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ALGORITHMSMAKING DECISIONS

Bails

Hiring

Loans

Ads

Self-Driving	Cars

Organ	Exchange



Computational	Social	Choice

Algorithms	for	aggregating	individual	preferences	
towards	collective	decisions

COMPUTATIONAL SOCIAL CHOICE



REASONABLE COLLECTIVE DECISIONS

Fairness

Elicitation

Efficiency

Incentives

Ethics



CAKE CUTTING

• Formally	introduced	by	Steinhaus	[1948]

• 𝑛 people	(“agents”)

• Cake	modeled	as	[0,1]

• Allocate	the	cake
◦ 𝐴! ⊆ [0,1] given	to	agent	𝑖

• E.g.,	𝐴! = 0.1,0.3 ∪ [0.5,0.9] is	allowed
◦ 𝐴! ∩ 𝐴" = ∅ for	all	𝑖, 𝑗



AGENT VALUATIONS

• Each	agent	𝑖 has	an	integrable	density	function	𝑓!: 0,1 → ℝ"

• 𝑣! 𝑋 = ∫#∈% 𝑓! 𝑥 𝑑𝑥

• Normalization:	∫&
'𝑓! 𝑥 𝑑𝑥 = 1

◦ Without	loss	of	generality



EXAMPLE
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• Agent	1 wants	[0, ⁄' (] uniformly	and	
does	not	want	anything	else

• Agent	2 wants	the	entire	cake	
uniformly

• Agent	3 wants	[ ⁄) ( , 1] uniformly	
and	does	not	want	anything	else

• Value density functions
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• Consider	the	following	allocation
◦ 𝐴# = 0, ⁄# $ ⇒ 𝑣# 𝐴# = ⁄# %
◦ 𝐴& = ⁄# $ , ⁄' $ ⇒ 𝑣& 𝐴& = ⁄( $
◦ 𝐴% = ⁄' $ , 1 ⇒ 𝑣% 𝐴% = ⁄# %

• Each	of	three	agents	is	getting	at	
least	one-third	of	their	value,	which	
seems	fair	in	some	sense

• But	agent	1 and	3 are	envious	of	
agent	2,	and	would	want	to	get	his	
allocation	instead

• Value density functions
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• Consider	the	following	allocation
◦ 𝐴# = 0, ⁄# ) ⇒ 𝑣# 𝐴# = ⁄# &
◦ 𝐴& = ⁄# ) , ⁄* ) ⇒ 𝑣& 𝐴& = ⁄& %
◦ 𝐴% = ⁄* ) , 1 ⇒ 𝑣% 𝐴% = ⁄# &

• Now	agent	1 and	3 are	not	envious	
of	what	agent	2 is	given,	even	
though	agent	2 has	more	utility	than	
them

• Value density functions
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COMPLEXITY

• Inputs	are	functions
◦ Infinitely	many	bits	may	be	needed	to	fully	represent	the	
input

◦ Query	complexity	is	more	useful

• Robertson-Webb	Model
◦ Eval!(𝑥, 𝑦) returns	𝑣! 𝑥, 𝑦
◦ Cut!(𝑥, 𝛼) returns	𝑦 such	that	𝑣! 𝑥, 𝑦 = 𝛼

𝑥 𝑦

𝛼

eval output

cut output



THREE CLASSIC FAIRNESS DESIDERATA

• Proportionality	(Prop):		∀𝑖 ∈ 𝑁: 𝑣! 𝐴! ≥ ⁄' /
◦ Each	agent	should	receive	her	“fair	share”	of	the	utility.

• Envy-Freeness	(EF):		∀𝑖, 𝑗 ∈ 𝑁: 𝑣! 𝐴! ≥ 𝑣!(𝐴0)
◦ No	agent	should	wish	to	swap	her	allocation	with	another	agent.

• Envy-freeness	implies	proportionality	(Why?)



Proportionality



PROPORTIONALITY :	𝑛 = 2 AGENTS

• CUT-AND-CHOOSE
◦ Agent	1	cuts	the	cake	at	𝑥 such	that	𝑣# 0, 𝑥 = 𝑣# 𝑥, 1 = ⁄1 2
◦ Agent	2 chooses	the	piece	that	she	prefers.

• Elegant	protocol
◦ Envy-free	for	2	agents
◦ Needs	only	one	cut	and	one	eval	query	(optimal)

• More	agents?



PROPORTIONALITY:	DUBINS-SPANIER

1/3 1/3 ≥ 1/3

Animation Credit: Ariel Procaccia



PROPORTIONALITY:	DUBINS-SPANIER

• DUBINS-SPANIER
◦ Referee	starts	a	knife	at	0 and	moves	the	knife	to	the	right.
◦ Repeat:	When	the	piece	to	the	left	of	the	knife	is	worth	1/𝑛 to	an	agent,	the	agent	shouts	
“stop”,	receives	the	piece,	and	exits.

◦ When	only	one	agent	remains,	she	gets	the	remaining	piece.

• Can	be	implemented	easily	in	Robertson-Webb	model
◦ When	[𝑥, 1] is	left,	ask	each	remaining	agent	𝑖 to	cut	at	𝑦! so	that	𝑣! 𝑥, 𝑦! = 1/𝑛,	and	give	
agent	𝑖∗ ∈ arg min! 𝑦! the	piece	[𝑥, 𝑦!∗]

• Question:	What	is	the	asymptotic	query	complexity	as	a	function	of	the	number	
of	agents	𝑛?



COMPLEXITY OF PROPORTIONALITY

• Theorem	[Evan	and	Paz,	1984]:
◦ There	is	a	protocol	that	returns	a	proportional	allocation	in	O(𝑛 log 𝑛) queries	in	the	
Robertson-Webb	model.

• Theorem	[Edmonds	and	Pruhs,	2006]:
◦ Any	protocol	returning	a	proportional	allocation	needs	Ω(𝑛 log 𝑛) queries	in	the	Robertson-
Webb	model.



Envy-Freeness



ENVY-FREENESS :	FEW AGENTS

• 𝑛 = 2 agents	:	CUT-AND-CHOOSE (2	queries)
• 𝑛 = 3 agents	:	SELFRIDGE-CONWAY (14	queries) Gets complex pretty quickly!



ENVY-FREENESS :	FEW AGENTS

• [Brams and	Taylor,	1995]
◦ The	first	finite	(but	unbounded)	protocol	for	any	number	of	agents

• [Aziz	and	Mackenzie,	2016a]
◦ The	first	bounded	protocol	for	4 agents	(at	most	203	queries)

• [Amanatidis et	al.,	2018]
◦ A	simplified	version	of	the	above	protocol	for	4 agents	(at	most	171	queries)



ENVY-FREENESS

• Theorem	[Aziz	and	Mackenzie,	2016b]
◦ There	exists	a	bounded	protocol	for	computing	an	envy-free	allocation	with	𝑛 agents,	which	

requires	𝑂(𝑛,"
""

"

) queries

• Theorem	[Procaccia,	2009]
Any	protocol	for	finding	an	envy-free	allocation	requires	Ω(𝑛)) queries.

Open Problem

Bridge the gap between 𝑂(𝑛i!
!!

!

) upper bound and 
Ω 𝑛j lower bound for envy-free cake-cutting



INDIVISIBLE GOODS

• Estate	(inheritance)	division
• Divorce	settlement
• Friends	splitting	jointly	purchased	items
• ...





SETTING

67 150 256 12

150 27 39 53

25 121 352 5



APPROXIMATE ENVY-FREENESS

• Envy-Freeness	Up	To	One	Good	(EF1)
◦ No	agent	envies	another	agent	if	we	ignore	at	most	one	good	allocated	to	the	envied	agent
◦ ∀𝑖, 𝑗 ∈ 𝑁 ∃∗𝑔 ∈ 𝐴" ∶ 𝑣! 𝐴! ≥ 𝑣! 𝐴" ∖ 𝑔

• Simple	round	robin	achieves	this:

Phase	1 Phase	2



EFFICIENCY

• Pareto	optimality	(PO)
◦ No	other	allocation	should	give	more	utility	to	every	agent
◦ ∄𝐵 ∀𝑖 ∶ 𝑣! 𝐵! > 𝑣! 𝐴!

• Round	robin	violates	PO!

• Does	there	always	exist	an	allocation	that	is	both	fair	(EF1)	and	efficient	(PO)?



MAXIMUM NASHWELFARE
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• Idea:	Maximize	the	Nash	welfare	∏! 𝑣! 𝐴!



MAXIMUM NASHWELFARE

Theorem [Caragiannis, Kurokawa, Procaccia, Moulin, S, Wang, 2016]
Maximizing Nash welfare satisfies EF1 and PO.



OPEN QUESTIONS

• Computation
◦ Open	Question:	Can	we	compute	an	EF1+PO	allocation	in	polynomial	time?

• Possible	in	pseudo-polynomial	time	[Barman	et	al.,	2018]

• Envy-freeness	up	to	any	good	(EFX)
◦ No	agent	envies	another	agent	if	we	ignore	any good	allocated	to	the	envied	agent
◦ ∀𝑖, 𝑗 ∈ 𝑁 ∀𝑔 ∈ 𝐴" ∶ 𝑣! 𝐴! ≥ 𝑣! 𝐴" ∖ 𝑔
◦ Open	Question:	Does	there	always	exist	an	EFX	allocation?

• It	exists	for	three	agents	[Chaudhury	et	al.,	2020]
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