
Great Ideas in Computing

University of Toronto CSC196
Fall 2022

Week 5: October 10 - October 14 (2022)

1 / 16

Week 5 slides
Announcements:

This week we had Thanksgiving on Monday and our guest Professor
David Lindell presenting on Wednesday.

Next week, we have another guest presenter, Professor Fan Long.
This had to be rescheduled from November. We will have a class on
Monday and Friday, Oct 21 is the first quiz. I will have more
information on the quiz on Monday.

Given all the guest presenters it has become harder for me to create
an assignment using our class discussions and slides. If there are no
serious objections, I am going to move the due date for Assignment 2
to now be due on Tuesday, November 1.

Todays agenda

A very brief (mainly without slides) discussion about neural nets.

Follow up on our two guest presentations

Returning to computability theory: reductions and transformations,
undecidable problems, diagonalization, encoding a Turing machine
computation.

2 / 16

Neural nets

David Lindell showed a depiction of two neural nets (slides 89 and 91)
using different activation functions. Every one of his circles (which we can
call gates or nodes or neurons), except the input nodes, are of the form
σ(c1y1 + c2y2 + . . .+ ckyk) + b) where sigma is the activation function,
the yi are the inputs to the node, and b is a bias. That is, the node is a
composition of a non-linear activation function with linear affine function.Neural Networks as Signal Representations

expected actual
Figure: From Lindell’s slide 89: a neural net using a linear threshold activation
function

3 / 16

Other activation functions

Images AudioShapes Quantities defined by a
differential equation

SIREN: Sinusoidal Representation Networks

x

y

z

NN(x, y, z)

Figure: From Lindell’s slide 91: a neural net using a sinusoldial activation
function

10/12/22, 10:01 PM Sigmoid function - Wikipedia

https://en.wikipedia.org/wiki/Sigmoid_function 1/6

The logistic curve

Plot of the error function

Sigmoid function

A sigmoid function is a mathematical function
having a characteristic "S"-shaped curve or
sigmoid curve.

A common example of a sigmoid function is the
logistic function shown in the first figure and
defined by the formula:[1]

Other standard sigmoid functions are given in the
Examples section. In some fields, most notably in
the context of artificial neural networks, the term
"sigmoid function" is used as an alias for the logistic
function.

Special cases of the sigmoid function include the
Gompertz curve (used in modeling systems that
saturate at large values of x) and the ogee curve
(used in the spillway of some dams). Sigmoid
functions have domain of all real numbers, with
return (response) value commonly monotonically
increasing but could be decreasing. Sigmoid
functions most often show a return value (y axis) in
the range 0 to 1. Another commonly used range is
from −1 to 1.

A wide variety of sigmoid functions including the
logistic and hyperbolic tangent functions have been
used as the activation function of artificial neurons. Sigmoid curves are also common in statistics as
cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density,
the normal density, and Student's t probability density functions. The logistic sigmoid function is
invertible, and its inverse is the logit function.

Definition
Properties
Examples
Applications
See also

Contents

Figure: The sigmoid activation function

4 / 16

One more activation function and a compact
network representation

2. (20 pts) Note: We will be explaining the notation for this question in the October 15 tutorial and (if
necessary) the Monday October 18 class.

In this question, you need to find a set of weights and biases for a neural net (with one hidden layer as
below) for computing the following function f :
the input consists of 4 (say rational) inputs x1, x2, x3, x4 : x1 x2 x3 x4; the output y =
f(x1, x2, x3, x4) is

fx1, x2, x3, x4) =

(
1 if xi 6= xj for i 6= j
0 otherwise

You will use the following architecture.

CSC321 Winter 2018 Homework 3

Homework 3

Deadline: Wednesday, Jan. 31, at 11:59pm.

Submission: You must submit your solutions as a PDF file through MarkUs1. You can produce
the file however you like (e.g. LaTeX, Microsoft Word, scanner), as long as it is readable.

Late Submission: MarkUs will remain open until 2 days after the deadline; until that time, you
should submit through MarkUs. If you want to submit the assignment more than 2 days late,
please e-mail it to csc321staff@cs.toronto.edu. The reason for this is that MarkUs won’t let us
collect the homeworks until the late period has ended, and we want to be able to return them to
you in a timely manner.

Weekly homeworks are individual work. See the Course Information handout2 for detailed policies.

1. Hard-Coding a Network. [2pts] In this problem, you need to find a set of weights and
biases for a multilayer perceptron which determines if a list of length 4 is in sorted order.
More specifically, you receive four inputs x1, . . . , x4, where xi � R, and the network must
output 1 if x1 < x2 < x3 < x4, and 0 otherwise. You will use the following architecture:

All of the hidden units and the output unit use a hard threshold activation function:

�(z) =

�
1 if z � 0
0 if z < 0

Please give a set of weights and biases for the network which correctly implements this function
(including cases where some of the inputs are equal). Your answer should include:

• A 3 � 4 weight matrix W(1) for the hidden layer

• A 3-dimensional vector of biases b(1) for the hidden layer

• A 3-dimensional weight vector w(2) for the output layer

• A scalar bias b(2) for the output layer

You do not need to show your work.

1https://markus.teach.cs.toronto.edu/csc321-2018-01
2http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/syllabus.pdf

1

All of the hidden units and the output unit use a hard threshold activation function:

�(z) =

(
1 if z � 0
0 if z < 0

Provide a set of weights and biases for h1, h2, h3 and y so that the network implements the function
f .

2

Figure: The {0,1} hard threshold activation function

2. (20 pts) Note: We will be explaining the notation for this question in the October 15 tutorial and (if
necessary) the Monday October 18 class.

In this question, you need to find a set of weights and biases for a neural net (with one hidden layer as
below) for computing the following function f :
the input consists of 4 (say rational) inputs x1, x2, x3, x4 : x1 x2 x3 x4; the output y =
f(x1, x2, x3, x4) is

fx1, x2, x3, x4) =

(
1 if xi 6= xj for i 6= j
0 otherwise

You will use the following architecture.

CSC321 Winter 2018 Homework 3

Homework 3

Deadline: Wednesday, Jan. 31, at 11:59pm.

Submission: You must submit your solutions as a PDF file through MarkUs1. You can produce
the file however you like (e.g. LaTeX, Microsoft Word, scanner), as long as it is readable.

Late Submission: MarkUs will remain open until 2 days after the deadline; until that time, you
should submit through MarkUs. If you want to submit the assignment more than 2 days late,
please e-mail it to csc321staff@cs.toronto.edu. The reason for this is that MarkUs won’t let us
collect the homeworks until the late period has ended, and we want to be able to return them to
you in a timely manner.

Weekly homeworks are individual work. See the Course Information handout2 for detailed policies.

1. Hard-Coding a Network. [2pts] In this problem, you need to find a set of weights and
biases for a multilayer perceptron which determines if a list of length 4 is in sorted order.
More specifically, you receive four inputs x1, . . . , x4, where xi � R, and the network must
output 1 if x1 < x2 < x3 < x4, and 0 otherwise. You will use the following architecture:

All of the hidden units and the output unit use a hard threshold activation function:

�(z) =

�
1 if z � 0
0 if z < 0

Please give a set of weights and biases for the network which correctly implements this function
(including cases where some of the inputs are equal). Your answer should include:

• A 3 � 4 weight matrix W(1) for the hidden layer

• A 3-dimensional vector of biases b(1) for the hidden layer

• A 3-dimensional weight vector w(2) for the output layer

• A scalar bias b(2) for the output layer

You do not need to show your work.

1https://markus.teach.cs.toronto.edu/csc321-2018-01
2http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/syllabus.pdf

1

All of the hidden units and the output unit use a hard threshold activation function:

�(z) =

(
1 if z � 0
0 if z < 0

Provide a set of weights and biases for h1, h2, h3 and y so that the network implements the function
f .

2

Figure: Matrix representation of a neural net

5 / 16

What has made neural nets so successful and what
can’t neural nets do?
There have been a number of major developments that has led to the
rapid and great success of ML and in particular deep neural nets.

Advances in hardware especially special purpose hardware units first
developed with respect to graphics and computer games.

An abudance of data for supervised training in many applications.

Methods for training deep neural nets (i.e. back propagation).

What can’t neural nets or other ML algorithms do well? The success of
ML and neural nets in particular should make anyone hesitant to make any
comments as anything I say could be quickly proved wrong.

So what do you think is well beyond today’s ML and what are any long
term barriers?

What I can say is that there is a lot of activity in “self-learning networks;
or at least how to train a neural network with little training data.

How do we interpret the meaning of the nodes at a given level or more
generally how to interpret what the neural net is really doing.

6 / 16

What has made neural nets so successful and what
can’t neural nets do?
There have been a number of major developments that has led to the
rapid and great success of ML and in particular deep neural nets.

Advances in hardware especially special purpose hardware units first
developed with respect to graphics and computer games.

An abudance of data for supervised training in many applications.

Methods for training deep neural nets (i.e. back propagation).

What can’t neural nets or other ML algorithms do well? The success of
ML and neural nets in particular should make anyone hesitant to make any
comments as anything I say could be quickly proved wrong.

So what do you think is well beyond today’s ML and what are any long
term barriers?
What I can say is that there is a lot of activity in “self-learning networks;
or at least how to train a neural network with little training data.

How do we interpret the meaning of the nodes at a given level or more
generally how to interpret what the neural net is really doing.

6 / 16

Returning to cmputability theory and undecidable
problems

After the remarkable discussions by Rahul Krishnan and David Lindell, it
seems like almost a paradox that there are things that are undecidable.

We will pick up where we left off on Monday, Oct 3. We will first show a
reduction between two languages in order to illustrate the idea of how we
use reductions to establish undecidability of a language given a language
already known the be undecidable.

Recall that we use < M > to denote a string repesentation of a TM M.
Consider the following two languages introduced in the Oct 3 class.

L2 = {< M > |M is a TM that halts on all inputs w} and
L3 = {< M > |M is a TM that halts on the input string w = 010}
We will show that L3 reduces to L2

7 / 16

Transformations: A very special type of reduction

We will use a very simple type of reduction which I will call a
transformation and which we can denote by ≤τ . We say that A ≤τ B if
there is a computable function f such that w ∈ A iff f (w) ∈ B.

It should be easy to see that A ≤τ B is a special case of ≤T . Is this
obvious?

When we do some complexity theory, we will further refine this concept by
requiring that the transformation function f is computable in polynomial
time (by a Turing machine).

8 / 16

Showing the desired transformtion L3 ≤τ L2.

Here is a description of the transformation of < M > to f (< M >) such
that < M3 >∈ L3 iff f (< M3 >) ∈ L2.

Given an encoding of a Turing machine TM M3, we are going to construct
a TM M2. That is, < M2 >= f (< M3 >). M2 operates on an input string
w as follows:
If w 6= 010, M2 halts. If w = 010, then M2 simulates M3 on input w .

Claim: M2 halts on the input string w = 010 iff M3 halts on all inputs w .
That is, < M3 >∈ L3 iff f (< M3 >) =< M2 >∈ L2
Given that the halting problem is undecidable, many other problems can
be proved to be undecidable using reductions. Most of these problems do
not mention Turing machines but undecidability comes from the problem
“being able to encode the computation of a Turing machine M”.

9 / 16

Expanding on the previous slide

A halting computation is a composition of Turing machine configurations
C1,C2, . . . ,Ct such that Ci+1 is the configuration of the Turing machine
that follows from executing one step of the Turing machine when it is in
configuration Ci and Ct is in a halting state.

In the transformation we described, we used the fact that a Turing
machine can simulate the computation of another Turing machine. This is
what Turing called a universal Turing machinei (UTM). In modern terms,
a UTM is an interpreter.

A universal Turing machine (UTM) U is a T.M. such that

U(<M >,w) =M(w)

.
That is, U simulate exactly what M does on input w . Turing showed how
to design a UTM.

10 / 16

The Entscheidungsproblem
In his seminal paper “On Computable Numbers With an Application to
the Entscheidungsproblem (i.e. decision problem), Turing uses his model
and the undecidability of the halting problem, to prove the undecidabiliy of
the “Entscheidungsproblem” posed by Hilbert in 1928. (Church provided
an independent proof within his formalism.)

Sometimes this is informally stated as “can mathematics be decided ?”

The Entscheidungsproblem question refers to the decidability of predicate
logic which Church and Turing independently resolved in 1936-1937. It
would take a little while to formally define this ”Entscheidungsproblem”
but here is an example of the kind of question that one wants to answer:
Given a formula such as ∀x∃y : y < x
can we determine if such a formula is always true no matter what what
ordered domain x , y and < refer to?
For example, x < y and y < z implies x 6= z is always true.
But x < y implies ∃z : x < z < y is not true of all ordered domains (e.g.,
consider the integers) but is true of the rationals.

11 / 16

Repeating the pictorial representation of a Turing
machine

Figure: Figure taken from Michael Dawson “Understanding Cognitive Science”
12 / 16

Formalization of a Turing machine
Formally, a Turing machine algorithm is described by the following
function δ : Q × Γ→ Q × Γ× {L,R}
Q is a finite set of states. Γ is a finite set of symbols
(e.g., Γ = {#, 0, 1, a, b, . . .} and perhaps Σ = {0, 1})
Note: Each δ function is the definition of a single Turing machine;
that is, each δ function is the statement of an algorithm.
We can assume there is a halting state qhalt such that the machine
halts if it enters state qhalt . There is also an initial state q0.
We view a Turing machine P as computing a function fP : Σ∗ → Σ∗

where Σ ⊆ Γ where y = f (x) is the string that remains if (and when)
the machine halts. There can be other conventions as to interpreting
the resulting output y .
Note that the model is precisely defined as is the concept of a
computation step. A configuration of a TM is specified by the
contents of the tape, the state, and the position of the tape head. A
computation of a TM is a sequence of configurations, starting with an
initial configuration.
For decision problems, we can have YES and NO halting states. 13 / 16

A more general Turing machine model

The Turing machine model has been extended to allow separate read (for
the input) and write (for the output when computing a function) tapes
and any finite number of work tapes. Here is a figure of a multi-tape TM
(but without separate input and output tapes).

Figure: Figure from the Bela Gyires Informatics Curriculum Repository

14 / 16

Diagonalization

You may have learned in high school why using the diagonalization
method it can be proved that the set of real numbers say in (0, 1) is
uncountable while the set of rationals in (0, 1) is countable.

The idea is that since the rationals are countable we can list them and lets
say that ri = the i th rational number in (0, 1) (in some agreed uopon
listing of these rationals). Suppose as a binary fraction
ri = .ri (1)ri (2)rI (3) . . . ri (mi) for some mi and ri (j) = 0 for all j > mi .

We can create a non-rational number x = .s1 s2 s3 . . . where si = 1− ri (i).

15 / 16

Diagonalization and the halting problem

We will just sketch why the halting problem is undecidable.

Using diagonalization, we can show that the following halting problem is
undecidable. Namely, the set of Turing machines is a countable set and let
Mi denote the i th TM. Consider the following function
f (i) = YES ifMi (i) = NO or Mi (i) does not halt, and f (i) = NO
otherwise.

If the halting problem were decideable, then using a UTM and the claimed
decidability of the halting problem, f would be a computable function but
that would be a contradiction since f is defined to be different than every
TM Mj .

What Turing showed is that we can encode whether or not a Turing
machine M accepts input w (i.e. the halting problem) by a statement in
predicate logic.

16 / 16

	Week 5

