Great Ideas in Computing

University of Toronto CSC196
Fall 2023

Week 10: November 20 - November 24 (2023)

1/22

Week 10 slides

Announcements:

Assignment 3 was due today (11 AM; moved to 4PM).

The second and final quiz will take this place Friday, November 24
during the tutorial class.

| will comment on the nature of the quiz

Next Monday, November 27, Kyros Kutalakos, will lead a discussion
on computational vision.

The first three question of Assignment 4 have been posted. | plan one
more additional question, on either social networks, or social choice
(e.g. fair allocations, voting). A4 is due Frriday, December 1 at 9AM.
The final question for A4 will depend on what topic we do after this
week. The two topics | think will be of interest are social networks (in
particular, mathematical and computational aspects) and
computational social choice. Is there a preference?

This weeks agenda

Can randomization help?
Complexity based cryptography

2/22

Can randomization help?

We should note that there are many other fundamental questions in
complexity theory (in addition to the P vs NP question). One such
question is can randomization help.

Consider the following problem: We are implicitly given two multivariate
polynomials p(x1,...,x,) and g(xi,...,xn). For example, the polynomials
might be the result of a polynomial time computation using the arithmetic
operations +, —, x. Or p and g might be the determinants of n x n
matrices with entries that are linear functions of the {x;}.

The polynomial equivalence question whether or not p = g as polynomials;
that is, does p(x1,...,xn) = q(x1,...,xp) for all values of the {x;}. Lets
say that the x; are all integers or rationals.

Note that this is the same as asking whether or not p — g = 0 where 0 is
the zero polynomial.

How would you solve the identically zero question for a univariate
polynomial (again given implicitly)?

3/22

Polynomial equivalence problem continued

Fact: A non zero univariate polynomial p(x) of degree d has at most d
distinct zeros. This means that if we evaluate p(x) at say t > d random
points ri, ... re, the probability that p(r;) = 0 is at most %.

Schwartz-Zipple Lemma: This lemma extends the above fact to
multivariate polynomials. That is,

If p(x1,...,Xn) is a non zero polynomial of total degree d (with coeficients
in a ring or field F like the integers or rationals) then
Prob[p(ri,...rm)=0] < ILSII when the r; are chosen randomly in a finite
subset S C F.

4/22

Polynomial equaivalence and the class RP

So to test if p is identically zero, we take |S| sufficienlty large (or do
repeated independent trials with say |S| = 2d), and see if the evaluation
returns a non-zero value. If p(r,...,r) =0, we will claim that p = 0.
The error in this claim will be at most \%I and we will only make an error if

p#0.

This is an example of a polynomial time randomized algorithm with
1-sided error (with say error at most %) and RP is the class of languages
that have such an algorithm.

In fact the error can be as big as 1 — % for any fixed k as we can do
polynomially many repeated trials to reduce the error probability using the
fact that (1 —1/t)" — 1 as t — oo.

Open question: Is RP = P? As a specific example, is the polynomial
equivalence problem in P?

5/22

RP and BP

Surprisingly, some prominent complexity theorists (but not everyone)
believe P = RP. More generally, they believe BPP = P where BPP is the
class of languages that can be solved by a polynomial time randomized

algorithm with 2-sided error (with probability of error at most % — #)

Like RP, we can amplify the probability of a correct answer by running a
polynomial number of trials and taking the “majority vote” amongst the
outcomes of the individual trials.

A langauge in RP can be formulated so that there are many certificates
and hence RP C NP.

One final comment about the conjecture P £ NP. While we strongly
believe P £ NP, all is not lost if P # NP. For example, for an
optimization problem, while it may be NP-hard to compute an optimal
solution, for many NP-hard problems there are efficient approximately
optimal algorithms. And many natural problems have efficient algorithms
when considering restricted classes of (or distributions over) instances that

tend to occur naturally.
6/22

Complexity based cryptography and Public key
encryption

In our discussion of cryptography, | am relying on CSC2426F graduate
course notes by Charles Rackoff. See
http://www.cs.toronto.edu/ rackoff/2426f20/Cryptonotes.html

| may also be using web page notes by Paul Johnson. See
http://pajhome.org.uk/crypt/index.html

What is complexity based cryptography?

We are going to explore a counter-intuitive idea: Namely, the ability to use
assumptions about what cannot be computed efficiently (i.e., negative
results) to establish positive results for applications such as pseudo-random
number generators, public key cryptography, digital signatures, secret
sharing, and more. These applications all fall under the general topic of
complexity based cryptography. Our focus will be on pseudo-random
number generators (PRNG) and public key cryptography (PKC).

7/22

Randomization is necessary

Before we begin, we should note that randomization is almost always
necessary for cryptography. This is not the first time we have encountered
the need for randomization.

When have we used randomization before?

For various problems (say within NP), it seems that randomization is
helpful but so far we do not have any proofs. That is, we do not know if
RP and BPP are different from P or NP. And if say RP = P, it still
might be very helpfui (in speeding up the cpmputation or being
conceptually simpler).

But there are applications where randomization is necessary

8/22

Randomization is necessary

Before we begin, we should note that randomization is almost always
necessary for cryptography. This is not the first time we have encountered
the need for randomization.

When have we used randomization before?

For various problems (say within NP), it seems that randomization is
helpful but so far we do not have any proofs. That is, we do not know if
RP and BPP are different from P or NP. And if say RP = P, it still
might be very helpfui (in speeding up the cpmputation or being
conceptually simpler).

But there are applications where randomization is necessary

@ Simulating stochastic events

@ Hashing

8/22

Randomization is necessary

Before we begin, we should note that randomization is almost always
necessary for cryptography. This is not the first time we have encountered
the need for randomization.

When have we used randomization before?

For various problems (say within NP), it seems that randomization is
helpful but so far we do not have any proofs. That is, we do not know if
RP and BPP are different from P or NP. And if say RP = P, it still
might be very helpfui (in speeding up the cpmputation or being
conceptually simpler).

But there are applications where randomization is necessary

@ Simulating stochastic events
@ Hashing
@ And we can add cryptography to this list

8/22

A secure shared secret key session

In this setting, two people called A and B (sometimes referred to as Alice
and Bob) have been able to share secret key (e.g., a secret string of bits)
and will use that secret key to communicate over an insecure channel.
This insecure channel can be observed or perhaps even modified by an
adversary.

message key

ADV

Figure: One-way communication. Figure taken from Rackoff notes

Figure: One-way communication. Figure taken from Rackoff notes

9/22

Shared-secret key session continued

An important consideration is how powerful is the adversary.

To do things reasonably carefully, we would probably need a full graduate
course on cryptography. It is difficult enough to develop the main ideas
even assuming that the adversary can only eavesdrop so lets make that
assumption.

In a one-way session, A has an m bit message

M= MM,...Mp e {0,1}™. (For simplicity, we are assuming that the
message and the secret key have been reresented as a binary strings but
this is not essential.) The message is called the plain text.

In the shared secret key setting we are assuming the A and B have agreed
upon a secret key n bit key K = K1K> ... K, € {0,1}".

A will encode his message by a function

ENC : {0,1}™ x {0,1}" — {0,1}*. Here we are using the * to suggest
that the encoded message length can depend on the plain text message.
The encoded message is called the cypher text.

10/22

Shared-secret key session continued

B will decode the cypher text by a function
DEC : {0,1}* x {0,1}" — {0,1}™.

What properties do we want from the exchange?

11/22

Shared-secret key session continued

B will decode the cypher text by a function
DEC : {0,1}* x {0,1}" — {0,1}™.

What properties do we want from the exchange?

@ Privacy: The adversary should not learn anyything “signifiicant”
about the plain text. What does the adversary know in advance about
the plain text?

@ Correctness: B should be able to correctly decode the message.
That is DEC(ENC(M, K),K) = M for all M and K.

We might ask what is perfectly secure session? In the Rackoff notes #0,
there are three equivalent definitions. Let's just use the first one. For a
given plain text message M, a uniformly random key K induces a
distribution Dy, on the cypher texts. The session is perfectly private if the
distribution Dy, does not depend on M.

Is a perfectly secure session attainable?

11/22

When is a perfectly secure session attainable?

Fact: A Perfectly secure session is attainable if and only if |M| < |K].

When |M| < |K]|, a one-time pad provides a one-time (i.e. single use)
perfect;y secure session. A one-time pad is defined as follows:

ENC(M,K) = E1E; ... E;,, where E; = M; @ K; for 1 </ < m and
DEC(E,K) = E1 ® Ki, ..., En® K.

Note that &, the exclusive OR, flips a bit.

Warning: Never use an old key for a new purpose. For example, we
cannot securely send two m bit messsages with the same m bit key.

So how are we going to continually generate random private keys (or long
keys that can be partitioned into session keys) for different people to
communicate? We cannot assume people can get together physically and
even so how can they generate truly random strings of bits?

12/22

Complexity based assumptions; public key
cryptography

The one-time pad does not need any assumptions and an adversary can
have unlimited computational power and still cannot gain any information
from a one-time pad. But as we noted, a one-time pad is not a very
practical solution especially for frequent transactions in e-commerce.

The major application of public key cryptography is to enable key
exchange. For public key cryptography (and almost all cryprographic
applications) we will need complexity assumptions stronger than P % NP
(but still theee assum;ptions are widely accepted). To make public key
systems practical we will also need some sort of trusted public key
infrastructre.

We will just discuss one well known public key system, RSA, which is
based on the assumption that factoring large integers is hard even in some
average sense (rather than worse case sense). This is a much stronger
assumption than P = NP since P = NP would allow us to factor integers
in polynomial time.

13/22

End of Monday, November 20 class

We will continue on Wednesday, defining the setting of public key
cryptography and then presenting the RSA public key system.

Note: | will not be available for office hours today. Please ask any
questions on piazza.

Note: Double participation marks for anyone who has not been actively
participating. So ask questions, make comments, speak up!

14/22

The basic idea of public key encryption

Public key encryption was introduced by Diffie and Hellman, and a
particular method (RSA) was created by Rivest, Shamir and Adelman.

The basic idea is that in order for Alice (or anyone) to send Bob a
message, Bob is going to create two related keys, a public key allowing
Alice to send an encrypted mesasage to Bob, and a private key that allows
Bob to decrypt Alice's message.

Bob
ST
7 Key
Secret Key \generator

Message

Bob’s
Public Key

Alice
Public Key 1

b Ev

Message]

Figure: Diagram of public key encryption. Figure taken from Paul Johnston notes

15/22

The RSA method

Bob wants to generate two keys, a public key e, N and a private key d.
The claim is that it is hard on average to find d given e and N. Bob
chooses N = p - g for two large primes p, g (which for defining “on
average” may satisfy some constraint).

Bob will choose the public e such that ged(e, p(N)) = 1 where

d(N) = o(pg) = (p—1)(g —1). ¢(N) is called the Euler totient function
which is equal to the number integers less than N that are relatively prime
to N. gcd(a, b) = 1 means that a and b are relatively prime (i.e. have no
common proper factors).

Alice encodes a message M by computing M€ mod N.

Hiding some mathematics, BOB can compute a d such that de = 1 mod
(p—1)(g — 1) since Bob knows p and q. But without knowing p, g,
finding d becomes computationally difficult.

Hiding some more mathematics, it will follow that M9 = M (mod N) for
any message M. That is, Bob decrypts a cypher text C by the function
C9 mod N. 1622

What mathematical facts do we need to know.

The main mathematical facts are :

© There are sufficiently many prime numbers in any range so one can
just randomly try different numbers and test if they are prime.

Q@ a?™) =1 mod N for any a such that gcd(a, N) = 1 As a special
case, a?~1 =1 mod p for any prime p and a not a multiple of p. So
we have M(P~1)(a=1) = 1 mod N.

© If gcd(a, b) = 1 then there exists s and t such that sa+ tb=1. In
the RSA algorithm, we canlet a=eand b= (p—1)(g —1). Thens
will become the d we need for decryption. That is
de+t(p—1)(g—1)=1

Q It follows then that
Mmde — ppi—tlp—1)(a-1) — pg. p—tlp=1)(a=1) — A mod N.

17/22

What computational facts do we need to know?

© The extended Euclidean algorithm can efficiently compute an s and t
such that sa + tb = gcd(a, b)
@ 2¥ mod N can be computed efficiently for any a, k, N.
© We can efficiently determine if a number p is prime.
In practice, public keys e are chosen to be reasonably small so that
encryption can be made more efficient.

Note that we have been assuming that an adversary EVE is just
eavesdropping) and not changing messages. That is, EVE just wants to
learn the message or something about the message. If EVE could change
messages then EVE could pretend to be BOB. So one needs some sort of a
public key infrastructure or a way to sign a message.

Note that if EVE knows that the message M was one a few possibilities,
then EVE can try each of the possibilities; that is compute M€modN for
each possible M to see what message was being sent. So here is where
randomness can be used. We can pad or interspers random bits in the
plain text M so that the message being sent becomes some one of many
random messages M’. 18/22

WARNING: Real world cryptography is sophisticated

Complexity based cryptography requires careful consideration of the
definitions and what precise assumptions are being made.

Complexity based cryptography has led to many important practical
protocols and there are a number of theorems. Fortunatley, many
complexity assumptions turn out to be equivalent.

In the Rackoff notes, the following theorem is stated as the fundamental
theorem of cryptography. (To make this result precise, one needs precise
definitions which we are omitting.)

Theorem: The following are equivalent:

@ It is possible to do “computationally secure sssions”

@ There exists pseudo-random generators; that is, create strings that
computationally look random)

@ There exist one way functions f; that is functions such that f(x) is
easy to compute but given f(x) it is hard to find a z such that
f(z) = f(x)

@ There exist computationally secure digital signature schemes.

19/22

The discrete log function

RSA is based on the assume difficulty of factoring. Another assumption
that is widely used in cryptography is the discrete log function. Again, we
need some facts from number theory. Let p be a large prime.

@ Zj denotes the set of integers {1,2,...,p — 1} under the operations
of +,—,- mod p is a field. In particular, for every a € Zj, there
existsa b € Zy such thata-b=1;ie, b= al mod p.

@ Moroever, Zy is cyclic. That is, there exists a g € Zj, such that

1,8,8%, 8% ...8"7%} mod p=7Z* . Recall, as a special case of the
P
Euler totient function, a1 =1 mod p.

The assumption is that given (g, p, g* mod p), it is computationally
difficult to find x. This is another example (factoring can also be an
example) of a one-way function.

20/22

A pseudo random generator

We started off our discussion of complexity based cryptpgraphy by noting
that randomness is essential. We have also noted that it is not clear (or at
what cost) one can obtain strings that “look like" truly random strings.

A pseudo random generator G is a deterministic function

G : {0,1}K — {0,1}* for £ > k. When £ is exponential in k, G is called a
pseudo random function generator. For now, lets even see how to be able
to have £ = k + 1.

The random input string s € {0,1}% is called the seed and the goal is that
r = G(s) should be “computationally indistinguishable” from a truly
random string in t = {0,1}. This means that no polynomial time
algorithm can distinguish between r and t with probability better than

% + € for any € > 0. (Here | am being sloppy about the quantification but
hopefully the idea is clear.)

21/22

A pseudo random generator continued

On the previous slide there was a claim that having a pseudo random
generator is equivalent to having a one-way function.

How can we use (for example, the assumption that the discrete log
function is a one-way function) to construct a pseudo random generator
with £ = k + 1.

The Blum-Micali generator. Assumming the discrete log function is a
one-way function then the following is a pseudo random generator:
Let xo be a random seed in Z;, by interpeting (s1,...,5k)2 as a binary

number mod p. Let xxyr1 = g mod p. Define sy11 =1 if xx < pT_l.

Manual Blum won the Turing award for his contributions to cryptography.
Silvio Micali and Shafira Goldwasser won the Turing award for interactive
zero knowledge proofs.

22/22

	Week 10

