Great Ideas in Computing

University of Toronto CSC196
Fall 2022

Week 3: September 26-September 30 (2022)

1/21

Week 3 slides

Announcements:

@ This week there was no tutorial and the class is being held on
Wednesday and Friday.

@ Next week, the class will be held on Monday and Friday and the
tutorial on Wednesday. After next week we return to the “normal”
Monday and Wednesday schedule for classes and Fridays for tutorials.
The dates for the guest presentations is Rahul Krishman (ML and
medical diagnosis) Oct 7, David Lindell (computational vision)
October 12, Daniel Wigdor (HCI) November 4, Fan Long (block
chain technology) November 14.

@ Assignment Al is due Friday, October 7 at 8AM. Due to the
rearrangement of classes, this doesn’t give us much time so | am
making this a reasonable short and | think not difficult assignment. |
will post the remaining questions today/tonight.

2/21

This weeks agenda

@ We will quickly review and conclude our discussion of the data
structures for the dictionary data type that we discussed last week.
That is, unordered lists, oredered lists, linked lists, and search trees.
In particular, we can consider balanced binary search trees. (We will
be using the white board for illustration.)

@ Search trees will lead us to an introduction of the mathematical
concept and terminology of graphs (also called networks) and directed
graphs/networks.

@ Our final data structure for a dictionary is a hash table. Hash tables
natually lead us to start discussing the importance of randomization
in computation.

3/21

Quick review of last weeks data structures for a
(dynamic) dictionary
As we saw there are tradeoffs between different data structures for the

Dictionary data type. (Moreover, tradeoffs are inherent in algorithms and
more generally in life.)

The choice of any particular data structure or algorithm will usually
depend on the intended application or class of applications (to the extent
that is known). In choosing a data structure what operations are being
done more often than others is arguably the main consideration.

Are we mainly searching for records with relatively few updates or are we
frequently updating the data base?

For a dynamic dictionary of n items stored in an array N words, we can
search an ordered list in “time" O(log, n) whereas searching in an
unordered list requires O(n) in the worst case. What is “average time”
and what is “time”? But updating in an inserting a new item in an
unordered list (if we know n) is constant time whereas inserting a new

item into a sorted list requires O(n) time.
4/21

Search trees as a special case of graphs/networks

and terminology
Let's again consider the search tree data structure which | will again
illutrate on the white board.

In discussing search trees, we will use the terminology of graph theory so
as to make definitions precise. Lots of notation and definitions but
hopefully the illustrations will make things clear. A search tree is labelled
rooted tree which is a special case of a directed graph.

A directed graph (also called a directed network) G = (V/, E) consists of a
set of nodes (also called vertices) V and a set of edges E (also called
links) where each edge is an ordered pair (u, v) of nodes. We are drawing
a representation of an edge on the board. Note: We are assuming simple
directed graphs where u # v; i.e., no self loops.

A graph (also called an undirected graph) is almost formally the same but
now edges are unordered pairs.
Note: The beginning chapters of the text by Easley and Kleinberg gives

lots of examples and applications of graphs/networks. /o

A few more graph theoretic definitions

The in-degree of a node v in G is |{(u,v) € E}|; that is, the number of
edges into v. The out-degree of a node v is |{(v,z) € E|}; that is the
number of edges leaving v.

A directed path 7 from v to z in a directed graph is a sequence of edges
(uo, u1), (u1, u2), ... (up—1, ug) with v = ug and z = uy. The path length of
7 is £. We are only considering simple paths such that u; # u; for i # j.

A directed tree is a special case of a directed graph with the folllowing
properties:

@ There is a unique node (called the root having in-degree 0 ; lets call

the root r.

@ For every node v # r, there is a unique path from r to v.
It follows that every node v # r has in-degree 1.
The depth depth(v) of a node v in a directed tree is the length of the
unique path from r to v. Note: We can slightly abuse terminology and say
that r is at depth O.

A leaf in a directed tree is a node having out-degree 0.
6/21

Search trees as labelled directed trees; binary search
trees

In a graph or directed graph we may want to label the nodes and/or edges.

A search tree is a directed tree where the nodes are labelled by record
identifiers or (also called "keys"). We could then use pointers to the
record corresponding to the key (or if the records don’t contain much
information, then store the entire record in a node).

Note: Alternatively, we might only store the keys/records in the leaves of
the tree.

For simplicity, we will only consider binary search trees where every node
has out-degree at most 2. (In a strict binary tree, every non-leaf node has
out-degree exactly 2.)

In a binary search tree, the left (resp. right) “subtree” of a node v consists
of all the nodes whose identifiers (i.e. labels) are less than (resp. greater
than) the identifier of v.

7/21

Final comments on binary search trees.

A perfectly balanced binary search tree is one in which depth of the tree
(i.e. the maximum path length to any node) is |log, n|n. For our
purposes, it is OK if the depth is “close” to log, n.

In a balanced search tree with n keys, a search can be done in time
O(log, n) time. | hope this is easy to see as this is like binary search. And
it suffices to be “nearly balanced”.

What is not so easy to see is that a balanced binary search tree can be
rebalanced after an update or an insertion/deletion in O(log, n) time. So
balanced search trees seem like a good compromise for dynamic
dictionaries.

As pointed out in class, a linked list can be viewed as a special case of an
oerdered search tree where the root contains the smallest key and all
nodes (except the leaves) have out-degree 1.

| was asked if there is any reason to use an sorted list (in any array) rather
than a binary search tree?.

8/21

Final comments on binary search trees.

A perfectly balanced binary search tree is one in which depth of the tree
(i.e. the maximum path length to any node) is |log, n|n. For our
purposes, it is OK if the depth is “close” to log, n.

In a balanced search tree with n keys, a search can be done in time
O(log, n) time. | hope this is easy to see as this is like binary search. And
it suffices to be “nearly balanced”.

What is not so easy to see is that a balanced binary search tree can be
rebalanced after an update or an insertion/deletion in O(log, n) time. So
balanced search trees seem like a good compromise for dynamic
dictionaries.

As pointed out in class, a linked list can be viewed as a special case of an
oerdered search tree where the root contains the smallest key and all
nodes (except the leaves) have out-degree 1.

| was asked if there is any reason to use an sorted list (in any array) rather
than a binary search tree?. If we had a static dictionary, a sorted list would
be faster by some constant factor and would take up less memory by a 5,21

End of Wednesday, September 28 class

http://www.cs.toronto.edu/~bor/303s20 is the home page for the 2020
spring version of CSC303 (Social and Information Networks). There you
will find a link to the course contents. Take a look at the slides for week 1
for all the graph concepts you will need for this course and probably for
most future courses. .

You will also find many examples of applications of graphs and directed
graphs. As | said in class today, graphs are used throughout CS and many
other disciplines. Getting familiar with these concepts is important.

We will continue on Friday with a discsussion of hash tables.

9/21

Start of Friday, September 30 class
Announcements:

@ | have added two questions to Assignment 1 (Al) and the assignment
is now complete. | can answer questions on the Assignment today
and Monday and Vignesh can also take questions on Wednesday.
Please be sure to submit your aassignment on time.

@ Next week the class meets Monday and Friday with the tutorial on
Wednesday. On Friday, Professor Rahul Krishnan visits.

Todays agenda

@ We will discuss hash tables as our last example of a way to implement
a dictionary. This discussion will naturally involve randomness and
probability. As | mentioned last class, the two mathematical fields
that you will often encounter in CS are graph theory and probability.

@ Then we will start a new topic, namely we want to consider the
fundamental question “What does it mean to be computatble”. This
to me is one of the greatest of the great ideas even though (like other
great ideas) we may be quite unaware of the importance of having a

precise definition for what is and what is not computable.
10/21

A hash table: One more way to implement a
dictionary

We have a hash function h: | — M where | = {IDy,...IDy} is the set of

all possible integer identifiers and M = {A[0],..., A[m — 1]} is a small set
of memory locations

That is, we are going to hash each of the N = |/| possible items to a small
set of m = |M| memory locations.

Here we can have N >> n where n is the actual number of items we are
storing.

What is a suitable hash function A?

11/21

A hash table: One more way to implement a
dictionary

We have a hash function h: | — M where | = {IDy,...IDy} is the set of

all possible integer identifiers and M = {A[0],..., A[m — 1]} is a small set
of memory locations

That is, we are going to hash each of the N = |/| possible items to a small
set of m = |M| memory locations.

Here we can have N >> n where n is the actual number of items we are
storing.

What is a suitable hash function h?

One possiblility is h(ID) = (a- ID + b)(mod p)(mod m) where p is a large
prime.

11/21

A hash table

Ignoring conflicts in the hash table, can search in constant time for a
particular item

12/21

A hash table

Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

12/21

A hash table

Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

Note: When we draw random numbers in the execution of an algorithm,
we are not drawing truly random numbers. The generation of pseudo
random numbers and pseudo random functions is an interesting and
substantial topic, one related to complexity theory and cryptography, two
of our future topics.

Hash tables lead us to introduce the use of probability, pseudo random
numbers and functions.

12/21

A hash table

Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

Note: When we draw random numbers in the execution of an algorithm,
we are not drawing truly random numbers. The generation of pseudo
random numbers and pseudo random functions is an interesting and
substantial topic, one related to complexity theory and cryptography, two
of our future topics.

Hash tables lead us to introduce the use of probability, pseudo random
numbers and functions.

Conceptually, we think of a hash funcftion as randomly placing an item in
a memory location. Think of the item as a ball and memory as a collection
of bins. 12/21

The birthday paradox

The birthday paradox: In probability theory, the birthday problem or
birthday paradox concerns the probability that, in a set of n randomly
chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of
people reaches 367 (since there are only 366 possible birthdays, including
February 29). However, 99.9% probability is reached with just 70 people,
and 50% probability with 23 people. These conclusions are based on the
assumption that each day of the year (excluding February 29) is equally
probable for a birthday.

Our intuitive view of hashing as a balls and bins trial is good at some
level; but we do need to remember that we are only approximately true
randomness.

13/21

What can’t a computer do?

When we see the rather spectacular ways in which computer algorithms
can perform, it is natural to ask whether or not there is anything that
eventually we cannot do by computers.

Watching this evolution of computation and communication over say the
last 80 years (since the earliest general purpose computers) and, in
particular some of the most recent applications of machine learning, one
can be forgiven for perhaps believing that there are no ultimate limitations.

But if we are going to ask about the limitations of computation in a
precise way, well then we will need a precise mathematical framework.

This will lead is to the seminal 1930s work of Alan Turing (and
independently Alonzo Church). To appreciate the seminal (and | would
even say surprising) nature of this work, we consider Hilbert's 10th
problem.

14 /21

Computer Science as a mathematical science

David Hilbert was one of the great mathematicians of the late 19th and
early 20th centuries. He asked the following question in 1900 known as
Hilbert's 10" problem:

“Given a Diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: To devise a process
according to which it can be determined in a finite number of operations
whether the equation is solvable in rational integers”

Here is a more familiar way to ask this question:

Given a polynomial P(x, ..., x,) with integer coefficients in many
variables, decide if P has an integer root. That is, do there exist integers
fiy...,in such that P(ip,..., i) =07

As an example, P(x) = x — 2 clearly has an integer root whereas
P(x) = x? — 2 does not have an integer (or rational) root.

15/21

What is computable? What is decidable?

Hilbert's question was essentially to ask if there is an algorithm that could
decide whether or not a given multivariate polynomial has an integer root.
Hilbert didn't mention the words “algorithm™ or “computer” but he did
articulate the need to solve the problem in a finite number of “steps”.

Hilbert believed there was such a decision procedure but did not formalize
what it meant to say that a problem solution is computable.

Terminology: If the problem is a decision problem (i.e., where the solution
is to output YES or NO) then we usually say decidable rather than
computable.

Following a series of intermediate results over 21 years, in 1970
Matiyasevich gave the first proof that Hilbert's 10th problem was
undecidable (in a precise sense we will next discuss).

Note: The problem is decidable for polynomials in one variable.

16/21

A precise definition for the meaning of “decidable”

We have studied the von Neumann model as a model of computation but
we never gave a precise definition but more or less relied on our prior
knowledge of how we think computers work. And we didn't give a
definition for what is an algorithm.

Computers are continually getting faster and have larger memories so must
our concept of what is computable also be constantly changing? Could
Hilbert's problem become decidable tomorrow?

We also briefly touched upon the complexity of operations with respect to
the data structures for the dictionary data type. Must the complexity of
operations and the complexity of algorithms also change constantly?

This raises a fundamental question: s there an ultimate precise model of
computation with respect to which we would then have a precise meaning
of a computable function? Or must we continually be changing our
understanding of what is and what is not computable?

17/21

A precise definition for the meaning of computable
(decidable) continued

High level models such as the von Neumann model provide a good
intuition for what we have in mind when we say a function f is decidable.
But we really need a precise mathematical model if we want to
prove mathematical results.

Independently in 1936, Alonzo Church and Alan Turing published formal
definitions for what it meant to be computable. These papers were very
influential for the von Neumann model which comes about 10 years later.

Church's definition was based on a formalism in logic called the lambda
calculus where one starts with some basic functions and then specifies
ways to compose new functions from existing functions.

Alan Turing proposed a precise model of computation which we will only
briefly describe. Turing also went on to show that these two very different
models are provably equivalent in the sense that they result in the same
set of computable functions.

18/21

But are there other models?

For a number of years other models were considered and all turn out to be
equivalent (and sometimes weaker) than the Church-Turing models.

This led to the following Church-Turing hypothesis. Every plausible model
of computation is equivalent to (or weaker than) Turing's very basic
computational model. This is not to say that Turing machines are as easy
to program or will lead to the same complexity analysis. But the
meaning of computable does not change.

In particular, what about quantum computing?

19/21

But are there other models?
For a number of years other models were considered and all turn out to be
equivalent (and sometimes weaker) than the Church-Turing models.

This led to the following Church-Turing hypothesis. Every plausible model
of computation is equivalent to (or weaker than) Turing's very basic
computational model. This is not to say that Turing machines are as easy
to program or will lead to the same complexity analysis. But the
meaning of computable does not change.

In particular, what about quantum computing? It could very well be that
quantum computing will substantially change our sense of what is
“efficiently computable” but it does not enlarge the meaning of
“computable”.

Note: The Church Turing hypothesis in NOT a theorem. It is an almost
universally believed statement about the nature of digital computing.
Could someday we come to believe that there are more inclusive models?

19/21

But are there other models?
For a number of years other models were considered and all turn out to be
equivalent (and sometimes weaker) than the Church-Turing models.

This led to the following Church-Turing hypothesis. Every plausible model
of computation is equivalent to (or weaker than) Turing's very basic
computational model. This is not to say that Turing machines are as easy
to program or will lead to the same complexity analysis. But the
meaning of computable does not change.

In particular, what about quantum computing? It could very well be that
quantum computing will substantially change our sense of what is
“efficiently computable” but it does not enlarge the meaning of
“computable”.

Note: The Church Turing hypothesis in NOT a theorem. It is an almost
universally believed statement about the nature of digital computing.
Could someday we come to believe that there are more inclusive models?
Yes but so far our experience leads us to believe that the hypotheis will

continue to be (almost) universally accepted.
19/21

A pictorial representation of a Turing machine

Infinitely Long Ticker Tape Memory

I3 3
£| |E
= &
2| |8
=
2| B
Machine
% Table
 Move Move
Left Right
Machine
State
Machine Head

Figure: Figure taken from Michael Dawson “Understanding Cognitive Sciencg;/21

	Week 3

