
Great Ideas in Computing

University of Toronto CSC196
Fall 2021

Week 9: November 14-18 (2022)

1 / 23



Announcements

Announcements

I have posted all of Assignment 3 (A3) on the web page. A3 is due
Friday, Oct 18 at 8AM.

Any questions on assignment? Would you prefer a class on Wed (and
still I am able to answer questions on assignment) or tutorial on Wed?

The next and final quiz is scheduled for November 25.
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This weeks agenda

Agenda

We ended the Wednesday, November 2 class on slide 34 with a
discussion of the extended Church-Turing thesis. I will make one final
comment about Quantum computing and the impact on the extended
Church Turing thesis.

We will define the classes P and NP, NP-completeness and the
P 6= NP conjecture and its importance.

Then (probably next week) we begin complexity based cryptography.
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But what if quantum computers become practical?

Lets assume the quantum computers or other non-classical computers
become practical. We are about to discuss the P vs NP issue and the
P 6= NP conjecture, the central question in complexity theory.

This conjecture is formulated with respect to the extended Turing thesis.
That is, we are accepting the definition that “efficiently computable”
means polynomial time computable by a Turing machine. Will everything
about this question and conjecture become useless if we someday have
available more powerful non-classical (e.g., quantum) computers?

No, the theory we will be developing can be reformulated in terms of a new
computational model. We will have new functions (like factoring integers)
which will now become efficiently computable (assuming they were not
efficiently computable classically). But still there will be an analogous
complexity theory based on the (for now hypothetical) new computational
model. Moroever, our current belief is that there are problems in the class
NP that are not computable in polynomial time on a quantum computer.
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Polynomial time computable decision problems

We will now restrict attention to decision problems; that is
f : Σ∗ → {YES ,NO}. Σ is a finite alphabet and Σ∗ is the set of all strings
over Σ. We can also identify {YES ,NO} with say {1, 0}.

Equivalently, we are considering languages L ⊆ Σ∗.

The class of languages (decision problems) P is defined as the set of
languages L that are decideable in polynomial time on a Turing machine;
that is the languages that are “efficiently decideable”.

In what follows, I will assume we have some agreed upon way that we
represent graphs G = (V ,E ) as strings over some finite alphabet Σ.
Without refering to the representation, let Lconnected = {G = (V ,E )|G is a
connected graph}.

It is not difficult to show that Lconnected is in the class P. (For example,
we can use breadth first search.)
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A language “probably not” in the class P

Consider the following language: LHC = {G = (V ,E )|G has a simple cycle
including all nodes in V }. It is strongly believed (but not proven) that
LHC is not polynomial time computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(TSP) is to find an HC of least cost in an edge weighted graph. Have you
heard of this problem?.)

But suppose that a given graph G has Hamiltonian cycle. How can I
convince you that G has such a cycle

I can simply show you a Hamiltonian cycle C (assuming I know C ) and
you can easily and efficiently verify that C is indeed a HC. That is, I can
prove to you that G has a HC.

But can I efficiently prove to you that G does not‘ have a HC?

““Probably not”
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NP: the class of languages which are “efficiently
verifiable”
Using the HC problem as an example, lets define what it means to be
efficiently verifiable.

Let L be a language (like LHC ) that satisfies the following conditions:
There is a polynomial time decdeable relation R(x , y) and a polynomial p
such that for every x , x ∈ L if and only if there exists a y with |y | ≤ p(|x |)
and R(x , y) = TRUE .

R(x , y) is a verification relation (or predicate) and y is called a certificate
that verifies x being in L.

The class NP is the class of languages (decision problems) that have such
a verification relation and certificate.

For example HC is in NP. Namely, given a representation x of a graph
G = (V ,E ), a certificate y is an encoding of a sequence of vertices
specifying a Hamiltonian cycle C . R(x , y) checks the conditions for
y = C being a simple cycle containing all the nodes in V .
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The million $ question: Is P 6= NP

This is literally (and not just figuratively) a million $ question for someone
who solves the question. In fact, it is worth much more that just one
million $ for a proof that either P = NP or a proof that P 6= NP.

Cook defined the concept of NP-completeness and gave a couple of
examples of such problems, namely SAT and CLIQUE , problems in NP
that are believed to not be in P.

We wil define NP-completeness and the evidence for the conjecture that
P 6= NP.

The important consequence of NP completeness is that if any NP decision
problem turns out to be in P, then P = NP. Since we strongly believe
P 6= NP, this means that we strongly believe that no NP complete
problem can be in P.
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Many many decision problems are in the class NP
First we will note that the class P (decision problems decideable in
polynomial time) is a subset of NP; that is, P ⊆ NP. Is this obvious?

Consider a language L (like Lconnected) that is decideable in polynomial
time. Then in the definition of NP, we can let let R(x , y) be the relation
that is TRUE iff x ∈ L ignoring y and R(x , y) is polynomial time since we
can decide if x ∈ L in polynomial time by the assumption that L ∈ P.

In saying P ⊆ NP, we have left open the possibility that P = NP.
However, the widely believed assumption (conjecture) is that P 6= NP.
This question (conjecture) was implicitly asked by (for example) Gauss
(early 1800’s), von Neumann, Gödel (1950’s) , Cobham, and Edmonds
(1960s). The conjecture was formalized by Cook in 1971 (indpendently by
Levin in the FSU but his work was not known until about 1973).

More specifically Cook defined the concept of NP-completeness and gave
a couple of examples of such problems, namely SAT and CLIQUE ,
problems in NP that are believed to not be in P. We wil define
NP-completeness and the evidence for the conjecture that P 6= NP.
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Some examples of NP complete decision problems
In our examples we always assume some natural way to represent the
inputs as strings over some finite alphabet. In particular, integers are
represented in say binary or decimal. Polynomial time means time bounded
by a polynomial p(n) where n is the length of the input string.

I will explain each of the following decision problems as we introduce
them. Some problems are naturally decision problems. Others are decision
variants of optimization problems and other relations or functions. Each of
these decision problems are easily seen to be in NP (i.e. it is easy to
provide a verification proedicate and succinct certificate). We will soon
define completeness and indicate why each of these problems is NP
complete.

LHC as defined previously; i.e., the set of graphs that have a
Hamiltonian cycle.
SAT = {F |F is a propositional formula that is satisfiable}
PARTITION = {(a1, a2, . . . , an)|∃S :

∑
ai∈S ai = 1

2

∑n
i=1 ai}

VERTEX -COLOUR = {(G , k)|G can be vertex coloured with k
colours}
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A example of a language in NP language that is
believed to not be NP complete and believed to not
be in P

FACTOR = {(N, k)|N is an integer that has a proper factor m ≤ k}

It is easy to see that FACTOR is in NP.

Suppose FACTOR ∈ P. Can you see how to factor a number N (i.e.
provide the prime factorization) in polynomial time?

We have mentioned before that it is widely believed that we cannot factor
integers in polynomial time and we use that assumption for some
cryptographic applications.

The problem of efficiently factoring goes back at least two centuries to
Gauss.

We will soon see some evidence that FACTOR is not complete.
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NP completeness

A decison problem (or any problem) L is NP-hard if every problem
L′ ∈ NP can be “efficicently reduced” to L. There are different notions of
how to formalize “efficiently reduced” and we will discuss this shortly.

A decision problem L is NP-complete if it is both in NP and NP-hard.
Here are the immediate consequences of a problem being
NP-complete.

If L is NP complete, and L ∈ P, then every L′ ∈ NP is in P

Equivalently, if any L′ ∈ NP is not in P, then every NP-complete
problem is not in P.

There are hundreds (and really thousands) of problems that are
NP-complete and since we “religously” believe P 6= NP, we believe
that none of these complete problems can be decided in polynomial
time. (I emphasize that this is in terms of worst case complexity.)
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End of Monday, November 14 class

We ended to class having just defined the notion of a language (decision
problem) being NP-hard and NP-complete.

Note: There are NP hard languages that are not in NP. In particular,
there are languages that provably require exponential time.

We will have to discuss polynomial time reduction and polynomial time
transformation, the polynomial time analogues of a Turing computable
reduction and a computable transformation.

We will then be able to discuss the immediate consequences and
NP-completeness and show how one can exhibit examples of NP complete
sets.
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Why the religious belief

Why do we believe so strongly that P 6= NP. It is simply that many very
talented people over literally centuries have tried to efficiently solve
problems that are in NP (and believed to not be in P and especially those
that are NP-complete) and failed to do so.

Even so, there have been surprises in complexity theory and one still has to
keep in mind that P 6= NP is still a conjecture and not a proven result.

Our confidence in this conjecture is strong enough that modern day
cryptography makes this assumption and indeed makes even stronger
assumptions. For example, cryptographic protocols usually assume that
there exist one-way functions f for which it is easy (i.e. poly time) to
compute f (x) for any x but given y , it is difficult to find an x such that
f (x) = y .

For cryptography we also need assurance that a problem is not only hard
in a worst case sense but also hard in some “average case ” sense.
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What would happen if someone solves the P vs NP
question?

A frequent question that is asked is the following: What would be the
consequences if someone resolves the P vs NP question

While the mathematical and scientfiic impact will be enormous,
mathematics and science will not end.

If someoone proves that (as we do not believe) P = NP, then the
“practical impact” will depend on how efficiently we can solve NP
complete problems; that is, what are the polynomial time bounds.

If someone prove P 6= NP, then the “practical impact” will depend on
whether or not a given problem can be solved efficiently “in practice” (i.e.
for most inputs or for “the inputs we care about”). More about worst case
vs “practical application” later.
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Returning to the concept of reduction

At the heart of NP completeness and more generally algorithm analysis is
the concept of (efficient) reduction of problems. When we say that
problem A “efficiently” reduces to problem B, we can conclude that an
efficient algorithm for B will result in an efficient algorithm for A (and
equivalently, the contrapositive states that A not efficiently computable
implies that B is not efficiently computable).

There are different definitions for what we mean by an efficient reduction
and the precise definition matters in terms of what we want to conclude
from the reduction.

One major distinction is between a very general type of reduction (which
we will just call poly time reduction (i.e., the poly time version of Turing
reduction) and the more restricted reduction which we will call poly time
transformation (i.e., the polynomial time version of a Turing computable
transformation).
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Two types of reductions continued
The general version of reduction A ≤poly

T B means that there is a poly
time algorithm ALG that can call a subroutine for B (as often as it likes)
and ALG computes A. Here we count each call to the subroutine as 1
step. It is not difficult to see that if A ≤T B and B is computable in
polynomial time, then A is computable in polynomial time.

The ≤poly
T reduction is what Cook used in his seminal 1971 paper.

The more restricted transformation (which we call a polynomial time

transformation) A ≤poly
trans B means that there is a polynomial time function

h (transforming an input instance of A to an input instance of B) such
that x ∈ A if and only if h(x) ∈ B. Note that |h(x)| ≤ p(|x |) for some
polynomial p. Why?

It is easy to see that A ≤poly
trans B and B ∈ P implies A ∈ P.

Following Cook’s paper, Karp provided a list of 21 combinatorial and
graph theoretical problems that are NP complete. Karp used the more
restrictive ≤poly

trans . If you like names associated with these reductions then
we can denote ≤poly

T as ≤Cook and ≤poly
trans as ≤Karp.
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Comparing the reductions ≤poly
T and ≤poly

trans

Let first explicitly give the definition NP-complete.
Definition: A language (or decision problem) L is NP complete if

1 L ∈ NP.

2 L is NP-hard with respect to some polynomial time reduction, for
example with respect to either ≤poly

T , or ≤trans poly . That is, if we

are using ≤poly
trans , then L is is NP-hard if for every A ∈ NP, there there

is a polynomial time computable function h such that w ∈ A if and
only if h(w) ∈ L.

It is not difficult to show :

Fact: B ∈ NP and A ≤poly
trans B implies A ∈ NP.
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The importance of NP-completeness

To simplify the notation, lets sometimes use ≤Cook and ≤Karp respectively
for genneral poly time

Basic Fact: If L is NP-complete (wrt to either ≤Cook or ≤Karp, then
L ∈ P if and only if P = NP.

It can be shown that LHC , SAT ,Partition,Vertex-Colour and thousands of
other problems are NP complete.

So now we know that if we can polynomial time decide any one of these
NP-complete problems we can solve them all in polynomial time. Even if a
problem L is in NP but possibly not NP-complete, then P = NP would
imply L is polynomial time decidable.
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But how do we prove that a decision propblem is
NP-complete?
Suppose we know that some problem (for example, SAT ) is NP-complete.
Then if we can show SAT can be poly time reduced or transformed to (for
example) VC = vertex-cover , then VC must also be NP-complete.

Fact: Polytime reductions and polytime transformations are transitive
relations. That is, for example, A ≤Karp B and B ≤Karp C implies
A ≤Karp C .

In this way, thousands of decision problems L have been created by a tree
of polynomial time transformations. (On the next slide, we will show
Karp’s initial tree.) But we have to start the tree with some NP problem
that we prove is NP-complete.

Cook did this for SAT by showing how to efficiently encode any
polynomial time Turing machine computation of a verification predicate
R(x , y) and a “guess” for a certificate y within propositional logic. (We
usually discuss this in more detail in CSC373.) Recall what we said about
validity in predicate calculus (1st order logic).
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A tree of reductions/transformations

45

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES.  Given a set of n jobs with processing time
ti, release time ri, and deadline di, is it possible to schedule all jobs on
a single machine such that job i is processed with a contiguous slot of
ti time units in the interval [ri, di ] ?

Claim.  SUBSET-SUM ! P SCHEDULE-RELEASE-TIMES.
Pf.  Given an instance of SUBSET-SUM w1, …, wn, and target W,

! Create n jobs with processing time ti = wi, release time ri = 0, and no
deadline (di =  1 + "j wj).

! Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0

Algorithm Design by Éva Tardos and Jon Kleinberg   •    Copyright © 2005 Addison Wesley   •    Slides by Kevin Wayne

8.9  A Partial Taxonomy of Hard Problems

47

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction
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End of Wednesday, November 16 class
We ended with the Karp tree of polynomial time transformations. Cook
had established the NP-completeness of SAT and the transformation
SAT ≤poly

τ Clique which is basically the same as showing
SAT ≤poly

τ Independent-Set.

I also “waved hands” at how we can show that SAT is NP-complete but
you do not have to worry about that. The main idea of that result is to
show how to encode polynomial time Turing machine computations by
propositional formulas.

Next week we will complete our discussion of the P vs NP question and
related issues. And then we will discuss complexity based cryptography.

Our final topic will be social networks. And after that we will just mention
some other “great ideas” that we didn’t have time to discuss.

I am posting slides intended for the next two weeks. But I prefer to answer
questions and not rush so we may not get to everything in the slides for
week 10 and week 11. But these slides shoould help for the final
assignment A4. 23 / 23
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