’s suicide attempt on the respondent’s
suicidal ideation was extremely strong for
both boys and girls. Finally, being depressed
(male OR=1.63, female OR=1.45), experi-
encing homosexual romantic attraction (male
OR=1.39, female OR=1.54), or getting
drunk or high frequently (male OR=1.11, fe-
male OR=1.11) increased the odds of think-
ing about suicide for all adolescents. For both
boys and girls, having high self-esteem low-
ered the likelihood of suicidal ideation (male
OR=0.81, female OR=0.81). (Although
other studies have identified an interaction
between depression and alcohol abuse as a
significant covariate of suicidality, this interac-
tion was not significant for our study popula-
tion [analyses not shown].) These findings are
consistent with those of previous studies.

In addition to revealing these general risk
factors, the models of suicidal ideation
showed marked differences by gender. Specif-
ically, although we found no age effect for
boys, younger girls were more likely than
older girls to think about suicide (OR=0.89).
Beyond the age effect, however, we found im-
portant gender differences in the effect of so-
cial network and relational variables. For girls,
being socially isolated from peers (OR=2.01)
or having intransitive friendships (OR=2.19)
substantially increased the odds of thinking
about suicide. Additionally, being in a school
with dense social networks lowered the risk
of suicidal ideation for girls (OR=0.333). So-
cial network effects for girls overwhelmed
other variables in the model and appeared to
play an unusually significant role in adoles-
cent female suicidality. These variables did
not have a significant impact on the odds of
suicidal ideation among boys.
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The Small World Phenomena

I already mentioned the small worlds phenomena. A mathematical
explanation of this phenomiena (expecially how one hones in on a target
recipient) was given by J. Kleinberg in a network formation model that
explicitly forces a power law property.

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path. Moreover, such a path can be found in a
decentralized manner

In Milgram’s 1967 small world experiment, he asked random people in
Omaha Nebraska to forward a letter to a specified individual in a suburb of
Boston which became the origin of the idea of six degrees of separation.
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Appendix: Network (graph) definitions and examples

Graphs come in two varieties
1 undirected graphs (“graph” usually means an undirected graph.)

a

b c

d e

f g

2 directed graphs (often called di-graphs).

a

b c

d e

f g
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Visualizing Networks as Graphs

nodes: entities (people, countries, companies, organizations, . . . )

links (may be directed or weighted): relationship between entities
I friendship, classmates, did business together, viewed the same web

pages, . . .
I membership in a club, class, political party, . . .

Figure: Internet: Dec. 1970 [E&K, Ch.2]

30 / 14



Adjacency matrix for graph induced by eastern sites
) in 1970 internet graph: another way to represent a
graph

A(G ) =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




This node induced subgraph (for the sites MIT = 1, LINC = 2, CASE
= 3, CARN = 4, HARV = 5, BBN = 6) is a 6 node regular graph of
degree 2. It is a simple graph in that there are no self-loops or
multiple edges.
Note that the adjacency matrix of an (undirected) simple graph is a
symmetric matrix (i.e. Ai ,j = Aj ,i ) with {0,1} entries.
To specify distances, we would need to give weights to the edges to
represent the distances.
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The matrix A2 where A = A(G )

Consider squaring the previous matrix A = A(G ). That is, A2 = A ∗ A.

A2 =




0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 0 0




Draw a visualization of the graph represented by A2. If we let ci ,j be the
i , j entry in A2, can you desribe the meaning of ci ,j?
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The matrix B = A+ I

Consider the 6× 6 identity matrix I = (ιi ,j). That is, ιi ,i = 1 for 1 ≤ i ≤ 6
and ιi ,j = 0 for 1 ≤ i , j ≤ 6 and i 6= j .

Let B = A + I (as above). That is, bi ,j = ai ,j + ιi ,j for all i , j . We have

B(G ) =




1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1




Note that now the matrix B has self loops and hence is not a simple graph.
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Breadth first search and path lengths [E&K, Fig 2.8]
2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most efficient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you

Figure: Breadth-first search discovers distances to nodes one “layer” at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.

Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

I However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.

a

b c

d e

f g
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:

a

b c

d e

f g

10

3 7

2 1

12

9

7

8
5

9 7

515

6 8

9

11

I red numbers: edge weights

I blue numbers: vertex weights

We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .

For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) = 0 or w(e) =∞
meaning no edge depending on the context).

In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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The six degrees of freedom phenomena
There are two basic ways for finding someone in a social network.

We could ask all of our friends to tell all of their friends to tell all of
their friends. . . (i.e. a traditional chain letter) that I am looking for
person X .

Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?

Suppose on the other hand that we want to reach someone and it
either costs real money/effort to pass a message (e.g. postal mail) or
perhaps I would prefer to not let everyone know that I am looking for
person X . And as was pointed out in class, there is also possibly a
“social cost” in terms of annoyance to people in the network receiving
multiple requestss to pass on a message.

Clearly if everyone cooperates, the broadcast method ensures the
shortest path to the intended target X in the leveled tree/graph of
reachable nodes.
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Reachable nodes without triadic closure
If there is no triadic closure (i.e. your friends are not mutual friends,
etc.), it is easy to see why every path is a shortest path to everyone in
the network.

Consider the number of people that you could reach by a path of
length at most t if every person has say at least 5 friends.
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(a) Pure exponential growth produces a small world
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Figure 20.1: Social networks expand to reach many people in only a few steps.

people brings us to more than 100 · 100 · 100 = 1, 000, 000 people who in principle could be

three steps away. In other words, the numbers are growing by powers of 100 with each step,

bringing us to 100 million after four steps, and 10 billion after five steps.

There’s nothing mathematically wrong with this reasoning, but it’s not clear how much

it tells us about real social networks. The difficulty already manifests itself with the second

step, where we conclude that there may be more than 10, 000 people within two steps of you.

As we’ve seen, social networks abound in triangles — sets of three people who mutually

know each other — and in particular, many of your 100 friends will know each other. As a

result, when we think about the nodes you can reach by following edges from your friends,

many of these edges go from one friend to another, not to the rest of world, as illustrated

schematically in Figure 20.1(b). The number 10, 000 came from assuming that each of your

100 friends was linked to 100 new people; and without this, the number of friends you could

reach in two steps could be much smaller.

So the effect of triadic closure in social networks works to limit the number of people

you can reach by following short paths, as shown by the contrast between Figures 20.1(a)

Figure: Pure exponential growth produces a small world [Fig 20.1 (a), E&K]
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Reachable nodes with triadic closure

Given that our friends tend to be mostly contained within a few small
communities, the number of people reachable will be much smaller.
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know each other — and in particular, many of your 100 friends will know each other. As a

result, when we think about the nodes you can reach by following edges from your friends,
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Figure: Triadic closure reduces the growth rate [Fig 20.1 (b), E&K]
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The Watts-Strogatz model

Is it possible to have extensive triadic closure and still have short
paths?

Homophily is consistent with triadic closure especially for strong ties
whereas weak ties can connect different communities and thereby
provide the kind of branching that yields short paths to many nodes.

One stylized model to demonstrate the effect of these different kinds
of ties is the Watts-Strogatz model, which considers nodes lying in a
two dimensional grid and then having two types of edges:

I Short-range edges to all nodes within some small distance r . This
captures an idealized sense of homophily

I A small number of random longer-distance edges to other nodes in the
network; in fact, one needs very few such random edges to achieve the
effect of short paths.
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Very few random edges are needed
A k by k “town” with probability 1/k that a person has a random
weak tie.

This would be sufficient to establish short paths.20.2. STRUCTURE AND RANDOMNESS 615

Figure 20.3: The general conclusions of the Watts-Strogatz model still follow even if only a
small fraction of the nodes on the grid each have a single random link.

two nodes are one grid step apart if they are directly adjacent to each other in either the

horizontal or vertical direction.

We now create a network by giving each node two kinds of links: those explainable purely

by homophily, and those that constitute weak ties. Homophily is captured by having each

node form a link to all other nodes that lie within a radius of up to r grid steps away, for

some constant value of r: these are the links you form to people because you are similar to

them. Then, for some other constant value k, each node also forms a link to k other nodes

selected uniformly at random from the grid — these correspond to weak ties, connecting

nodes who lie very far apart on the grid.

Figure 20.2(b) gives a schematic picture of the resulting network — a hybrid structure

consisting of a small amount of randomness (the weak ties) sprinkled onto an underlying

structured pattern (the homophilous links). Watts and Strogatz observe first that the net-

work has many triangles: any two neighboring nodes (or nearby nodes) will have many

common friends, where their neighborhoods of radius r overlap, and this produces many

triangles. But they also find that there are — with high probability — very short paths

connecting every pair of nodes in the network. Roughly, the argument is as follows. Suppose

[Fig 20.3, E&K]
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But how does this explain the ability to find people
in a decentralized manner

In the Watts-Strogatz type of model, we can use the random edges
(in addition to the short grid edges) and the geometric location of
nodes to keep trying to reduce the grid distance to a target node.

I This is analogous to the Milgram experiment where individuals seem to
use geographic information to guide the search.

I However, completely random edges does no reflect real social networks

Furthermore, having uniformly random edges will not work in general
as:

I Completely random edges (i.e. going to a random node anywhere in
the network) are too random.

I A random edge in an n × n grid is likely to have grid distance Θ(n).
I Without some central guidance, such random edges will essentially just

have us bounce around the network causing a substantially longer path
to the target than the shortest path.

43 / 14



A modification of the model

Random edges outside of ones “close community” are still more likely
to reflect some relation to closeness.

So assume as in the Watts-Strogatz model, from every node v we
have edges to all nodes x within some grid distance r from v .

And now in addition random edges are generated as follows: we
(independently) create an edge from v to w with probability
proportional to d(v ,w)−q where d(v ,w) is the grid distance from v
to w and q ≥ 0 is called the clustering exponent.

The smaller q ≥ 0 is, the more completely random is the edge
whereas large q ≥ 0 leads to edges which are not sufficiently random
and basically keeps edges within or very close to ones community.

What is the best choice of q ≥ 0?

44 / 14



So what is a good or the best choice of the
clustering exponent q?

It turns out that in this 2-dimensional grid model decentralized search works best
when q = 2. (This is a result that holds and can be proven for the limiting
behaviour, in the limit as the network size increases.)

620 CHAPTER 20. THE SMALL-WORLD PHENOMENON

7.0

6.0

5.0

0.0 1.0 2.0

ln T

exponent q

Figure 20.6: Simulation of decentralized search in the grid-based model with clustering
exponent q. Each point is the average of 1000 runs on (a slight variant of) a grid with 400
million nodes. The delivery time is best in the vicinity of exponent q = 2, as expected; but
even with this number of nodes, the delivery time is comparable over the range between 1.5
and 2 [248].

large network size — than with any other exponent. But even without the full details of the

proof, there’s a short calculation that suggests why the number 2 is important. We describe

this now.

In the real world where the Milgram experiment was conducted, we mentally organize

distances into different “scales of resolution”: something can be around the world, across

the country, across the state, across town, or down the block. A reasonable way to think

about these scales of resolution in a network model — from the perspective of a particular

node v — is to consider the groups of all nodes at increasingly large ranges of distance from

v: nodes at distance 2-4, 4-8, 8-16, and so forth. The connection of this organizational

scheme to decentralized search is suggested by Figure 20.4: effective decentralized search

“funnels inward” through these different scales of resolution, as we see from the way the

letter depicted in this figure reduces its distance to the target by approximately a factor of

two with each step.

So now let’s look at how the inverse-square exponent q = 2 interacts with these scales of

resolution. We can work concretely with a single scale by taking a node v in the network,

and a fixed distance d, and considering the group of nodes lying at distances between d and

2d from v, as shown in Figure 20.7.

Now, what is the probability that v forms a link to some node inside this group? Since

area in the plane grows like the square of the radius, the total number of nodes in this group

is proportional to d2. On the other hand, the probability that v links to any one node in

the group varies depending on exactly how far out it is, but each individual probability

is proportional to d−2. These two terms — the number of nodes in the group, and the

[Fig 20.6, E&K]

I Simulation of decentralized search in the grid-based model with clustering exponent q.
I Each point is the average of 1000 runs on (a slight variant of) a grid with 400 million

nodes.
I The delivery time is best in the vicinity of exponent q = 2, as expected.
I But even with this number of nodes, the delivery time is comparable over the range

between 1.5 and 2.
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More precise statements of Kleinberg’s results on
navigation in small worlds
The Milgram-like experiment

Consider a grid network and construct (local contact) directed edges
from each node u to all nodes v within grid distance d(u, v) = k > 1.

Also probabilistically construct m (long distance) directed edges
where each such edge is chosen with probability proportional to
d(v ,w)−q for q ≥ 0.

We think of k and m as constants and consider the impact of the
clustering exponent q as the network size n increases.

We assume that each node knows its location and the location of its
adjacent edges and its distance to the location of a target node t.

The Milgram-like experiment is that each node it tries (without
knowing the entire network) to move from a node u to a node v that
is closest to t (in grid distance).
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Reflection on the Kleinberg-Milgram model

As we said at the start of this topic, the real surprise is that a “short” (but
not shortest) path is (probably wrt to the randomly generated network)
being found by a decentralized search.

It is true that each node will pursue a “greedy strategy” but this is
different than say Dijkstra’s least cost/distance algorithm which entails a
centralized search.
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Navigation in small worlds results

Theorem

(J. Kleinberg 2000)

(a) For 0 ≤ q < 2, the (expected) delivery time T of any “decentralized

algorithm” in the n × n grid-based model is Ω
(
n

2−q
3

)
.

(b) For q = 2, there is a decentralized algorithm with delivery time
O(log n).

(c) For q > 2, the delivery time of any decentralized algorithm in the

grid-based model is Ω
(
n

q−2
q−1

)
.

(The lower bounds in (a) and (c) hold even if each node has an arbitrary
constant number of long-range contacts, rather than just one.)
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Intuition as to why q = 2 is best for the grid
It is instructive to see why this choice of q provides links at the
different “scales of resolution” seen in the Milgram experiment.

That is, if D is the maximum distance to be travelled, then we would
like links with distances between d and 2d for all d < logD

Given that we have a 2-dimensional grid, the number of points with
distance say d from a given node v will be ≈ d2.

We are choosing such a node with probability proportional to 1/d2

and hence we expect to have a link to some node whose distance
from v is between d and 2d for all d .

[Fig 20.7, E&K]
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Figure 20.7: The concentric scales of resolution around a particular node.

probability of linking to any one of them — approximately cancel out, and we conclude: the

probability that a random edge links into some node in this ring is approximately independent

of the value of d.

This, then, suggests a qualitative way of thinking about the network that arises when

q = 2: long-range weak ties are being formed in a way that’s spread roughly uniformly over

all different scales of resolution. This allows people fowarding the message to consistently

find ways of reducing their distance to the target, no matter how near or far they are from it.

In this way, it’s not unlike how the U.S. Postal Service uses the address on an envelope for

delivering a message: a typical postal address exactly specifies scales of resolution, including

the country, state, city, street, and finally the street number. But the point is that the postal

system is centrally designed and maintained at considerable cost to do precisely this job; the

corresponding patterns that guide messages through the inverse-square network are arising

spontaneously from a completely random pattern of links.
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More realistic (nonuniformly spread) population data
In the grid model, the population density is completely uniform which
is not what one would expect in real data.

How can this 1/d2 (inverse-square) distribution be modified to
account for population densities that are very non-uniform?

The idea is to replace distance d(v ,w) from v to w by the rank of w
relative to v .

I For a fixed v , define the rank(w) to be the number of nodes closer to
v than w .

I In the 2D grid case, when d(v ,w) ∼ d , then rank(w) ∼ d2.20.5. EMPIRICAL ANALYSIS AND GENERALIZED MODELS 623

v

w

rank 7

(a) w is the 7th closest node to v.

distance d

rank ~ d
2

(b) Rank-based friendship with uniform population den-
sity.

Figure 20.9: When the population density is non-uniform, it can be useful to understand
how far w is from v in terms of its rank rather than its physical distance. In (a), we say that
w has rank 7 with respect to v because it is the 7th closest node to v, counting outward in
order of distance. In (b), we see that for the original case in which the nodes have a uniform
population density, a node w at distance d from v will have a rank that is proportional to
d2, since all the nodes inside the circle of radius d will be closer to v than w is.

inverse-square distribution is useful for finding targets when nodes are uniformly spaced in

two dimensions; what’s a reasonable generalization to the case in which they can be spread

very non-uniformly?

Rank-Based Friendship. One approach that works well is to determine link probabilities

not by physical distance, but by rank. Let’s suppose that as a node v looks out at all other

nodes, it ranks them by proximity: the rank of a node w, denoted rank(w), is equal to the

number of other nodes that are closer to v than w is. For example, in Figure 20.9(a), node

w would have rank seven, since seven others nodes (including v itself) are closer to v than

w is. Now, suppose that for some exponent p, node v creates a random link as follows: it

chooses a node w as the other end with probability proportional to rank(w)−p. We will call

this rank-based friendship with exponent p.

Which choice of exponent p would generalize the inverse-square distribution for uniformly-

spaced nodes? As Figure 20.9(b) shows, if a node w in a uniformly-spaced grid is at distance

d from v, then it lies on the circumference of a disc of radius d, which contains about d2 closer

nodes — so its rank is approximately d2. Thus, linking to w with probability proportional

to d−2 is approximately the same as linking with probability rank(w)−1, so this suggests

that exponent p = 1 is the right generalization of the inverse-square distribution. In fact,

Liben-Nowell et al. were able to prove that for essentially any population density, if random

[Fig 20.9, E&K]

50 / 14



More realistic geographic data continued

We can then restate the inverse-square distribution by saying that the
probability that v links to w is proportional to 1/rank(w).

Using zip code information, for every pair of nodes (500,000 users on
the blogging site LiveJournal) one can assign ranks.

Liben-Nowell et al did such a study in 2005, and then for different
rank values examined the fraction f of edges that are actually friends.

The theory tells us that this fraction f should be a decreasing
function proportional to 1/rank.

That is, f ∼ rank−1. Taking logarithms, log f ∼ (−1) log rank.
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More realistic (LiveJournal) friendship data624 CHAPTER 20. THE SMALL-WORLD PHENOMENON

(a) Rank-based friendship on LiveJournal (b) Rank-based friendship: East and West coasts

Figure 20.10: The probability of a friendship as a function of geographic rank on the blogging
site LiveJournal. (Image from [277].)

links are constructed using rank-based friendship with exponent 1, the resulting network

allows for efficient decentralized search with high probability. In addition to generalizing the

inverse-square result for the grid, this result has a nice qualitative summary: to construct

a network that is efficiently searchable, create a link to each node with probability that is

inversely proportional to the number of closer nodes.

Now one can go back to LiveJournal and see how well rank-based friendship fits the

distribution of actual social network links: we consider pairs of nodes where one assigns

the other a rank of r, and we ask what fraction f of these pairs are actually friends, as a

function of r. Does this fraction decrease approximately like r−1? Since we’re looking for a

power-law relationship between the rank r and the fraction of edges f , we can proceed as

in Chapter 18: rather than plotting f as a function of r, we can plot log f as a function of

log r, see if we find an approximately straight line, and then estimate the exponent p as the

slope of this line.

Figure 20.10(a) shows this result for the LiveJournal data; we see that much of the body

of the curve is approximately a straight line sandwiched between slopes of −1.15 and −1.2,

and hence close to the optimal exponent of −1. It is also interesting to work separately with

the more structurally homogeneous subsets of the data consisting of West-Coast users and

East-Coast users, and when one does this the exponent becomes very close to the optimal

value of −1. Figure 20.10(b) shows this result: The lower dotted line is what you should

see if the points followed the distribution rank−1, and the upper dotted line is what you

should see if the points followed the distribution rank−1.05. The proximity of the rank-

based exponent on real networks to the optimal value of −1 has also been corroborated by

subsequent research. In particular, as part of a recent large-scale study of several geographic

phenomena in the Facebook social network, Backstrom et al. [33] returned to the question

of rank-based friendship and again found an exponent very close to −1; in their case, the

[Fig 20.10, E&K]

In Figure 20.10 (a), the Lower (upper) line is exponent = −1.15
(resp. -1.12).

In Figure 20.10 (b), the Lower (upper) line is exponent = −1.05
(resp. -1). The red data is East Coast data and the blue data is West
Coast data.
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Liben-Nowell: practice closely matches theory
Liben-Nowell prove that for “essentially” any population density (i.e. no
matter where people are located) if links are randomly constructed so that
the probability of a friendship is proportional to rank−1, then the resulting
network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg’s result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d−2 to rank−1 is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?

The EK text refers to a 2008 article by Oscar Sandberg who analyzes a
network model where decentralized search takes place which in turn causes
links to “re-wire” so as to fascilitate more efficient decentralized search.

It remains an intringing question as to the extent this does happen in
social networks and the implicit mechanisms that would cause networks to
evolve this way.
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IP addresses and the TCP/IP routing protocol

For those taking (or having taken) a computer networks course, you can
observe how IP addresses allow the IP transmission protocol to send
messages along a decnetralized route.

TCP/IP originated in the earlyh 1980’s which is much after Milgram but
well before Strogatz and Kleinberg. To what extent was the TCP/IP
protocol and IP addresses motivated by Milgram’s work?

But perhaps postal codes are the original motivation?

Aside Interesting ideas usually have a history and the best we can do is
document some of the major events in the adoption of any important idea.
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The Backstrom et al rank-based study
Backstrom et al study US Facebook 2010 geographic user data.

1 Roughly 100 million users
2 About 6% of which enter home address info and of that population

about 60% can be parsed into longitude and lattiude information.
3 This gave a set of 3.5 million users (of which 2.9 million had at least

one friend with a well specified address and each of these 2.9 million
users had an average of 10 friends with specified addresses resulting in
30.6 million edges.

4 Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficently large and representative for experimental study.

They study probability of friendships vs distance and rank and how
those probabilities depend on population densities for where people
live. This study provides more evidence as to the power law relation
between distance/rank and probability (≈ rank−.95) of friendship.
Furthermore, they utilize this relationship between friends and
distance to create an algorithm that will predict the location of an
individual from a small set of users with known locations. They claim
their algorithm can predict geographic locations better than using IP
information!
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Figure 8: Looking at the people living in low,
medium and high density regions separately, we see
that if you live in a high density region (a city), you
are less likely to know a nearby individual, since
there are so many of them. However, you are more
likely to have contact with someone far away.

in a number of ways. The most obvious application is that
we can provide them with better local content. Providing a
more local, personalized experience is likely to make a site
more useful for users. We can also use a person’s location to
help prevent security breaches – if an individual accesses the
site from a location far from home (where the individual’s
current location is approximated via IP geolocation), and
they have never been there before, we might ask them an
additional security question to ensure that their account has
not been compromised. Thus, our goal here is, given the
locations of a user’s contacts, to compute that user’s home
location.

In the simplest case, all of one’s friends would live in a
small region, and then the prediction task would be very
simple, with any reasonable algorithm returning a good ap-
proximation. Things get more complicated and di�cult as
one’s friends become more spread out. The distributions
from the previous sections tell us that one will typically not
have too many friends at great distances, but that there will
be too many for naive algorithms to work well.

For instance, a first attempt would be to take the mean
location of one’s friends. However, this will give laughably
bad results for people living on either coast. An individual
with 10 friends in San Francisco and one friend in New York
will be placed an eleventh of the way from San Francisco to
New York, somewhere in Nevada. Other simple statistics,
like median (whatever that would mean in two dimensions)
do better, but still fail, especially for people living on the
coasts.

To achieve better performance, we must develop a more
sophisticated model using the observations from the pro-
ceeding sections. Figure 7 shows the probability of an edge
being present as a function of distance, which suggests a
maximum likelihood approach. We consider an individual u
with k friends. Using the distribution from Figure 7, we can
computed the likelihood of a given location lu = (lat, long).

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 10  100  1000  10000  100000  1e+06

C
ou

nt

Rank

Number of Friends at Different Ranks

Total connections at ranks
Best Fit  (rank+104)-0.95

Figure 9: The rank of a person v relative to u is the
number of individuals w such that d(u, w) < d(u, v).
Here we show the probability of friendship as a func-
tion of rank.

For each friend v of u whose location lv is known, we can
compute the probability of the edge being present given the
distance between u and v, p(|lu � lv|) = 0.0019(|lu � lv| +
0.196)�1.05, as empirically determined.

Multiplying these probabilities together for all such v, we
obtain a likelihood for all the edges. To complete the cal-
culation, we must also multiply the probabilities of all the
other edges not being present: 1 � p(|lu � lv|) for all v such
that v /2 E. Because all of the probabilities are very small for
any particular edge, this term serves mostly as a tiebreaker
and typically plays a small role. Thus, we can write down
the likelihood of a particular location lu as

Y

(u,v)2E

p(|lu � lv|)
Y

(u,v)/2E

1 � p(|lu � lv|)

This model gives us a way to evaluate any point lu. From
a practical point of view, however, the algorithm as stated
is very expensive. In a naive implementation, to find the
best location for one individual, we would have to compute
the probability terms for every other user, at an expense
of O(N) per location evaluated. Finding the best location
would require an additional search, making this impractical
in a large graph.

With two optimizations, however, we can develop an ef-
ficient algorithm which computes the (near) optimal loca-
tions for all individuals in O(M log N) assuming that the
maximum degree in the graph is O(log N) (where M is the
number of edges and N is the number of users).

The first important observation is that, for any location,
the second part of the product, containing 1 � p(·), is very
nearly independent of u. Thus, we can precompute a con-
stant �l =

Q
v2V 1 � p(|lu � lv|) for each location l. We can

then rewrite the above formula as:

�lu =
Y

(u,v)2E

p(|lu � lv|)
1 � p(|lu � lv|)

The other important optimization comes from the form

[Figure 9 from Backstrom et al]
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Predicting locations
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Figure 10: Similar to probabilty versus distance,
here we see that people in higher density regions
are less likely to know the low rank people living
near them, but more likely to know the higher rank
people living further away.

of the function p(·). This function is very sharply peaked
at p(0), and as a result the most likely location is typically
colocated with one of u’s friends.

In fact, if we ignore the � term, we can prove that u would
be colocated with a friend v if people lived in one dimension
instead of two.

For a contradiction, imagine that lu 6= lv for any friend
of u. Then, the probability function in one dimension for
a location x is P (x) =

Q
(u,v)2E(|x � xv| + b)�c, for some

positive constants b and c, where v is located at xv. This
function will have minima and maxima at the same locations
if we log-transform it to get the more manageable equationP

(u,v)2E �c log(|x�xv|+ b). We can split this up in to two
terms, those where x > xv and those where x < xv, yielding

X

(u,v)2E|xv<x

log(x � xv + b) +
X

(u,v)2E|xv>x

log(xv � x + b)

When we take the second derivative and collect terms,
we end up with

P
(u,v)2E c(x � xv + b)�2, which is always

positive. Thus, there are can be no interior maxima, and
the likelihood function is thus maximized at some xv, where
the derivative is undefined.

While this is not the case in two dimensions, and cases
can be constructed where the maxima is not colocated with
a friend, the one-dimensional analysis suggests that in many
cases the maxima will be colocated with a friend. When we
perform an exhaustive search of the two dimensional space,
we find that in practice, the likelihood is almost always max-
imized at the location of a friend. It takes a contrived ex-
ample to force the maxima somewhere other than a location
very near some friend.

This allows us to greatly prune the geographic search
space. Thus, to compute the most likely locations for a large
group of users, our algorithm performs two steps. First, it
precomputes � for all locations (where all locations is a fine
mesh of locations in the US). This is an expensive operation,
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Figure 11: Location Prediction Performance. This
figure compares external predictions from an IP
geolocation service, the same service constrained
to users who have recently updated their address,
a baseline of randomly choosing the location of a
friend, along with three predictions: our algorithm
with all links, for users with 16+ friends, and finally
for users with 16+ friends constraining to only those
with whom they have communicated recently.

but can be easily parallelized and must only be run once.
Next, to make a prediction for an individual u, we evaluate
the likelihood of all the locations of the friends of u, pick-
ing the best one. Thus, if u has k friends, the algorithm
takes O(k2) to compute p(·) for all k friends from k loca-
tions. Since k is typically small, on the order of dozens, this
is fast, and can also be easily parallelized. As a final note,
it is important to do all the calculations adding logarithms
instead of multiplying probabilities to avoid underflow.

4.1 Performance Methodology
To compute the performance of our algorithms, we take

the provided address of the 2.9 millions users for whom we
can obtain precise location as the ground truth. Naturally,
some of these addresses are incorrect or out of date, but
we believe that the vast majority of them are accurate. To
quantify this, we find that 57.2% of users have IP addresses
that geolocate to within 25 miles of their provided address.
We compare this to those users who have updated their lo-
cation within the last 90 days. If a significant fraction of
the users had moved since last updating their addresses, we
would expect IP geolocation to do significantly better on the
users who had updated their address in the last 90 days, as
the new addresses would be much more likely to be accurate.
However, we find that the fraction correctly placed within
25 miles only increases to 58.5%.

4.2 Leave-One-Out Evaluation
Figure 11 shows the performance of the maximum likeli-

hood algorithm. To evaluate the algorithm, we predict the
location of all 2.9 million users whose location is known,
and who have at least one friend whose location is also
known. For each user, we make our prediction based on the

[Figure 11 from Backstrom et al]
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From geographic distance to social distance
What if there is no (reliable) distance information in a social network?

It is, of course, natural that we tend to have more common interests
with people who live closer to us (e.g. based on ethnicity, economic
status, etc), but clearly there are other notions of social distance that
should be considered.

Early in the course we considered social foci (clubs, shared interests,
language, etc.) we tend to share a number of focal interests with the
same person.

But, of course, belonging to a small group of people in a course, is
different than attending the same University, and speaking Mandarin
is different than being interested in Esperanto.

So the suggestion is made that we define social distance s(v ,w)
between individuals v ,w to be the minimum size of a common focus.
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Smallest size shared focus as a distance measure

Kleinberg (2001) gives theoretical results indicating that when
friendships follow a distribution proportional to 1/s(v ,w) then the
resulting social network will support efficient decentralized search.

This is somewhat verified in a study (by Adamic and Adar) of ‘who
talks to whom’ friendship data (based on frequency of email
exchanges) amongst a small group of HP employees.

The focal groups are defined by the organizational hierarchy of the
company.

The Adamic and Adar 2005 study shows that the distribution for this
friendship relationship is proportional to the inverse of s(v ,w)−3/4 so
that it doesn’t match as closely with the previous geographical rank
based results but still observes a power law relation governing how
social ties decrease with “distance”.
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Probability of email exchanges vs distance in the
organizational hierarchy

194 L. Adamic, E. Adar / Social Networks 27 (2005) 187–203

Fig. 4. Probability of linking as a function of the separation in the organizational hierarchy. The exponential
parameter α = 0.94, is in the searchable range of the Watts model (Watts et al., 2002).

Fig. 5. Probability of two individuals corresponding by email as a function of the size of the smallest organizational
unit they both belong to. The optimum relationship derived in (Kleinberg, 2001) is p ∼ g−1, g being the group
size. The observed relationship is p ∼ g−3/4.

[Figure 4 from Adamic and Adar]

60 / 14



Probability of email exchanges vs size of smallest
common organizational unit

Summary of search results 9
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Figure 5: Probability of two individuals corresponding by email as a function of the size of the
smallest organizational unit they both belong to. The optimum relationship derived in [7]is
p ⇠ g�1, g being the group size. The observed relationship is p ⇠ g�3/4.

a di↵erence found to be statistically significant. The interpretation by Travers and
Milgram was the following: “Chains which converge on the target principally by using
geographic information reach his hometown or the surrounding areas readily, but once
there often circulate before entering the target’s circle of acquaintances. There is no
available information to narrow the field of potential contacts which an individual
might have within the town.”

2.1 Summary of search results

Figure 8 shows a histogram of chain lengths summarizing the results of searches using
each of the three strategies. It shows that both searches using information about
the target outperform a search relying solely on the connectivity of one’s contacts.
It also shows the advantage, consistent with Milgram’s original experiment, of using
the target’s professional position as opposed to their geographic location to pass a
message through one’s email contacts.

The simulated experiments on the e-mail network verify the models proposed in
[13] and [6] to explain why individuals are able to successfully complete chains in small
world experiments using only local information. When individuals belong to groups
based on a hierarchy and are more likely to interact with individuals within the same
small group, then one can safely adopt a greedy strategy - pass the message onto the
individual most like the target, and they will be more likely to know the target or
someone closer to them.

[Figure 5 from Adamic and Adar]
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Final observations in chapter 20 of EK text
The EK text suggests viewing the Milgram experiment as an example
of decentralized problem solving (in this case solving a shortest path
problem). An advertisement for distributed systems course.

The EK text asks what other problem solving tasks might be
amenable to such decentralized problem solving and how to analyze
what can be done especially in large online networks.

Finally the EK text briefly suggests the role of social status in
determining the effectiveness of reaching a given target.

I An email forwarding Milgram type 2003 study by Dodds et al shows
that completion rates to all targets were low but were highest for “high
status” targets and particularly small for “low status” targets.

In section 12.6, the EK text speculates on structural reasons for the
impact of status. This discussion leaves me with the sense that we are
far from having any comprehensive understanding of such phenomena.
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