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Week 11 slides

I have posted the last question for Assignment 4. I modified the last
question by also assuming ∪Ai = S ; that is, the entire resource is
allocated. This question will become clear today.

By popular demand, I am postponing the due date of Assignment 4
to Wednesday, December 6, 9AM.

Any comments about the guest presentation by Kyros Kutalakos on
Monday, November 27.

The results for the second quiz were very good! The mean was 88%
and the median was 94%. I am very pleased about the performance in
the quiz.

Agenda

Today: Computational social choice

Next week: Social networks
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New topic: Computational social science

Traditionally, computer science (CS) and in particular theoretical CS
(TCS) concerns itself with different computational settings and then
studies what can and what can’t be computed efficiently. Traditional
applications come from commerce, operations research (e.g., scheduling
and optimization), and the physical and mathematical sciences.

In recent years, in CS and TCS, we are becoming increasingly concerned
with settings where algorithms take data coming from self-interested
agents (i.e. people). That is, each agent has their own preferences or
values for different outomes.

This brings us into the domain of the social sciences (e.g., sociology,
psychology, political science, and economics). From economics, results in
game theory and mechanism design (e.g., auctions) are now having a
significant influence on CS. And conversely, CS is now having a significant
influence in economics. As we have previoulsy discussed, online auctions in
online advertising is the main source of revenue for search engines. .
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Computational social choice

Traditional fields of study in the social sciences are now dealing with
unprecedented volumes of data and hence computational issues are
impacting these well studied disciplines.
Two main (and related) aspects in social choice theory are

1 Forming consensus (e.g, voting)

2 Fairness, and in particular, fair allocation of resources and chores.

Like almost anything in life there are many competing objectives and
tradeoffs between what might be good for what we call the common
“social welfare” vs what is fair to individuals or groups of individuals.

We will taken a brief look at this relatively new aspect of CS and TCS,
called computational social choice.
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Fairness
We shall avoid the more controversial aspects of “fair decisions” say as in
decisions for who gets loans, paroles, admission to Universities, etc which
are increasingly being made to some extent by machine learning
algorithms. In these contexts, it can be very controversial as to how to
define “fair”.

Instead, we will focus on some precise well-studied applications and
meanings of “fairness”.

We assume that agents (i.e., people or groups of people) either have
values for whatever they are allocated or preferences (i.e., a total or
partial) order with respect to specific outcomes. We will assume no
payments. Payments are used in some applications (e.g., auctions) to elicit
truthfulness but using payments in say voting is not allowed.

Note that given a value for say each outcome, we have an induced (total
or partial) order amongst the outcomes; that is, if agent i has values vi (A)
and vi (B) for outcomes A and B then agent i weakly (resp. stritctly)
prefers A to B iff vi (A) ≥ vi (B) (resp. vi (A) > vi (B)). 5 / 16



Some of the many dimensions of fair allocation of
resources
The following are some of the dimensions of fair division when agents have
values. Some definitions have natural analogues when agents only have
preferences and not values.

What are the fairness criteria?
What properties do the valuation functions obey?
Are decisions being made by a centralized mechanism or by
decentralized self interested agents?
Does the allocation take place simultaneously or in stages.
Are agents truthful? How do we incentivize agents to particpate?
How much information do agents have to reveal and how do we
protect any information that is provided.
Are the items divisible or indivisible?
Is there a single (divisible) item that is being shared or multiple
(divisible or indivisible) items to be shared.

And beyond all these issues, as I indicated, we now deal with enormous
amounts of data when making decisions, thus necessitating algorithms
that are computational efficiency in terms of time and memory. 6 / 16



Fairness criteria
There are a number of precisely defined criteria for fairness in the literature
of fair division. Let S be the entire set of items or an entire divisible
resource (e.g., “cake cutting”) to be allocated and let n be the number of
agents. Let vi (Ai ) be the value that agent i obtains when receiving the
allocation Ai . The following are well studied fairness measures: Let
(A1,A2, . . . ,An) be an allocation with S = ∪ni=1Ai and the {Ai} disjoint.

Proportionality: If agent i has value vi (S) when allocated the entire

resource S , then the allocation Ai it receives has value vi (Ai ) ≥ vi (S)
n .

Envy-freeness: Agent i envies agent j if vi (Aj) > vi (Ai ). An
allocation is envy-free if no agent envies another agent. One might
say that “fairness is in the eye of the beholder”.

Equitability: An allocation A is equitable if there exists a value v such
that vi (Ai ) = v for all agents i . Note equitability does not that
preclude vi (Aj) > vi (Ai ).

Max-min fairness: The objective is to maximize the minimum
allocation to any agent.
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Pareto optimnality and social welfare

In addition to wanting some degree of fairness, we usually want some
degree of “social benefit” as there is a social cost when agents try to
deviate from a solution.
In particular, it is desireable to have outcomes that are stable.

Pareto optimality: An allocation A = (A1, . . . ,An) is Pareto optimal if
there does not exist another allocation A′ = (A′

1, . . . ,A
′
n) such that for

some i , vi (A
′
i ) > vi (Ai ) and for all j 6= i , vj(A

′
i ) ≥ vj(Aj).

Pareto optimality is a stability condition but it also can be viewed as
another fairness criteria. Pareto optimality seems “fair” in the sense that
the given allocation can not be altered by anyone without harming
someone else,

The social welfare of an allocation (A1,A2, . . . ,An) amonsgt n agents is
defined as

∑n
i=1 vi (Ai ).
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What kinds of questions about fairness do we ask?

For any fairness criteria, we want to know in whats setting can we achieve
that criteria. And when we can’t achieve the criteria is there an
“approximate” version that can be achieve.

When we can achieve a fairness criteria, what is the computational cost
and what is the social cost?

What is the relation (if any) between two different criteria? When can
different criteria be simutaneoulsy be met?

In general we can envision allocating both divisible resoruces and
indivisable items at the same time. For example, a will may specify that
certain individual possessions (e,g, jewelery) and money be shared
“equally” or “fairly” amongst the beneficiaries.

We will just takle a quick look at fair allocation of a single divisble
resource and then at fair allocation of a set of indivisible items.
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A quick look at a divisible resource
The common terminology for fair allocation of a divisible resource is called
cake cutting where a cake can represent an arbitrary divisible resource.
Note that some individuals may like certain parts of a cake and not other
parts, or have different values for different parts of the cake.

Suppose we want to cut a cake amongst n people. Abstractly, we can
think of the cake as a line. An allocation Ai to an agent i can be for a
contiguous piece (i.e., a single interval) of the line or a union of intervals.
We usually assume that the entire cake (the line) is consumed and that
everyones valuation function is monotone.

CAKE CUTTING

• Formally introduced by Steinhaus [1948]

• 𝑛 agents

• Cake modeled as ሾ0,1ሿ

• Allocate the cake
◦ 𝐴௜ is the part given to agent 𝑖
◦ Can be union of several disjoint intervals
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Different settings induce different assumptions

In cake cutting, it may seem obvious that if every agent should have a
monotone valuation function and that the resource is always entirely
consumed. That is, if B ⊆ C , then vi (B) ≤ vi (C ) and that ∪iAi = S .

But if you eat too much, you may regret it, and the result is that the
eaters don’t want to consume the entire cake. We will ignore that aspect
and at least assume that the entire cake is eaten. In economic terms,

monotoncity of an agent’s valuation function is refered to a free disposl;
i.e. again extra amount of allocation can always be discarded at no cost.

If the divisible resource is money, is it always reasonable to assume that
v(B) = vj(B) for all i , j?

People can value (or have different utilities) for the same amount of
money. The St. Petersburg Paradox.
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Some results about cake cutting

I am relying on slides from Professor Nisarg Shah.

The problem was first studied by Steinhaus [1948] and there are still
unresolved computational questions.

There is a condition on the agent valuation functions (i.e., integrable
density functions) but your intution about how you would cut a cake will
suffice.

For n = 2, there is a folklore allocation method that is envy-free (and
hence proportional), namely the cut and choose algorithm. Without loss of
generality, we can assume that v1([0, 1]) = 1.
Agent 1 cuts the cake (i.e., the line [0,1]) and chooses some point x such
that v1([0, x ] = v1([x , 1]) = 1

2 .
Agent 2 cuts chooses the piece that she prefers.
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Cake cutting for n > 2 agents

The situation for more than 2 agents gets complicated. How do we study
the complexity of cake cutting? The Robertson-Webb Model counts the
number of queries of the following forms:

1 Evali (x , y) returns vi ([x , y ])

2 Cuti (x , α) returns y : vi ([x , y ]) = α.

For proportional fairness, there is a moving knife algorithm: A referee
starts a knife at 0 and moves the knife to the right.
When the piece to the left of the knife is worth vi (S)/n, agent i requests
that the knife stop moving and he gets that piece and exits.
This continues until there is only one agent left and she gets the remainder.

Claim: This can be implemented in the model and the query complexity is
Θ(n2); meaning that there the algorithm uses that many queries.

There is anlothert algorithm that uses O(n log n) queriess and Ω(n log n)
are necessary for any algorithm in the model.
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Envy freeness for n > 2

And now the existence and complexity of envy freeness is really
complicated.

n = 2 : cut and choose optimall uses 2 queries

n = 3: There is a method useing 14 queries.

n = 4: There is a method using 171 queries.

Arbitrary n: There is a method due to Aziz and MacKenzie [2016]

that uses O(nn
nn

nn

) queries.

No method can use less than Ω(n2) queries
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The very different situation for indivisible

While for a specific set of agent valuations, there may be an envy-free
allocation, in general proportionality and envy-freeness is not achievable.
Just consider one item and two agents. Clearly the person who doesn’t get
the item is envious and doesn’t get a proportional share of the total worth.

There is a weakening of the envy-free requirement that can always be
achieved. Namely EF1 (envy-freeness minus one item) is the following
property:
For every agent i , and every Aj for j 6= i , there exists at most element
xj ∈ Aj : vi (Ai ) ≥ vi (Aj \ {xj}).

For monotone valuations, there is always an EF1 allocation.
Perhaps the simplest algorithm is the Round Robin algorithm.
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The Round Robin algorithm
G. Amanatidis et al. Artificial Intelligence 322 (2023) 103965

Algorithm 1: Round-Robin.
1 Input: A fair allocation instance I = (N, M, v) with n agents and m goods.
2 Output: Allocation A = (A1, . . . , An).
3 for each agent i ∈ N do
4 Ai ← ∅;
5 end
6 for ! = 1, . . . , m do
7 Let i ← ! mod n;
8 Let g∗ ∈ arg maxg∈M vi(g);
9 Ai ← Ai ∪ {g∗};

10 M ← M \ {g∗};
11 end

In the basic definition of Round-Robin, the agents follow the same order in each round to select the goods. However, 
to compute an EF1 allocation, this is not necessary; as long as each agent selects her favorite good when it is her turn, 
the order of the agents in different rounds can be different. Essentially, Round-Robin is only a member of a larger class of 
algorithms that compute EF1 allocations by using recursively balanced sequences in different rounds, where the difference 
between the number of turns of any two agents is at most 1.

Another algorithm for computing an EF1 allocation is the Envy-Cycle Elimination (Algorithm 2), introduced by Lipton 
et al. [133]. In contrast to Round-Robin or any other sequential allocation algorithm, Envy-Cycle Elimination does not use a 
prefixed sequence for agents to select goods. Instead, it repeatedly chooses an agent that is in a disadvantage compared to 
other agents and gives an unallocated good. In the variant we present in Algorithm 2, whenever an agent gets a new good, 
this is her favorite available one. The algorithm maintains an envy graph, where the nodes correspond to agents and there is 
an edge from agent i to agent j if i is envious of j’s bundle. At each step of the algorithm, an unassigned good is allocated 
to some agent who is not envied by any other agent, i.e., an agent that corresponds to a node with in-degree 0 in the envy 
graph. If no such agent exists, the envy graph must contain a directed cycle, which can be eliminated by redistributing the 
current bundles among the agents that participate in the cycle. Formally, let C = (i1, . . . , id) be a directed cycle in the envy 
graph such that i j envies i j+1 for each j ∈ [d − 1], and id envies i1. The cycle can be resolved by exchanging the bundles 
of items along the cycle: each agent in the cycle gets the bundle of the agent she points to (Equation (1) in the description 
of Algorithm 2). Repeating this procedure, eventually, leads to a modified envy graph with at least one agent who is not 
envied by any other agent. The algorithm terminates when all items are allocated.

Algorithm 2: Envy-cycle elimination.
1 Input: A fair allocation instance I = (N, M, v) with n agents and m goods.
2 Output: Allocation A = (A1, . . . , An).
3 for each agent i ∈ N do
4 Ai ← ∅;
5 end
6 for ! = 1, . . . , m do
7 while there does not exist an unenvied agent do
8 Find an envy-cycle C = (i1, . . . , id) and resolve the cycle as follows:

AC
i j

=
{

Ai j+1 for all 1 ≤ j ≤ d − 1
Ai1 for j = d

(1)

Ai ← AC
i for all i ∈ C ;

9 end
10 Let i be an unenvied agent;
11 Let g∗ ∈ arg maxg∈M {vi(g)};
12 Ai ← Ai ∪ {g∗};
13 M ← M \ {g∗};
14 end

Lipton et al. [133] proved that Envy-Cycle Elimination runs in polynomial time and outputs an EF1 allocation. Indeed, in 
each round of the algorithm, an agent receives a good only if she is not envied by any other agent. Therefore, by removing 
the last good that an agent receives eliminates any possible envy of other agents towards her. Note that to ensure EF1, we 
can assign any good to agent i (instead of the item g∗ with maximum value) in line 11. However, as we will see later, by 
assigning the most valuable good, we can ensure other nice properties regarding EFX and MMS.

3.2. EF1 and Pareto optimal (PO) allocations

Besides computing a fair allocation, another natural requirement is that of efficiency. Caragiannis et al. [71] identified an 
interesting inherent connection between EF1, Pareto optimality, and the notion of maximum Nash welfare (MNW).

5

Figure: The Round Robin algorithm
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