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Radiative Transfer

radiance in direction scattering/absorption emission in-scattering
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resolution: 128 x 128
area: 2 m × 2 m



x

y

t

measurementsscene photo

Lindell et al., SIGGRAPH 2019



x

y

z

Dimensions: 2 m x 2 m x 1.5 m

scene photo reconstruction

Lindell et al., SIGGRAPH 2019



1. Light efficiency / photon sensitivity

• weak signal from multiply scattered light

• emit as much light as possible - fundamentally limited by eye 
safety (in most applications)

• detect as much light as possible, ideally individual photons

Challenges



2. High-speed time stamping (determines accuracy)

• speed of light is ~300,000,000 m/s

• 1 m = 3.3 ns; 1 cm = 33 ps; 1 mm = 3.3 ps

• need picosecond-accurate time-stamping à usually high-end 
electronics, but also done with ASICs, FPGAs

Challenges



(Single-photon) Avalanche Photodiodes

Linear mode (i.e., avalanche photodiode or APD): 
acts like a conventional photodiode with extremely high gain or amplification
time resolution >300 ps – 10 ns

Geiger mode (i.e., single-photon avalanche photodiode SPAD):
500x more sensitive, i.e. single-photon sensitive
time resolution ~50 ps

image by Princeton Lightwave
Semiconductor devices
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2-way propagation along same pathlaser and detector focus 
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wall

hidden object

1-way propagation at half speedlaser and detector focus 
on the same point Enables efficient wave propagation!
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general solution (time reversal)

1. approximate wave equation with 
finite differences

2. solve for previous timestep

3. repeatedly update     at all grid cells 

finite-difference time-
domain method



general solution (time reversal)

1. approximate wave equation with 
finite differences

2. solve for previous timestep

3. repeatedly update       at all grid cells 

finite-difference time-
domain method

Slow to get t=
0 at 

high-resolution!
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hidden object

wavefield confocal measurements

FLOPS: O(𝒏𝟑 log 𝒏)
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f–k Migration

Measurements (z=0) Spectrum Hidden Volume (t=0)Interpolated Spectrum

Resample



f–k Migration
Express wavefield as function of measurement spectrum (plane wave decomposition)

wavefield Fourier transform of 
measurements

Set t=0 to get migrated solution

Almost an inverse Fourier Transform!



f–k Migration
Set t=0 to get migrated solution

Almost an inverse Fourier Transform!

Use dispersion relation1 to perform substitution of variables 

1Georgi, Howard. The physics of waves. Englewood Cliffs, NJ: Prentice Hall, 1993.



Use dispersion relation1 to perform substitution of variables 



Use dispersion relation1 to perform substitution of variables 



Use dispersion relation1 to perform substitution of variables 

The migrated solution is an inverse Fourier Transform!

Resample
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Dimensions: 2 x 2 m
Exposure: 180 min
Reconstruction time: ~90 sec (CPU) Lindell et al., SIGGRAPH 2019



Reconstruction Comparison



real-time scanning

Framerate: 4 Hz
Resolution: 32 x 32
Dimensions: 2 m x 2 m x 2 m
Reconstruction time: ~1 s per frame

Lindell et al., SIGGRAPH 2019



Outlook

hidden scene Recovered surface

Directional Light-Cone Transform

[Young et al., CVPR 2020]



Outlook Keyhole NLOS Imaging

[Metzler et al., IEEE TCI 2021]
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Time-resolved active imaging

Challenges

• very few returning photons
• information is ‘scrambled’ by scattering
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transport mean free path



> 6 transport mean free paths (TMFP)

Imaging through scattering media

this work



Connection to Radiative Transfer

Assumptions: 
• low absorption
• highly-scattering regime

diffusion equation

radiance in direction scattering/absorption emission in-scattering
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1012)

• need to know gating position a 
priori
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Diffuse Optical Tomography

[Hajihashemi ‘12]

2D 3D

• very few returning photons in 
highly scattering media (< 1 in 
1012)

• need to know gating position a 
priori

• Both sides of media

• 2D reconstruction

• 3D many detectors, 
computationally expensive



This work

• Invert light transport

• non-invasive, reflection mode

• efficient 3D reconstruction at meter scales without 
a priori knowledge of target
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- object at a distance behind scattering media
- scattering media is static
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Results

hidden object captured measurements
(0.6 m × 0.6 m × 3.3 ns)
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total acquisition time: 1 min. (60 ms/sample)



Results

captured measurements reconstruction (50 ms)
(0.6 m × 0.6 m × 0.5 m)
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total acquisition time: 1 min. (60 ms/sample)
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Method diffusion

How to efficiently model free space propagation?



Efficient inversion if:

Method

detector location

laser location

non-line-of-sight imaging
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Method
spot size = 2 cm diameter

D ~ 30 – 80 cm

confocal: illuminate and 
image here



Method
Approximation:
Approximate measured light as scattering back to 
the same spot.

Error ~ (spot size)2 / (2 * distance) << 1 cm

spot size = 2 cm diameter

D ~ 30 – 80 cm

confocal: illuminate and 
image here



Method
Approximation:
Approximate measured light as scattering back to 
the same spot.

Error ~ (spot size)2 / (2 * distance) << 1 cm

spot size = 2 cm diameter

D ~ 30 – 80 cm

confocal: illuminate and 
image here

Can use efficient NLOS inversion!

diffusion kernels NLOS model

measurements



Results

measurements Lindell et al., Nat. Commun. 2020



Results

measurements Lindell et al., Nat. Commun. 2020



Results

reconstruction Lindell et al., Nat. Commun. 2020



Results

reconstruction Lindell et al., Nat. Commun. 2020



traffic cones

Results

reflective mannequin diffuse letter

Lindell et al., Nat. Commun. 2020
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Outlook

• efficient method for 3D imaging through 
scattering media based on DOT

• works without a priori knowledge of target 
position

• What’s next?

• embedded, dynamic media

• priors, AI algorithms
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Neural Networks as Signal Representations
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Neural Networks as Signal Representations

pixel 
coordinates

pixel
values

• Agnostic to grid resolution
• Model memory scales with signal complexity
• Admits effective learning of priors
• Flexible, can be used with physics-based equations



Neural Networks as Signal Representations

expected actual



Images AudioShapes Quantities defined by a 
differential equation



Images AudioShapes Quantities defined by a 
differential equation

SIREN: Sinusoidal Representation Networks
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Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

amplitudetime point



Representing Audio – Voice
Ground Truth

ReLU MLP ReLU w/ positional encoding SIREN



Representing Audio – Music
Ground Truth

ReLU MLP ReLU w/ positional encoding SIREN



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

space-time coord. RGB value



Ground Truth

ReLU MLP SIREN

Representing Video



Representing Video

Ground Truth SIRENReLU MLP



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

gray levelspatial coord.



Poisson’s Equation
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Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

spatial coord. signed distance



3D Shapes - solving the Eikonal equation
SIRENReLU

5 layers, 
256 hidden units



ReLU SIREN



Input
Output

supervised by
Implicit Formulation

Find     that minimizes       𝛷 ℒ

Images Audio Videos Poisson equation Eikonal equation Helmholtz equation Wave equation

complex wave field spatial coord.
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Solving the Helmholtz Equation

ReLU Tanh SIREN
Re

al
Im

ag
in

ar
y

Ground Truth



Like discrete grid or point clouds, SIREN is a data representation.
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NN(x, y, z)



With a number of benefits.

Continuous, parametric (NN) function
Memory scale with signal complexity, independent of resolution

Can fit signals via first- and higher-order derivatives

x
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z

SIREN

NN(x, y, z)
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Future Directions
• How can we combine computational imaging with physics-based AI?

• Need faster training times, more scalable architectures for large-scale signals
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Future Directions
• How can we combine computational imaging with physics-based AI?

• Need faster training times, more scalable architectures for large-scale signals
• Generalization techniques to incorporate robust priors 
• Improve interpretability of representations 

(what about unsupervised input coordinates?)
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Future Directions
• Emerging “extreme” sensors

• SPAD/jot arrays 
• ultra-low flux imaging

• high-speed imaging

• high-resolution imaging
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• high-speed imaging

• high-resolution imaging
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• micron-scale resolution
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Future Directions
• Emerging “extreme” sensors

• SPAD/jot arrays 
• ultra-low flux imaging

• high-speed imaging

• high-resolution imaging

• Coherent LIDAR
• micron-scale resolution

• velocimetry

• ambient rejection

• Sensor Fusion
• LIDAR + radar + multiview stereo + acoustic
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Future Directions
• Efficient solutions to radiative transfer

• Biomedical imaging (micro-scale)
• Robotics/remote sensing (macro-scale)
• Many applications in computer vision, graphics, rendering
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