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Announcements
Announcements

@ As you know, this is the last week of classes for the fall term. We will
not avail ourselves of the makeup Monday class as | am sure everyone
would rather have the time to study for exams.

@ Please promptly submit any regrade requests for quiz 2.

@ | have some quizzes that were not picked up last Wednesday. Any
unclaimed quizzes after the last class this Wednesday (December 6)
will be given to the undergraduate office.

@ The final assignment is due December 6 at 9AM. There will not be
any extensions past this new due date. | am sure that Aniket will
grade them as fast as possible. After the Assignments and grades are
posted on Quercus, | will calculate the participation grade and then
calculate final grades. | will post (on Quercus) these grades before
submitting. Please notify (by email) within two days if you notice any
errors. | am supposed to submit final grades within a week of the end
of classes for courses not having a final exam.
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This weeks agenda

@ The topic this week is social networks.

@ In particular, the main theme will be how graph structure can reveal
personal and individual information as well as communities. In
particular, we will discuss

@ Floretine marriages and “centrality”. Why were the Medici's so
influential?

@ The Bearman et al study of romantic relations in a US high school
which we mentioned briefly before.

@ The Backstrom and Kleinberg method for discovering the romantic
relation in a subgraph of facebook.

@ Bearman and Moody discussion of low triadic closure

@ Modelling and understanding the small worlds phenomena. The
Watts-Strogaatz, and Kleinberg models and analysis.

@ More realistic georgraphic models.
@ Extending geographic distance to social distance.
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Social networks

A social network is a network G = (V/, E) where the nodes in V are people
or organizations. Social networks can be undirected or directed networks.

The edges can be relations between people (e.g. friendship) or
membership of an individual in an organization.

Social networks can be of any size (e.g., a small network like the Karate
Club on slide 16, later in todays slides) or enormous networks like
Facebook and Twitter. We usually think of Facebook as an undirected
graph (where friendship is an undirected edge) and Twitter as a directed
graph (i.e., where follows is a directed edge).

Understanding how networks evolve, the resulting structure of social
networks, and computational aspects for dealing with large networks is an
active field of study in CS as well as in sociology, political science,
economics, epidemiology, and any field that studies human behaviour. J.
Kleinberg's 2000 analysis with regard to the six degrees of separation
phenomena is an early result that sparked interest in algorithmic aspects of

social networks.
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The computational challenge presented by super
large networks

The size of some modern networks such as the web and social networks
such as Facebook are at an unprecedented scale.

As of Februay, 2022, xThe average facebook user has about 155 friends
which then implies about 2.9 - % ~ 200 billion edges. It is interesting to
note that 90% of daily active users are outside USA and Canada. See
https://www.omnicoreagency.com /facebook-statistics/

for lots of interesting demographic and other facts about Facebook.

What does this imply for the complexity of algorithms involving such super
large networks?
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Linear is the new exponential

In complexity theory (e.g. in the P vs NP) we say (as an abstraction) that
polynomial time algorithms are “efficient” and “exponential time” is
infeasible. There are, of course, exceptions but as an abstraction this has
led to invaluable fundamental insights.

As problem instances have grown, there was a common saying that
“quadratic (time) is the new exponential”.

But with the emergence of networks such as the web graph and the
Facebook network, we might now say that “linear is the new exponential”
when it comes to extracting even the most basic facts about these
networks. For example, how do we even estimate the average node degree
in a giant network?

There are many facts about large networks that we would like to extract
from the network. For example, how do we find “influential” or
“interesting nodes” in a social network?
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Sublinear time algorithms

What is sublinear time?

In general when we measure complexity, we do so as a funtion of the
input/output size. For graphs G = (V/, E), the size of the input is usually
the number of edges E. (An exception is that when the graph is presented
say as an adjacency matrix, the size is n> where n = |V/|.)

Since our interest is in massive information and social networks, we
consider sparse graphs (e.g. average constant degree) so that

|E| = O(|V]) and hence we will mean sublinear time as a function of n
(equivalently m = |E|). The desired goal will be time bounds of the form
O(n®) with oo < 1 and in some cases maybe even O(log n) or polylog(n).

Given that optimal algorithms for almost any graph property will depend
on the entire graph, we will have to settle for approximations to an
optimum solution. Furthermore, we will need to sample the graph so as to
avoid having to consider all nodes and edges. And we will need a way to
efficiently access these massive graphs,
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Coping with massive social graphs continued

One way to help coping with massive networks is to hope to utilize some
substantial amount of parallelism. There is an area of current research
concerning massive parallel computation (MPC) models where (in
principle) we can achieve sublinear time by distributing computation
amongst a large (i.e., conceptually a non constant) number of processors.

But even if we could muster and organize thousands of machines, we will
still need random samplng, approximation, and have highly efficient “local
information algorithms” (e.g., where say each processor is responsible for
some nodes and learns about its local neighbourhood).

Finally, in addition to random sampling and parallelism, we will have to
hope that social networks have some nice structural properties that can be
exploited to as to avoid complexity barriers that exist for arbitrary (even
sparse) graphs. These complexity barriers are hopefully clear from our
discussion of complexity theory, NP completeness and NP hardness.
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Preferential attachment models

Preferential attachnment models (also called “rich get richer” models) are
probabilistic generative models explaining how various networks can be
generated. Namely, after starting with some small graph, when we add a
new node u, we create a number of links between u to some number m of
randomly chosen existing nodes vy, v, ..., vy,. The probability of choosing
a v; is proportional to the current degree of v;.

These models have been used to help explain the structure of the web as
well as social networks. Furthermore, networks generated by such a
process have some nice structural properties allowing for substantially
more efficient algorithms than one can obtain for arbitrary graphs.

For such models, there are both provable analytic results as well as
experimental evidence on synthetic and real networks that support
provable results that follow from the model. (Remember, a model is just a
model and is not “reality”; as models are implifications of real networks,
they may not account for many aspects in a real network. For example, in
this basic model, all the edges for a new node are set upon arrival.)
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Consequences for networks generated by a
preferential attachment process

There are many properties, believed and sometimees proven. about
preferential attachment network models that do not hold for uniformly
generated random graphs (e.g., if we create random sparse graphs with

constant average degree by choosing each possible edge with say
probability proportional to %)

One of the most interesting and consequential proerties is that vertex
degrees satisfy a power law distribution in expectation. Specifically, the
expectation fraction P(d) of nodes whose degree is d is proportional to
d™7 for some v > 1. Such a distribution is said to have a fat tail.

In a uniformaly random sparse graph (with average degree d,), with high
probability , the fraction of nodes having a large degree d > d, 4 is
proportional to ¢~ for some ¢ > 1.
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The Barabasi and Albert preferential model

Barabasi and Albert [1999] specified a particular preferential attachment
model and conjectured that the vertex degrees satisfy a power law in
which the fraction of nodes having degree d is proportional to d—3.

They obtained v ~ 2.9 by experiments and gave a simple heuristic
argument suggesting that v = 3. That is, P(d) is proportional to d—3

Bollobas et al [2001] prove a result corresponding to this conjectured
power law. Namely, they show for all d < n'/15 that the expected degree
distribution is a power law distribution with v = 3 asymptotically (with n)
where n is the number of vertices.

Note: It is known that an actual realized distribution may be far from its
expectation, However, for small degree values, the degree distribution is
close to expectation.

When we say that a distribution P(d) is a power law distribtion this is
often meant to be a "with high probability” whereas many results for
networks generated by a preferential attachment process the power law is
usually only in expectation. 11/14



Proven or observed properties of nodes in a social
network generated by preferential attachment
models

In addition to the power law phenomena suggesting many nodes with high
degree, other properies of social networks have been observed such as a
relatively large number of nodes u having some or all of properties such as
the following: .

@ high clustering coefficient defined as : (”‘(’I)J(V”)'EVJ‘SVV)éVgEE That is,

mutual friends of u are likely to be friends.

@ high centrality ; e,g, nodes on many pairs of shortest paths.

Brautbar and Kearns refer to such nodes (as above) as “interesting
indiviudals” and these individuals might be candidates for being “highly
influential individuals”. Bonato et al [2015] refers to such nodes as the
elites of a social network.
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Other proven or observed properties of networks

generated by preferentical attachment models
@ correlation between the degree of a node u and the degrees of the
neighboring nodes.
@ the graph has small diameter; suggesting "6 degrees of separation
phenomena”
o relatively large dense subgraph communities.
@ rapid mixing (for random walks to approach stationary distribution)
o relatively small (almost) dominating sets. What do we mean by
“almost”?
On my spring 2020 CSC303 web page, | posted a paper by Avin et al
(2018) that shows that preferential attachment is the only “rational
choice” for players (people) playing a simple natural network formation
game. It is the rational choice in the sense that the strategy of the players
will lead to a unique equilibrium (i.e. no player will want to deviate
assumming other players do not deviate). For those intersted, | have
posted (in my CSC303 webpage) a number of other papers on elites in a

social network and preferential attachment.
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End of Monday, December 4 class

On Wednesday, we will quickly present a number of studies that illustrate
the use of graph structure in obtaining information in a social-network.
This is just meant to generate interest in the computational study of social
networks. We will quickly consider:

The centrality and influence of a node.

Detecting communities and influential nodes.

Detecting the romantic relation in a Facebook network

The importance of triadic closure and low clustering coefficient.
The six degrees of separation phenomena
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Florentine marriages and “centrality”

@ Medici connected to more families, but not by much
@ More importantly: lie between most pairs of families

> shortest paths between two families: coordination, communication
» Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%
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Example of communities and central nodes

Figure: Zachary Karate Club [1977]. The figure illustates a min cut partitiuoning
the network. Also not the centrality of nodes 1 and 34. 16/14



How graph structure can reveal personal
information: Detecting the romantic relation in
Facebook

@ There is an interesting paper by Backstrom and Kleinberg
(http://arxiv.org/abs/1310.6753) on detecting “the” romantic
relation in a subgraph of facebook users who specify that they are in
such a relationship.

@ Backstrom anbd Kleinberg construct two datasets of randomly
sampled Facebook users: (i) an extended data set consisting of 1.3
million users declaring a spouse or relationship partner, each with
between 50 and 2000 friends and (ii) a smaller data set extracted
from neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

@ The main experimental results are nearly identical for both data sets.
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Detecting the romantic relation (continued)

@ They consider various graph strucutral features of edges, including

@ the embeddedness of an edge (A, B) which is the number of mutual
friends of A and B.

@ various forms of a new dispersion measure of an edge (A, B) where high
dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

© One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of u and v such that (s, t) ¢ E and s, t have no
common neighbours except for u and v.

@ They also consider various “interaction features” including

© the number of photos in which both A and B appear.
@ the number of profile views within the last 90 days.
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Embeddedness and disperison example from paper

Figure 2. A synthetic example network neighborhood for a user u; the
links from v to b, ¢, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from « to h has an embeddedness
of 4. On the other hand, nodes « and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, ¢, and f.
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Qualitative results from Backstrom and Kleinberg

@ The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%
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Qualitative results from Backstrom and Kleinberg

@ The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%

@ Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?

@ By itself, dispersion outperforms various interaction features.

@ For most measures, performance is better for male users and also
better for data when restricted to marriage as the relationship.

@ By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.

@ There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct

predictions

Recall that we argue that the fraction might be .005 when randomly

choosing an edge. Do you find anything surprising?

type embed | rec.disp. | photo | prof.view.
all 0.247 0.506 | 0415 0.301
married 0.321 0.607 | 0.449 0.210
married (fem) 0.296 | 0.551 | 0.391 0.202
married (male) 0.347 0.667 | 0.511 0.220
engaged 0.179 | 0446 | 0442 0.391
engaged (fem) 0.171 0.399 | 0.386 0.401
engaged (male) 0.185 0.490 | 0.495 0.381
relationship 0.132 0.344 ] 0.347 0.441
relationship (fem) | 0.139 | 0.316 | 0.290 0.467
relationship (male) | 0.125 0.369 | 0.399 0.418
type max. | max. all. all. | comb.
struct. | inter. | struct. | inter.
all 0.506 | 0.415 | 0.531 | 0.560 | 0.705
married 0.607 | 0.449 | 0.624 | 0.526 | 0.716
engaged 0.446 | 0.442 | 0.472 | 0.615 | 0.708
relationship | 0.344 | 0.441 | 0.377 | 0.605 | 0.682
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Triadic closure (undirected graphs)

(a) Before B-C' edge forms. (b) After B-C' edge forms.

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

@ Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.
@ How do we measure the extent to which triadic closure is occurring?
@ How can we know why a new friendship tie is formed? (Friendship
ties can range from “just knowing someone” to “a true friendship” .)
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Measuring the extent of triadic closure

@ The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

@ Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

[{(B,C) e E:(B,A) € E and (C,A) € E}|
[{{B,C}: (B,A) € E and (C,A) € E}|

@ The numerator is the number of all edges (B, C) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

@ The denominator is the total number of all unordered pairs {B, C}
such that B and C are adjacent to A.
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Example of clustering coefficient

(a) Before new edges form. (b) After new edges form.

@ The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C, D) among the six pairs of friends:
{B,C}, {B,D}, {B,E}, {C,D}, {C,E}, and {D,E}). We
sometimes refer to a pair of adjacent edges like (A, B), (A, C) as an
“open triangle” if (B, C) does not exist.

@ The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B, C), (C.D), and (D, E)).
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Interpreting triadic closure

@ Does a low clustering coefficient suggest anything?
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Interpreting triadic closure

@ Does a low clustering coefficient suggest anything?

@ Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
contemplating suicide (compared to those with high clustering
coeficient). Note:The value of the clustering coefficient is also
referred to as the intransitivity coefficient.

@ They report that “ Social network effects for girls overwhelmed other
variables in the model and appeared to play an unusually significant
role in adolescent female suicidality. These variables did not have a
significant impact on the odds of suicidal ideation among boys. "

How can we understand these findings?
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Bearman and Moody study continued

@ Triadic closure (or lack thereof) can provide some plausible
explanation.
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Bearman and Moody study continued

@ Triadic closure (or lack thereof) can provide some plausible
explanation.
Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
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Bearman and Moody study continued

@ Triadic closure (or lack thereof) can provide some plausible
explanation.
Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
As far as | can tell, no conclusions are being made about why there is
such a difference in gender results.
The study by Bearman and Moody is quite careful in terms of identifying
many possible factors relating to suicidal thoughts. Clearly there are many
factors involved but the fact that network structure is identified as such an
important factor is striking.
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Bearman and Moody factors relating to suicidal

thoughts

TABLE 3-Logistic Regression of Suicide Attempts, Among Adolescents With Suicidal

Ideation, on Individual, School, Fa

and Network

Demographic
hee
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Back
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School and community
i high school
Relthe densty
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Atachment o school
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Parental distance

Single-parent household
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Network
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The Small World Phenomena

| already mentioned the small worlds phenomena. A mathematical
explanation of this phenomiena (expecially how one hones in on a target
recipient) was given by J. Kleinberg in a network formation model that
explicitly forces a power law property.

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path. Moreover, such a path can be found in a
decentralized manner

In Milgram's 1967 small world experiment, he asked random people in
Omaha Nebraska to forward a letter to a specified individual in a suburb of
Boston which became the origin of the idea of six degrees of separation.
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Appendix: Network (graph) definitions and examples

Graphs come in two varieties

© undirected graphs (“graph” usually means a
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@ directed graphs (often called di-graphs).
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Visualizing Networks as Graphs

@ nodes: entities (people, countries, companies, organizations, .. .)
@ links (may be directed or weighted): relationship between entities
» friendship, classmates, did business together, viewed the same web

pages, ...
» membership in a club, class, political party, ...

Figure: Internet: Dec. 1970 [E&K, Ch.2]
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Adjacency matrix for graph induced by eastern sites
) in 1970 internet graph: another way to represent a
graph

0100001
101000
01 0100
AlC) = 001010
000101
100010

@ This node induced subgraph (for the sites MIT = 1, LINC = 2, CASE
= 3, CARN = 4, HARV = 5, BBN = 6) is a 6 node regular graph of
degree 2. It is a simple graph in that there are no self-loops or
multiple edges.

@ Note that the adjacency matrix of an (undirected) simple graph is a
symmetric matrix (i.e. A;jj = A;;) with {0,1} entries.

@ To specify distances, we would need to give weights to the edges to

represent the distances.
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The matrix A> where A = A(G)

Consider squaring the previous matrix A = A(G). That is, A2 = Ax A,

A? =

oORr O+ OO
— O, OOO
O R O OOoOH
_ = O OO
CoOoO O~ OR
O = O+ O

Draw a visualization of the graph represented by A?. If we let cij be the
i,j entry in A2, can you desribe the meaning of ¢;;?
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The matrix B= A+ |

Consider the 6 x 6 identity matrix / = (¢;j). Thatis, ¢;; =1for 1 <i <6
and ¢t j =0for1 </, j<6andi#j.

Let B= A+ (as above). Thatis, b;j = a;j + ¢ for all i,j. We have

110001
111000
011100
B(6) = 001110
000111
100011

Note that now the matrix B has self loops and hence is not a simple graph.
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Breadth first search and path lengths [E&K, Fig 2.8]

distance 1 your friends

distance 2 friends of friends

friends of friends
of friends

distance 3

all nodes, not already discovered, that have an
edge to some node in the previous layer

Figure: Breadth-first search discovers distances to nodes one “layer” at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V, E), where now the edges in E are directed.
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V, E), where now the edges in E are directed.

@ Formally, an edge (u,v) € E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

» However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

35/14



Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V, E), where now the edges in E are directed.

@ Formally, an edge (u,v) € E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

» However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

@ We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.

T\tﬂ—c
d/ N
N
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:

c®

\ » red numbers: edge weights
/ \ > blue numbers: vertex weights

g ©
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@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.
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w(e) for each edge e € E.

@ For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:

\ :

Qb —¢c ©

/ \ » red numbers: edge weights
\ > blue numbers: vertex weights

g@

@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.

@ For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

@ The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

@ When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) =0 or w(e) = 0o
meaning no edge depending on the context).

@ In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

@ Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

@ Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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The six degrees of freedom phenomena
There are two basic ways for finding someone in a social network.
@ We could ask all of our friends to tell all of their friends to tell all of

their friends. .. (i.e. a traditional chain letter) that | am looking for
person X.

@ Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?
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@ Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?

@ Suppose on the other hand that we want to reach someone and it
either costs real money/effort to pass a message (e.g. postal mail) or
perhaps | would prefer to not let everyone know that | am looking for
person X. And as was pointed out in class, there is also possibly a
“social cost” in terms of annoyance to people in the network receiving
multiple requestss to pass on a message.
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The six degrees of freedom phenomena
There are two basic ways for finding someone in a social network.
@ We could ask all of our friends to tell all of their friends to tell all of
their friends. .. (i.e. a traditional chain letter) that | am looking for
person X.

@ Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?

@ Suppose on the other hand that we want to reach someone and it
either costs real money/effort to pass a message (e.g. postal mail) or
perhaps | would prefer to not let everyone know that | am looking for
person X. And as was pointed out in class, there is also possibly a
“social cost” in terms of annoyance to people in the network receiving
multiple requestss to pass on a message.

o Clearly if everyone cooperates, the broadcast method ensures the
shortest path to the intended target X in the leveled tree/graph of
reachable nodes. 38/14



Reachable nodes without triadic closure

@ If there is no triadic closure (i.e. your friends are not mutual friends,
etc.), it is easy to see why every path is a shortest path to everyone in
the network.

@ Consider the number of people that you could reach by a path of
length at most t if every person has say at least 5 friends.

() () () () () your friends
SO0 Q000000 N0ODOOOOD 0§y friends of your friends

Figure: Pure exponential growth produces a small world [Fig 20.1 (a), E&K]
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Reachable nodes with triadic closure

@ Given that our friends tend to be mostly contained within a few small
communities, the number of people reachable will be much smaller.

your friends

friends of your friends

Figure: Triadic closure reduces the growth rate [Fig 20.1 (b), E&K]
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The Watts-Strogatz model

@ Is it possible to have extensive triadic closure and still have short
paths?

@ Homophily is consistent with triadic closure especially for strong ties
whereas weak ties can connect different communities and thereby
provide the kind of branching that yields short paths to many nodes.

@ One stylized model to demonstrate the effect of these different kinds
of ties is the Watts-Strogatz model, which considers nodes lying in a
two dimensional grid and then having two types of edges:

» Short-range edges to all nodes within some small distance r. This
captures an idealized sense of homophily

» A small number of random longer-distance edges to other nodes in the
network; in fact, one needs very few such random edges to achieve the
effect of short paths.
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Very few random edges are needed

@ A k by k “town” with probability 1/k that a person has a random
weak tie.

@ This would be sufficient to establish short paths.

'A’MM’.«A’»A
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[Fig 20.3, E&K]
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But how does this explain the ability to find people

in a decentralized manner

@ In the Watts-Strogatz type of model, we can use the random edges
(in addition to the short grid edges) and the geometric location of
nodes to keep trying to reduce the grid distance to a target node.

» This is analogous to the Milgram experiment where individuals seem to
use geographic information to guide the search.
» However, completely random edges does no reflect real social networks

@ Furthermore, having uniformly random edges will not work in general
as:

» Completely random edges (i.e. going to a random node anywhere in
the network) are too random.

» A random edge in an n x n grid is likely to have grid distance ©(n).

» Without some central guidance, such random edges will essentially just
have us bounce around the network causing a substantially longer path
to the target than the shortest path.
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A modification of the model

@ Random edges outside of ones “close community” are still more likely
to reflect some relation to closeness.

@ So assume as in the Watts-Strogatz model, from every node v we
have edges to all nodes x within some grid distance r from v.

@ And now in addition random edges are generated as follows: we
(independently) create an edge from v to w with probability
proportional to d(v, w)~9 where d(v, w) is the grid distance from v
to w and g > 0 is called the clustering exponent.

@ The smaller g > 0 is, the more completely random is the edge
whereas large g > 0 leads to edges which are not sufficiently random
and basically keeps edges within or very close to ones community.

@ What is the best choice of g > 07
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So what is a good or the best choice of the
clustering exponent q?

@ It turns out that in this 2-dimensional grid model decentralized search works best
when g = 2. (This is a result that holds and can be proven for the limiting

behaviour, in the limit as the network size increases.)
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[Fig 20.6, E&K]

» Simulation of decentralized search in the grid-based model with clustering exponent gq.

> Each point is the average of 1000 runs on (a slight variant of) a grid with 400 million
nodes.

> The delivery time is best in the vicinity of exponent g = 2, as expected.

» But even with this number of nodes, the delivery time is comparable over the range
between 1.5 and 2.
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More precise statements of Kleinberg’s results on
navigation in small worlds
The Milgram-like experiment

o Consider a grid network and construct (local contact) directed edges
from each node u to all nodes v within grid distance d(u,v) = k > 1.

@ Also probabilistically construct m (long distance) directed edges
where each such edge is chosen with probability proportional to
d(v,w)~9 for g > 0.

@ We think of k and m as constants and consider the impact of the
clustering exponent g as the network size n increases.

@ We assume that each node knows its location and the location of its
adjacent edges and its distance to the location of a target node t.

@ The Milgram-like experiment is that each node it tries (without
knowing the entire network) to move from a node u to a node v that
is closest to t (in grid distance).
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Reflection on the Kleinberg-Milgram model

As we said at the start of this topic, the real surprise is that a “short” (but
not shortest) path is (probably wrt to the randomly generated network)
being found by a decentralized search.

It is true that each node will pursue a “greedy strategy” but this is
different than say Dijkstra’s least cost/distance algorithm which entails a
centralized search.
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Navigation in small worlds results

Theorem

(J. Kleinberg 2000)

(a) For0 < g < 2, the (expected) delivery time T of any ‘decentralized
algorithm” in the n X n grid-based model is Q (n%>

(b) For g =2, there is a decentralized algorithm with delivery time
O(log n).

(c) For g > 2, the delivery time of any decentralized algorithm in the
—2
grid-based model is Q (nh)

(The lower bounds in (a) and (c) hold even if each node has an arbitrary
constant number of long-range contacts, rather than just one.)
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Intuition as to why g = 2 is best for the grid

@ It is instructive to see why this choice of g provides links at the
different “scales of resolution” seen in the Milgram experiment.

@ That is, if D is the maximum distance to be travelled, then we would
like links with distances between d and 2d for all d < log D

@ Given that we have a 2-dimensional grid, the number of points with
distance say d from a given node v will be ~ d?.

@ We are choosing such a node with probability proportional to 1/d2
and hence we expect to have a link to some node whose distance
from v is between d and 2d for all d.

number of nodes is
proportional to d2

probabilty of linking to
each is proportional to d"2

[Fig 20.7, E&K]
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More realistic (nonuniformly spread) population data

@ In the grid model, the population density is completely uniform which
is not what one would expect in real data.

@ How can this 1/d? (inverse-square) distribution be modified to
account for population densities that are very non-uniform?

@ The idea is to replace distance d(v,w) from v to w by the rank of w

relative to v.
» For a fixed v, define the rank(w) to be the number of nodes closer to

v than w.
> In the 2D grid case, when d(v,w) ~ d, then rank(w) ~ d?.

distance d

rank ~d?

[Fig 20.9, E&K]

50 /14



More realistic geographic data continued

@ We can then restate the inverse-square distribution by saying that the
probability that v links to w is proportional to 1/rank(w).

@ Using zip code information, for every pair of nodes (500,000 users on
the blogging site LiveJournal) one can assign ranks.

@ Liben-Nowell et al did such a study in 2005, and then for different
rank values examined the fraction f of edges that are actually friends.

@ The theory tells us that this fraction f should be a decreasing
function proportional to 1/rank.

@ That is, f ~ rank™!. Taking logarithms, log f ~ (—1)log rank.
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More realistic (LiveJournal) friendship data
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(a) Rank-based friendship on LiveJournal (b) Rank-based friendship: East and West coasts

[Fig 20.10, E&K]

@ In Figure 20.10 (a), the Lower (upper) line is exponent = —1.15
(resp. -1.12).

@ In Figure 20.10 (b), the Lower (upper) line is exponent = —1.05
(resp. -1). The red data is East Coast data and the blue data is West
Coast data.
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Liben-Nowell: practice closely matches theory
Liben-Nowell prove that for “essentially” any population density (i.e. no
matter where people are located) if links are randomly constructed so that
the probability of a friendship is proportional to rank—!, then the resulting
network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg's result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d~=2 to rank™! is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?
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Liben-Nowell: practice closely matches theory
Liben-Nowell prove that for “essentially” any population density (i.e. no
matter where people are located) if links are randomly constructed so that
the probability of a friendship is proportional to rank—!, then the resulting
network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg's result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d~=2 to rank™! is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?

The EK text refers to a 2008 article by Oscar Sandberg who analyzes a
network model where decentralized search takes place which in turn causes
links to “re-wire” so as to fascilitate more efficient decentralized search.

It remains an intringing question as to the extent this does happen in
social networks and the implicit mechanisms that would cause networks to
evolve this way. 53/14



IP addresses and the TCP/IP routing protocol

For those taking (or having taken) a computer networks course, you can
observe how IP addresses allow the IP transmission protocol to send
messages along a decnetralized route.

TCP/IP originated in the earlyh 1980's which is much after Milgram but
well before Strogatz and Kleinberg. To what extent was the TCP/IP
protocol and IP addresses motivated by Milgram's work?

But perhaps postal codes are the original motivation?

Aside Interesting ideas usually have a history and the best we can do is
document some of the major events in the adoption of any important idea.
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The Backstrom et al rank-based study

@ Backstrom et al study US Facebook 2010 geographic user data.

© Roughly 100 million users

@ About 6% of which enter home address info and of that population
about 60% can be parsed into longitude and lattiude information.

© This gave a set of 3.5 million users (of which 2.9 million had at least
one friend with a well specified address and each of these 2.9 million
users had an average of 10 friends with specified addresses resulting in
30.6 million edges.

© Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficently large and representative for experimental study.
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between distance/rank and probability (= rank=°%) of friendship.
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The Backstrom et al rank-based study
@ Backstrom et al study US Facebook 2010 geographic user data.

© Roughly 100 million users

@ About 6% of which enter home address info and of that population
about 60% can be parsed into longitude and lattiude information.

© This gave a set of 3.5 million users (of which 2.9 million had at least
one friend with a well specified address and each of these 2.9 million
users had an average of 10 friends with specified addresses resulting in
30.6 million edges.

© Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficently large and representative for experimental study.

@ They study probability of friendships vs distance and rank and how
those probabilities depend on population densities for where people
live. This study provides more evidence as to the power law relation
between distance/rank and probability (= rank=°%) of friendship.

@ Furthermore, they utilize this relationship between friends and
distance to create an algorithm that will predict the location of an
individual from a small set of users with known locations. They claim
their algorithm can predict geographic locations better than using IP

information!
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Number of friends wrt. rank
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[Figure 9 from Backstrom et al]
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Predicting locations

Performance Curve for Leave-One-Out Evaluation

IP Baseline
1P Basaline on New Members
aseline Performance

Computed Location w/ Links

Computed Location w/ Links — 16+ friends
Computed Location w/ Links and Comm - 16+ friends

Fraction within x Miles

1 10 100 1000 10000 100000
Miles

Figure 11: Location Prediction Performance. This
figure compares external predictions from an IP
geolocation service, the same service constrained
to users who have recently updated their address,
a baseline of randomly choosing the location of a
friend, along with three predictions: our algorithm
with all links, for users with 16+ friends, and finally
for users with 16+ friends constraining to only those
with whom they have communicated recently.

[Figure 11 from Backstrom et al]
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From geographic distance to social distance

@ What if there is no (reliable) distance information in a social network?
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@ It is, of course, natural that we tend to have more common interests
with people who live closer to us (e.g. based on ethnicity, economic
status, etc), but clearly there are other notions of social distance that
should be considered.

@ Early in the course we considered social foci (clubs, shared interests,
language, etc.) we tend to share a number of focal interests with the
same person.

@ But, of course, belonging to a small group of people in a course, is

different than attending the same University, and speaking Mandarin
is different than being interested in Esperanto.
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From geographic distance to social distance

What if there is no (reliable) distance information in a social network?

It is, of course, natural that we tend to have more common interests
with people who live closer to us (e.g. based on ethnicity, economic
status, etc), but clearly there are other notions of social distance that
should be considered.

Early in the course we considered social foci (clubs, shared interests,
language, etc.) we tend to share a number of focal interests with the
same person.

But, of course, belonging to a small group of people in a course, is
different than attending the same University, and speaking Mandarin
is different than being interested in Esperanto.

So the suggestion is made that we define social distance s(v, w)

between individuals v, w to be the minimum size of a common focus.
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Smallest size shared focus as a distance measure

o Kleinberg (2001) gives theoretical results indicating that when
friendships follow a distribution proportional to 1/s(v, w) then the
resulting social network will support efficient decentralized search.

@ This is somewhat verified in a study (by Adamic and Adar) of ‘who
talks to whom' friendship data (based on frequency of email
exchanges) amongst a small group of HP employees.

@ The focal groups are defined by the organizational hierarchy of the
company.

@ The Adamic and Adar 2005 study shows that the distribution for this
friendship relationship is proportional to the inverse of s(v, W)_3/4 so
that it doesn’t match as closely with the previous geographical rank
based results but still observes a power law relation governing how
social ties decrease with “distance”.
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Probability of email exchanges vs distance in the
organizational hierarchy

-O- observed
- - fit exp(0.94'h)

0.6 4

probability of linking pL(h)

4 5 6 7 8 9 10
hierarchical distance h

Fig. 4. Probability of linking as a function of the fon in the izational hierarchy. The
parameter o = 0.94, is in the searchable range of the Watts model (Watts et al., 2002).

[Figure 4 from Adamic and Adar]

60/14



Probability of email exchanges vs size of smallest
common organizational unit

O observed
Wi

probability of linking

group size g

Figure 5: Probability of two individuals corresponding by email as a function of the size of the
smallest organizational unit they both belong to. The optimum relationship derived in [7)is
p~g~", g being the group size. The observed relationship is p ~ g=%/%.

[Figure 5 from Adamic and Adar]
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Final observations in chapter 20 of EK text

@ The EK text suggests viewing the Milgram experiment as an example
of decentralized problem solving (in this case solving a shortest path
problem). An advertisement for distributed systems course.

@ The EK text asks what other problem solving tasks might be
amenable to such decentralized problem solving and how to analyze
what can be done especially in large online networks.

@ Finally the EK text briefly suggests the role of social status in
determining the effectiveness of reaching a given target.
» An email forwarding Milgram type 2003 study by Dodds et al shows
that completion rates to all targets were low but were highest for “high
status” targets and particularly small for “low status” targets.

@ In section 12.6, the EK text speculates on structural reasons for the
impact of status. This discussion leaves me with the sense that we are
far from having any comprehensive understanding of such phenomena.
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