
Great Ideas in Computing

University of Toronto CSC196
Fall 2022

Week 4: October 3-7 (2022)

1 / 19

Week 4 slides

Announcements:

This week the tutorial is on Wednesday (October 5). Inn addition to
todays class, the Friday class will be a guest presentation by Rahul
Krishnan.

Assignment A1 is due Friday, October 7 at 8AM. There was a typo on
the assignement saying that it was due Friday, October 8 but on the
syllabus it does say Oct 7.

The first quiz is Friday, October 21

There may be one more additional guest by Nisarg Shah on Monday,
October 24. He will discuss fairness and fair allocation.

2 / 19

Todays agenda

The Church-Turing thesis continued

Reductions

Decidability and Undecidability

Formalizing a Turing machine

The extended (i.e., polynomial time) Church-Turing thesis.

Diagonalization.

Note: For those who may be feeling that the seminar is getting too math
intensive, our next topic will be more familiar. Namely, we will be
discussing search engines.

3 / 19

The Church-Turing hypothesis

As already discussed, there is a wide consensus on the acceptance of the
Church-Turing thesis. That is, the equating of computable with Turing
computable.

I want to emphasize however, here we are talking about discrete
computation. There are some different formulations of what we mean by
say computing a function f : R→ R.

For computability and discrete computation, it doesn’t matter if we
consider functions f : N→ N or f : Σ∗ → Σ∗ for any for alphabet Σ with
|Σ| ≥ 2. Why?
When |Σ| = 1, there are some issues regarding how to encode things and
when we consider complexity, it is best to assume |Σ| ≥ 2 when
representing integers.

4 / 19

The Church-Turing hypothesis continued

For a number of proposed alternative computational models either it has
been shown that the model is either equivalent in representational power
or weaker.

Moreover, let M an alternative model, then one can exhibit a mapping of
any M computation into a Turing computation. This implies that the
Turing model is at least as powerful as the M model. To prove
equivalence of the models, one needs to show the converse is also true.

We can extend the defiintion of the Turing model (and other models) to
the computation of the computation of higher order operators. For
example let F be the set of one variable differentiable functions. Then we
would want an operator that takes a function to its derivative. Similarly
we would want an operator for integrating a function. And, of course, we
would have to say how we are representing the function being
differentiated or integrated.

5 / 19

A pictorial representation of a Turing machine

Figure: Figure taken from Michael Dawson “Understanding Cognitive Science”
6 / 19

Turing reducibility

Alan Turing also introduced the idea of an oracle Turing machine. While
one can formalize this concept, we will just use some examples. In today’s
terminology it is easy to understand the concept if one is familiar with
subroutines.

Intuitively, when we say that solving a problem A (say computing a
function) by reducing the problem to being able to solve a problem B, we
mean that in a program PA for A, we can ask ask (perhaps many times)
for a different program PB to solve B given some input z . That is, PA

temporarily turns control over to PB (specifying some input z and PB

returns with the solution B(z) and PA continues its computation.

Let’s just consider this concept in terms of {YES,No} decision problems.
Here is an example in terms of graphs.

7 / 19

Reducing strong connectivity to s-t connectivity

In a directed graph, G = (V ,E), a directed path from a node (also called
a vertex) u ∈ V to a node v ∈ V is a sequence u = u0, u1, u2, . . . , ur = v
such that (ui , ui+1) ∈ E . E is the set of edges in the directed graph.

The strong connectivity decision problem is : “Given a directed graph G ,
output YES if for every u, v ∈ V , there is a directed path from u to v ,
output NO otherwise.

For a directed graph the s-t connectivity problem is : Given a directed
graph G and two vertices s, t ∈ V , is there a path from s to t.

How would you reduce the strong connectivity problem to the s-t
connectivity problem?

We could simply ask “the oracle” for s-t connectivity if the answer is YES
for ever pair of nodes s, t ∈ V .

8 / 19

Reducing strong connectivity to s-t connectivity

In a directed graph, G = (V ,E), a directed path from a node (also called
a vertex) u ∈ V to a node v ∈ V is a sequence u = u0, u1, u2, . . . , ur = v
such that (ui , ui+1) ∈ E . E is the set of edges in the directed graph.

The strong connectivity decision problem is : “Given a directed graph G ,
output YES if for every u, v ∈ V , there is a directed path from u to v ,
output NO otherwise.

For a directed graph the s-t connectivity problem is : Given a directed
graph G and two vertices s, t ∈ V , is there a path from s to t.

How would you reduce the strong connectivity problem to the s-t
connectivity problem?
We could simply ask “the oracle” for s-t connectivity if the answer is YES
for ever pair of nodes s, t ∈ V .

8 / 19

Two consequences of a reduction

We denote a reduction of problem A to problem B by the notation
A ≤T B where the T stands for Turing.

Suppose we can reduce a decision problem A to a decision problem B.
Then if we can decide problem B, we can decide problem A.

This is how we normally think of reductions if we are an algorithm designer.

If A ≤T B, there is another consequence, namely the contrapositive: if
problem A is undecidable, then problem B is undecidable.

In propositional logic we say B =⇒ A is equivalent to ¬A =⇒ ¬B.
That is, ¬A =⇒ ¬B is the contrapositive of B =⇒ A. (Do not confuse
with the converse where the converse of B =⇒ A is A =⇒ B.)

9 / 19

Decidability and undecidability

When we discuss decidability and undecidability, we usually formulate this
in tems of language recognition. Let’s consder Turing machines with input
strings w ∈ Σ∗ for some finite alphabet Σ.

Notation: If M is a TM, we let < M > be an encoding of M and for a
string w ∈ Σ∗ we let |w | be the length of the string. We also use “iff” for
“if and only if”.

A language is a subset of strings; that is, L ⊆ Σ∗ satisfying some property.
We say that L is decidable (also called recognizable) if there is a TM M
that will halt and accept a string w if w ∈ L and it will halt and reject w
if w /∈ L. Note, in particular, M halts (i.e. stops) on every input.
Otherwise we say that L is undecidable.

10 / 19

A simple example of using a reduction to prove
undecidability

For example consider the following languages:
L1 = {< M,w > |M is a TM that halts on input string w}.
Note: The question as to whether or not L1 is decidable is what is usually
called the halting problem.
L2 = {< M > |M is a TM that halts on all inputs w}.
In fact, we can let w be a fixed input (e,g, w = 010) or we can even let w
be w =< M >. That is, we can consider the languages
L3 = {< M > |M is a TM that halts on the input string w = 010} or
L4 = {< M, < M >> |M is a TM that halts on the input string
w =< M >}

Suppose L1 (or L3, or L4 is undecidable (which they are). We want to
show that L2 is undecidable.

Let’s show that L3 ≤T L2

11 / 19

End of Monday, Oct 3 class

We ended on the previous slide claiming that we can show that L3 ≤T L2.
Thus if L3 is undecidable then L2 mjust also be unddecidable.

In fact, we will use a very simple type of reduction which I will call a
transformation and which we can denote by ≤τ . We say that A ≤τ B if
there is a computable function f such that w ∈ A iff f (w) ∈ B.

It should be easy to see that A ≤τ B is a special case of ≤T . Is this
obvious?

12 / 19

Showing the desired transformtion for the languages
on the last slide

Here is a description of the transformation of < M > to f (< M >) such
that < M3 >∈ L3 iff f (< M2 >) ∈ L2.

Given an encoding of a Turing machine TM M3, we are going to construct
a TM M2. That is, < M2 >= f (< M1 >. M2 operates on input string w
as follows:
If w 6= 010, M2 halts. (It isn’t important if M2 accepts or rejects.)

Claim: M2 accepts w iff M3 accepts w . That is, < M3 >∈ {calL3 iff
< M2 >∈ {calL2

Given that the halting problem is undecidable, many other problems can
be proved to be undecidable using reductions. Most of these problems do
not mention Turing machines but undecidability comes from the problem
“being able to encode a Turing computation”.

13 / 19

The Entscheidungsproblem
In his seminal paper “On Computable Numbers With an Application to
the Entscheidungsproblem (i.e. decision problem), Turing uses his model
and the undecidability of the halting problem, to prove the undecidabiliy of
the “Entscheidungsproblem” posed by Hilbert in 1928. (Church provided
an independent proof within his formalism.)

Sometimes this is informally stated as “can mathematics be decided ?”

The Entscheidungsproblem question refers to the decidability of predicate
logic which Church and Turing independently resolved in 1936-1937. It
would take a little while to formally define this ”Entscheidungsproblem”
but here is an example of the kind of question that one wants to answer:
Given a formula such as ∀x∃y : y < x
can we determine if such a formula is always true no matter what what
ordered domain x , y and < refer to?
For example, x < y and y < z implies x 6= z is always true.
But x < y implies ∃z : x < z < y is not true of all ordered domains (e.g.,
consider the integers) but is true of the rationals.

14 / 19

Repeating the pictorial representation of a Turing
machine

Figure: Figure taken from Michael Dawson “Understanding Cognitive Science”
15 / 19

Formalization of a Turing machine
Formally, a Turing machine algorithm is described by the following
function δ : Q × Γ→ Q × Γ× {L,R}
Q is a finite set of states. Γ is a finite set of symbols
(e.g., Γ = {#, 0, 1, a, b, . . .} and perhaps Σ = {0, 1})
Note: Each δ function is the definition of a single Turing machine;
that is, each δ function is the statement of an algorithm.
We can assume there is a halting state qhalt such that the machine
halts if it enters state qhalt . There is also an initial state q0.
We view a Turing machine P as computing a function fP : Σ∗ → Σ∗

where Σ ⊆ Γ where y = f (x) is the string that remains if (and when)
the machine halts. There can be other conventions as to interpreting
the resulting output y .
Note that the model is precisely defined as is the concept of a
computation step. A configuration of a TM is specified by the
contents of the tape, the state, and the position of the tape head. A
computation of a TM is a sequence of configurations, starting with an
initial configuration.
For decision problems, we can have YES and NO halting states. 16 / 19

A more general Turing machine model

The Turing machine model has been extended to allow separate read (for
the input) and write (for the output when computing a function) tapes
and any finite number of work tapes. Here is a figure of a multi-tape TM
(but without separate input and output tapes).

Figure: Figure from the Bela Gyires Informatics Curriculum Repository

17 / 19

Diagonalization

You may have learned in high school why using the diagonalization
method it can be proved that the set of real numbers say in (0, 1) is
uncountable while the set of rationals in (0, 1) is countable.

The idea is that since the rationals are countable we can list them and lets
say that ri = the i th rational number in (0, 1) (in some agreed uopon
listing of these rationals). Suppose as a binary fraction
ri = .ri (1)ri (2)rI (3) . . . ri (mi) for some mi and ri (j) = 0 for all j > mi .

We can create a non-rational number x = .s1 s2 s3 . . . where si = 1− ri (i).

18 / 19

Diagonalization and the halting problem

We will just sketch why the halting problem is undecidable.

Using diagonalization, we can show that the following halting problem is
undecidable. Namely, the set of Turing machines is a countable set and let
Mi denote the i th TM. Consider the following function
f (i) = YES ifMi (i) = NO or Mi (i) does not halt, and f (i) = NO
otherwise.

If the halting problem were decideable, then using a UTM and the claimed
decidability of the halthing problem, f would be a computable function but
that would be a contradiction since f is defined to be different than every
TM Mj .
What Turing showed is that we can encode whether or not a Turing
machine M accepts input w (i.e. the halting problem) by a statement in
predicate logic.

19 / 19

	Week 4

