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Announcements
Announcements

@ As you know, this is the last week of classes for the fall term. We will
not avail ourselves of the makeup Monday class as | am sure everyone
would rather have the time to study for exams.

@ Please promptly submit any regrade requests for the quiz. In
particular if you received any deduction for first normalizing the values
in the fair division question, please resubmit.

@ | have some quizzes that were not picked up last Wednesday. Any
unclaimed quizzes after the last class this Wednesday (December 7)
will be given to the undergraduate office.

@ The final assignment is due December 5 at 8AM. | am sure that
Vignesh will grades them as fast as possible. After Assignment 4 is
graded, | will calculate the participation grade and then calculate final
grades. | will announce (on Quercus) these grades before submitting.
Pleaase notify (by email) within two days if you notice any clerical
errors. | am supposed to submit final grades within a week of the end

of classes for courses not having a final exam.
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This weeks impossible agenda

@ We left off having introduced the preferential attachment model for
network formation and proven or observed properties for such models.
In particular, we mentioned the Barabasi and Albert model.

@ We will briefly repeat those slides.

@ The main theme today will be how graph structure can reveal
personal and individual information as well as communities. In
particular, we will discuss

@ Floretine marriages and “centrality”. Why were the Medici's so
influential?

@ The Bearman et al study of romatic relations in a US high school
which we mentioned briefly before.

@ The Backstrom and Kleinberg method for discovering the romantic
relation in a subgraph of facebook.

@ Bearman and Moody discussion of low triadic closure

@ Modelling and understanding the small worlds phenomena. The
Watts-Strogaatz, and Kleinberg models and analysis.

@ More realistic georgraphic models.

@ Extending geographic distance to social distance. :q 3/79



Looking ahead: The punch line in the
Kleinberg-Easley text, and a major theme in the

study of social networks (and this course)
The plots in Figure 20.10, and their follow-ups, are thus the con-

clusion of a sequence of steps in which we start from an experiment
(Milgram'’s), build mathematical models based on this experiment
(combining local and long-range links), make a prediction based
on the models (the value of the exponent controlling the long-
rang links), and then validate this prediction on real data (from
LiveJournal and Facebook, after generalizing the model to use
rank-based friendship). This is very much how one would hope
for such an interplay of experiments, theories, and measurements
to play out. But it is also a bit striking to see the close align-
ment of theory and measurement in this particular case, since the
predictions come from a highly simplified model of the underlying
social network, yet these predictions are approximately borne out
on data arising from real social networks.

[From E&K Ch.20, p.549]

4/79



The Barabasi and Albert preferential model

Barabasi and Albert [1999] specified a particular preferential attachment
model and conjectured that the vertex degrees satisfy a power law in
which the fraction of nodes having degree d is proportional to d—3.

They obtained v ~ 2.9 by experiments and gave a simple heuristic
argument suggesting that v = 3. That is, P(d) is proportional to d—3

Bollobas et al [2001] prove a result corresponding to this conjectured
power law. Namely, they show for all d < n'/15 that the expected degree
distribution is a power law distribution with v = 3 asymptotically (with n)
where n is the number of vertices.

Note: It is known that an actual realized distribution may be far from its
expectation, However, for small degree values, the degree distribution is
close to expectation.

When we say that a distribution P(d) is a power law distribtion this is
often meant to be a "with high probaility” whereas many results for
networks generated by a preferential attachment process the power law is
usually only in expectation. 5/79



Proven or observed properties of nodes in a social
network generated by preferential attachment
models

In addition to the power law phenomena suggesting many nodes with high
degree, other properies of social networks have been obseerved such as a
relatively large number of nodes u having some or all of properties such as
the following: .

@ high clustering coefficient defined as : (”‘(’I)J(V”)'EVJ‘SVV)éVgEE That is,

mutual friends of u are likely to be friends.

@ high centrality ; e,g, nodes on many pairs of shortest paths.

Brautbar and Kearns refer to such nodes (as above) as “interesting
indiviudals” and these individuals might be candidates for being “highly
influential individuals”. Bonato et al [2015] refers to such nodes as the
elites of a social network
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Florentine marriages and “centrality”

@ Medici connected to more families, but not by much

@ More importantly: lie between most pairs of families
> shortest paths between two families: coordination, communication
» Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%
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Other proven or observed properties of networks

generated by preferentical attachment models
@ correlation between the degree of a node u and the degrees of the
neighboring nodes.
@ the graph has small diameter; suggesting "6 degrees of separation
phenomena”
o relatively large dense subgraph communities.
@ rapid mixing (for random walks to approach stationary distribution)
o relatively small (almost) dominating sets. What do we mean by
“almost”?
On my spring 2020 CSC303 web page, | posted a paper by Avin et al
(2018) that shows that preferential attachment is the only “rational
choice” for players (people) playing a simple natural network formation
game. It is the rational choice in the sense that the strategy of the players
will lead to a unique equilibrium (i.e. no player will want to deviate
assumming other players do not deviate). For those intersted, | have
posted (in my CSC303 webpage) a number of other papers on elites in a

social network and preferential attachment.
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The Small World Phenomena

| already mentioned the small worlds phenomena. A mathematical
explanation of this phenomena (expecially how one hones in on a target
recipient) was given by J. Kleinberg in a network formation model that
explicitly forces a power law property.

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path. Moreover, such a path can be found in a
decentralized manner

Later in these slides we will discuss other power laws with respect to the
Kleinberg model and extensions.
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Romantic Relationships [Bearman et al, 2004]
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Figure: Dating network in US high school over 18 months.

o lllustrates common “structural” properties of many networks
@ What predictions could you use this for?

10/79



More basic definitions
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More basic definitions
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More basic definitions
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Observation

Many connected components including one “giant component” J

@ We will use this same graph to illustrate some other basic concepts.

@ A cycle is path u1, up, ..., ux such that u; = uy; that is, the path
starts and ends at the same node.
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More comments on how graph structure can reveal
personal and individual information: Detecting the
romantic relation in Facebook

@ There is an interesting paper by Backstrom and Kleinberg
(http://arxiv.org/abs/1310.6753) on detecting “the” romantic
relation in a subgraph of facebook users who specify that they are in
such a relationship.

@ Backstrom anbd Kleinberg construct two datasets of randomly
sampled Facebook users: (i) an extended data set consisting of 1.3
million users declaring a spouse or relationship partner, each with
between 50 and 2000 friends and (ii) a smaller data set extracted
from neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

@ The main experimental results are nearly identical for both data sets.
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Detecting the romantic relation (continued)

@ They consider various graph strucutral features of edges, including

@ the embeddedness of an edge (A, B) which is the number of mutual
friends of A and B.

@ various forms of a new dispersion measure of an edge (A, B) where high
dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

© One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of u and v such that (s, t) ¢ E and s, t have no
common neighbours except for u and v.

@ They also consider various “interaction features” including

© the number of photos in which both A and B appear.
@ the number of profile views within the last 90 days.
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Embeddedness and disperison example from paper

Figure 2. A synthetic example network neighborhood for a user u; the
links from v to b, ¢, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from « to h has an embeddedness
of 4. On the other hand, nodes « and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, ¢, and f.
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Qualitative results from Backstrom and Kleinberg

@ The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%
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Qualitative results from Backstrom and Kleinberg

@ The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%

@ Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?

@ By itself, dispersion outperforms various interaction features.

@ For most measures, performance is better for male users and also
better for data when restricted to marriage as the relationship.

@ By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.

@ There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct

predictions

Recall that we argue that the fraction might be .005 when randomly

choosing an edge. Do you find anything surprising?

type embed | rec.disp. | photo | prof.view.
all 0.247 0.506 | 0415 0.301
married 0.321 0.607 | 0.449 0.210
married (fem) 0.296 | 0.551 | 0.391 0.202
married (male) 0.347 0.667 | 0.511 0.220
engaged 0.179 | 0446 | 0442 0.391
engaged (fem) 0.171 0.399 | 0.386 0.401
engaged (male) 0.185 0.490 | 0.495 0.381
relationship 0.132 0.344 ] 0.347 0.441
relationship (fem) | 0.139 | 0.316 | 0.290 0.467
relationship (male) | 0.125 0.369 | 0.399 0.418
type max. | max. all. all. | comb.
struct. | inter. | struct. | inter.
all 0.506 | 0.415 | 0.531 | 0.560 | 0.705
married 0.607 | 0.449 | 0.624 | 0.526 | 0.716
engaged 0.446 | 0.442 | 0.472 | 0.615 | 0.708
relationship | 0.344 | 0.441 | 0.377 | 0.605 | 0.682
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Triadic closure (undirected graphs)

(a) Before B-C' edge forms. (b) After B-C' edge forms.

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

@ Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.

@ How do we measure the extent to which triadic closure is occurring?

@ How can we know why a new friendship tie is formed? (Friendship
ties can range from “just knowing someone” to “a true friendship” .)
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Measuring the extent of triadic closure

@ The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

@ Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

[{(B,C) e E:(B,A) € E and (C,A) € E}|
[{{B,C}: (B,A) € E and (C,A) € E}|

@ The numerator is the number of all edges (B, C) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

@ The denominator is the total number of all unordered pairs {B, C}
such that B and C are adjacent to A.
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Example of clustering coefficient

(a) Before new edges form. (b) After new edges form.

@ The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C, D) among the six pairs of friends:
{B,C}, {B,D}, {B,E}, {C,D}, {C,E}, and {D,E}). We
sometimes refer to a pair of adjacent edges like (A, B), (A, C) as an
“open triangle” if (B, C) does not exist.

@ The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B, C), (C.D), and (D, E)).

19/79



Interpreting triadic closure

@ Does a low clustering coefficient suggest anything?
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Interpreting triadic closure

@ Does a low clustering coefficient suggest anything?

@ Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
contemplating suicide (compared to those with high clustering
coeficient). Note:The value of the clustering coefficient is also
referred to as the intransitivity coefficient.

@ They report that “ Social network effects for girls overwhelmed other
variables in the model and appeared to play an unusually significant
role in adolescent female suicidality. These variables did not have a
significant impact on the odds of suicidal ideation among boys. "

How can we understand these findings?
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Bearman and Moody study continued

@ Triadic closure (or lack thereof) can provide some plausible
explanation.
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Bearman and Moody study continued

@ Triadic closure (or lack thereof) can provide some plausible
explanation.
Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
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Bearman and Moody study continued

@ Triadic closure (or lack thereof) can provide some plausible
explanation.
Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
As far as | can tell, no conclusions are being made about why there is
such a difference in gender results.
The study by Bearman and Moody is quite careful in terms of identifying
many possible factors relating to suicidal thoughts. Clearly there are many
factors involved but the fact that network structure is identified as such an
important factor is striking.
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Bearman and Moody factors relating to suicidal

thoughts

TABLE 3-Logistic Regression of Suicide Attempts, Among Adolescents With Suicidal

Ideation, on Individual, School, Fa

and Network

Demographic
hee

Roce/ethnicity
Back
Otrer
Socioeconoic satus
School and community
i high school
Relthe densty
P team sport
Atachment o school
Relgon
Church atendance
Familyand household
Parental distance

Single-parent household

Gunin household

Famiy member atempted sucide
Network

Isolaton

Invasiuty ndex

Fiend atempted sicide

Troublewith people
Personalcharactrstics

Duunkenness fequency
Grde point average
Sexaly experienced
Homasewal ataction
Forced seual elations
No.of fhts
Body mass index
Response pofe (n=1/1=0)
Fatst

Sucide tenpts,OR (95% )

Waes

0956 (0808, 1131)

0872(0414,18%9)
1069 (0.662,1728)
0948 (0872,1031)

1588(0.793,3180)
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0985 (0633,15%2)
1079(0.823,1414)
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0925 (0581, 1256)
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1058(0617,1814)
1142 (0698, 1.866)
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17101095, 2671)
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1124(0962,1.312)
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0966 (0770,1213)
0981(0933,1092)
1397493
184(P=0170)

Femaes

0920 (0810, 1046)

1,086 (0680, 1736)
1134 (0810,1586)
1,008 0951, 1069)

1271 0811,1999)
0415 (0.086,1996)
1020 (0763, 1364)
1,066 (0920,1235)

0818 (0618,1082)

0955 (0801,1139)
0933 0781, 1115)
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11170800, 1560)
1094 (0800, 1494)
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1187 (0360,3708)
107603733103
1663/1.253,2207)
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1,135 (0983,1310)
1014 0982,1047)
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288 (P<.0001)

Hote 3
satfcaion on th bass o e, ethic i, and schoolype and size.
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End of Monday, December 5 class

We ended having discussed the Bearman and Moody study which indicates
the correlation betwewen low correlation coefficient and suicidal thoughts.

We will continue Wednesday discussing social networks beginning with the
strength of weak ties, and the the Sintos and Tsaparas results for infering
the strength of ties. If time permits, we conclude with the six degrees of
separation phenomena.
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Granovetter’s thesis: the strength of weak ties

@ In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?
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Granovetter’s thesis: the strength of weak ties

@ In 1960s interviews: Many people learn about new jobs from personal
contacts (which is not surprising) and often these contacts were
acquaintances rather than friends. Is this surprising?

Upon a little reflection, this intuitively makes sense.

@ The idea is that weak ties link together “tightly knit communities”,
each containing a large number of strong ties.

@ Can we say anything more quantitative about such phenomena?

@ To gain some understanding of this phenomena, we need some
additional concepts relating to structural properties of a graph.

Recall
@ strong ties: stronger links, corresponding to friends

@ weak ties: weaker links, corresponding to acquaintances

24/79



Bridges and local bridges

@ One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

@ A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

@ We expect that large social networks will have a “giant component”
and few bridges within that connected component.
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Bridges and local bridges

@ One measure of connectivity is the number of edges (or nodes) that
have to be removed to disconnect a graph.

@ A bridge (if one exists) is an edge whose removal will disconnect a
connected component in a graph.

@ We expect that large social networks will have a “giant component”
and few bridges within that connected component.

@ A local bridge is an edge (A, B) whose removal would cause A and B
to have graph distance (called the span of this edge) greater than
two. Note: span is a dispersion measure, as introduced in the
Backstrom and Kleinberg article regarding Facebook relations.

@ A local bridges (A,B) plays a role similar to bridges providing access
for A and B to parts of the network that would otherwise be (in a
useful sense) inaccessible.
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Local bridge (A, B)

Figure: The edge (A, B) is a local bridge of span 4, since the removal of this
edge would increase the distance between A and B to 4. [E&K Figure 3.4]
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Strong triadic closure property: connecting tie
strength and local bridges

Strong triadic closure property

Whenever (A, B) and (A, C) are strong ties, then there will be a tie
(possibly only a weak tie) between B and C.

@ Such a strong property is not likely true in a large social network
(that is, holding for every node A)

@ However, it is an abstraction that may lend insight.
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Strong triadic closure property: connecting tie
strength and local bridges

Strong triadic closure property

Whenever (A, B) and (A, C) are strong ties, then there will be a tie
(possibly only a weak tie) between B and C.

@ Such a strong property is not likely true in a large social network
(that is, holding for every node A)

@ However, it is an abstraction that may lend insight.

Theorem

Assuming the strong triadic closure property, for a node involved in at
least two strong ties, any local bridge it is part of must be a weak tie.

Informally, local bridges must be weak ties since otherwise strong triadic
closure would produce shorter paths between the end points.
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Triadic closure and local bridges

Strong Triadic Closure says
the B-C edge must exist, but
the definition of a local bridge
says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong
ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the
reason why: if the A-B edge is a strong tie, then there must also be an edge between B and
C, meaning that the A-B edge cannot be a local bridge.
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Strong triadic closure property continued

@ Again we emphasize (as the EK text states) that “Clearly the strong
triadic closure property is too extreme to expect to hold across all
nodes ... But it is a useful step as an abstraction to reality, ..."

@ Sintos and Tsaparas give evidence that assuming the strong triadic
closure (STC) property can help in determining whether a link is a
strong or weak tie.
(http:/(www.cs.uoi.gr/~tsap/publications/frp0625-sintos.pdf)

We will discuss this paper later today.
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Embeddedness of an edge

Just as there are many specific ways to define the dispersion of an edge,
there are different ways to define the embeddedness of an edge.

The general idea is that embeddedness of an edge (u, v) should capture
how much the social circles of u and v “overlap”. The next slide will use a
particular definition for embeddedness.

Why might dispersion be a better discriminator of a romantiic relationship
(especially for marriage) than embeddedness?
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Large scale experiment relating tie strength and and
overlap

Onnela et al. [2007] studied the who-talks-to-whom network
maintained by a cell phone provider. iMore specifically, a large
network of cell users where an edge exists if there existed calls in both
directions in 18 weeks.

First observation: a giant component with 84% of nodes.

@ Need to quantify the tie strength and the closeness to being a local

bridge.

Tie strength is measured in terms of the total number of minutes
spent on phone calls between the two end of an edge.

Closeness to being a local bridge is measured by the neighborhood
overlap of an edge (A, B) defined as the ratio

number of nodes adjacent to both A and B

number of nodes adjacent to at least one of A or B

Local bridges are precisely edges having overlap 0.

The numerator is the embeddedness of the edge.
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Onnela et al. experiment
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Figure: A plot of the neighborhood overlap of edges as a function of their
percentile in the sorted order of all edges by tie strength. [E&K Fig 3.7]
@ The figure shows the relation between tie strength and overlap.
@ Quantitative evidence supporting the theorem: as tie strength
decreases, the overlap decreases; that is, weak ties are becoming
“almost local bridges” having ovelap almost equal to O.
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Onnela et al. study continued

To support the hypothesis that weak ties tend to link together more
tightly knit communities, Onnela et al. perform two simulations:
© Removing edges in decreasing order of tie strength, the giant
component shrank gradually.

© Removing edges in increasing order of tie strength, the giant
component shrank more rapidly and at some point then started
fragmenting into several components.
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Word of caution in text regarding such studies

Easley and Kleinberg (end of Section 3.3):
Given the size and complexity of the (who calls whom) network,
we cannot simply look at the structure. . . Indirect measures must
generally be used and, because one knows relatively little about the
meaning or significance of any particular node or edge, it remains
an ongoing research challenge to draw richer and more detailed
conclusions. . .
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Strong vs. weak ties in large online social networks
(Facebook and Twitter)

@ The meaning of “friend” as in Facebook is not the same as one might
have traditionally interpreted the word “friend”.

@ Online social networks give us the ability to qualify the strength of
ties in a useful way.

@ For an observation period of one month, Marlow et al. (2009)
consider Facebook networks defined by 4 criteria (increasing order of
strength): all friends, maintained (passive) relations of following a
user, one-way communication, and reciprocal communication.

@ These networks thin out when links represent stronger ties.

@ As the number of total friends increases, the number of reciprocal
communication links levels out at slightly more than 10.

© How many Facebook friends did you have for which you had a
reciprocal communication in the last month?
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Different Types of Friendships: The neighbourhood
network of a sample Facebook individual

All Friends Maintained Relationships
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A limit to the number of strong ties

Active Network Sizes

—— Maintained Relationships
—— One-way communication
—— Reciprocal communication

# of People

T T T T T T
° 100 200 300 500 00

Network Size

Figure: The number of links corresponding to maintained relationships, one-way
communication, and reciprocal communication as a function of the total
neighborhood size for users on Facebook. [Figure 3.9, textbook]
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Twitter:Limited Strong Ties vs Followers

s

Number of Frie

L 1 I
o 200 400 600 800 1000 1200
Number of followees

Figure: The total number of a user's strong ties (defined by multiple directed
messages) as a function of the number of followees he or she has on Twitter.
[Figure 3.10, textbook]
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Information spread in a passive network

@ The maintained or passive relation network (as in the Facebook
network on slide 36) is said to occupy a middle ground between

© strong tie network (in which individuals actively communicate), and
@ very weak tie networks (all “friends”) with many old (and inactive)
relations.

@ “Moving to an environment where everyone is passively engaged with
each other, some event, such as a new baby or engagement can
propagate very quickly through this highly connect neighborhood.”

@ We can add that an event might be a political demonstration.
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Social capital

Social capital is a term in increasingly widespread use, but it is a famously
difficult one to define.

The term “social capital” is designed to suggest its role as part of an array
of different forms of capital (e.g., economic capital) all of which serve as
tangible or intangible resources that can be mobilized to accomplish tasks.

A person can have more or less social capital depending on his or her
position in the underlying social structure or network. A second, related,
source of terminological variation is based on whether social capital is a
property that is purely intrinsic to a group — based only on the social
interactions among the group's members — or whether it is also based on
the interactions of the group with the outside world.
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“Tightly knit communities” connected by weak ties

@ In a small network we can sometimes visualize the tightly knit
communities but one cannot expect to do this is a large network.
That is, we need algorithms.

41/79



“Tightly knit communities” connected by weak ties

@ In a small network we can sometimes visualize the tightly knit
communities but one cannot expect to do this is a large network.
That is, we need algorithms.

@ Recalling the relation to weak ties, the Easley and Kleinberg text calls
attention to how nodes at the end of one (or especially more) local
bridges can play a pivotal role in a social network.

@ These “gatekeeper nodes” between communities stand in contrast to
nodes which sit at the center of a tightly knit community.
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Central nodes vs. gatekeepers

Figure: The contrast between densely-knit groups and boundary-spanning links is
reflected in the different positions of central node A and gatekeeper node B in
the underlying social network. [Fig 3.11, textbook]
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Social capital of nodes A and B

@ The edges adjacent to node A all have high embeddedness. Visually
one sees node A as a central node in a tightly-knit cluster. As such,
the social capital that A enjoys is its “bonding capital” in that the
actions of A can (for example) induce norms of behaviour because of
the trust in A.

@ In contrast, node B is a bridge to other parts of the network. As
such, its social capital is in the form of “brokerage” or “bridging
capital” as B can play the role of a “gatekeeper” (of information and
ideas) between different parts of the network. Furthermore, being
such a gatekeeper can lead to creativity stemming from the synthesis
of ideas.

@ Some nodes can have both bonding capital and bridging capital.
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Florentine marriages again:
Bridging capital of the Medici

@ The Medici are connected to more families, but not by much.

@ More importantly: Four of the six edges adjacent to the Medici are
bridges or local bridges and (as noted before) the Medici lie on the
shortest paths between most pairs of families.
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Figure: see [Jackson, Ch 1 in EK text]
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A Balanced Min Cut in Graph: Bonding capital of
nodes 1 and 34

Note that node 34 also seems to have bridging capital.

Wayne Zachary's Ph.D. work (1970-72): observed social ties and
rivalries in a university karate club.

During his observation, conflicts intensified and group split.

Could the club boundaries be predicted from the network structure?

Split could almost be explained by minimum cut in social network.
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The Sintos and Tsaparas Study

In their study of the strong triadic closure (STC) property, Sintos and
Tsaparas study 5 small networks. They give evidence as to how the STC
assumption can help determine weak vs strong ties, and how weak ties act
as bridges to different communities.

More specifically, for a social network where the edges are not labelled
they define the following two computational problems: Label the graph
edges (by strong and weak) so as to satisfy the strong triadic closure
property and

© Either maximize the number of strong edges, or equivalently

© minimize the number of weak edges
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The computational problem in identifying strong vs
weak ties

@ For computational reasons (i.e., assuming P # NP and showing NP
hardness by reducing the max clique problem to the above
maximization problem), it is not possible to efficiently optimize and
hence they settle for approximations.

@ Note that even for the small Karate Club network having only m = 78
edges, a brute force search would require trying 278 solutions. Of
course, there may be better methods for any specific network.

@ The reduction preserves the approximation ratio, so it is also NP-hard
to approximate the maximization problem with a factor of nl—¢.
However, the minimization problem can be reduced (preserving
approximations) to the vertex cover problem which can be
approximated within a factor of 2.

@ Their computational results are validated against the 5 networks. In 3
of these networks, the strength of ties is known from the given data.
Their worst case approximation algorithm (via the reduction) leads to

reasonably good results achieved for the 5 real data networks.
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The vertex cover algorithms and the 5 data sets
While there are uncovered edges, the (vertex) greedy algorithm selects a
vertex for the vertex cover with maximum current degree. It has worst
case O(log n) approximation ratio. The maximal matching algorithm is a
2-approximation online algorithm that finds an uncovered edge and takes
both endpoints of that edge.

Table 1: Datasets Statistics.

Dataset Nodes | Edges | Weights Community
structure
Actors 1,986 | 103,121 Yes No
Authors 3,418 9,908 Yes No
Les Miserables 77 254 Yes No
Karate Club 34 78 No Yes
Amazon Books 105 441 No Yes

Figure: Weights (respectively, community structure) indicates when explicit edge
weights (resp. a community structure) are known.
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Tie strength results in detecting strong and weak
ties

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong  Weak | Strong = Weak
Actors 11,184 91,937 | 8,581 94,540
Authors 3,608 6,300 2,676 7,232
Les Miserables 128 126 106 148
Karate Club 25 53 14 64
Amazon Books 114 327 71 370

Figure: The number of labelled links.

Although the Greedy algorithm has an inferior (worst case) approximation
ratio, here the greedy algorithm has better performance than Maximal
Matching. (Recall, the goal is to maximize the number of strong ties, or

equivalently minimize the number of weak ties.) 49/79



Results for detecting strong and weak ties

Table 3: Mean count weight for strong and weak

edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S w S %4
Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 | 1.362 1.167
Les Miserables | 3.83 2.61 3.87 2.76

Figure: The avergae link weight.
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Tie strength results in detecting strong and weak
ties normalized by amount of activity

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S %4 S %4
Actors | 0.06 0.04 | 0.06 0.04
Authors | 0.145 0.084 | 0.155 0.088

Figure: Normalizing the number of interactions by the amount of activity.
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Results for strong and weak ties with respect to
known communities

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Figure:

Greedy
Ps Rs Pw Rw
Karate Club 1 0.37 | 0.19 1
Amazon Books | 0.81 0.25 | 0.15 0.69
MaximalMatching
Ps Rs Py Rw
Karate Club 1 0.2 | 0.16 1
Amazon Books | 0.Y3 0.14 | 0.14 0.73

Precision and recall with respect to the known communities.
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The meaning of the precision-recall table

The precision and recall for the weak edges are defined as follows:

WnNE, WnNE,
PW — I ‘Vvllnter| and RW — ‘ |E‘ mt‘er\
inter
_ ‘SﬂEintra| _ |5mEintra\
Ps= " and Rs = |

@ ldeally, we want Ry, = 1 indicating that all edges between
communities are weak; and we want Ps = 1 indicating that strong
edges are wll within a community.

@ For the Karate Club data set, all the strong links are within one of the
two known communities and hence all links between the communities
are all weak links.

@ For the Amazon Books data set, there are three communities
corresponding to liberal, neutral, conservative viewpoints. Of the 22
strong tie edges crossing communities, 20 have one node labeled as
neutral and the remaining two inter-community strong ties both deal
with the same issue.
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Strong and weak ties in the karate club network

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

@ Note that all the strong links are within one of the two known
communities and hence all links between the communities are weak
links.
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The six degrees of freedom phenomena
There are two basic ways for finding someone in a social network.
@ We could ask all of our friends to tell all of their friends to tell all of

their friends. .. (i.e. a traditional chain letter) that | am looking for
person X.

@ Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?
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their friends. .. (i.e. a traditional chain letter) that | am looking for
person X.

@ Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?

@ Suppose on the other hand that we want to reach someone and it
either costs real money/effort to pass a message (e.g. postal mail) or
perhaps | would prefer to not let everyone know that | am looking for
person X. And as was pointed out in class, there is also possibly a
“social cost” in terms of annoyance to people in the network receiving
multiple requestss to pass on a message.
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The six degrees of freedom phenomena
There are two basic ways for finding someone in a social network.
@ We could ask all of our friends to tell all of their friends to tell all of
their friends. .. (i.e. a traditional chain letter) that | am looking for
person X.

@ Now say assuming your online social network has a “broadcast to all”
feature, this can be done easily but it has its drawbacks. Drawbacks?

@ Suppose on the other hand that we want to reach someone and it
either costs real money/effort to pass a message (e.g. postal mail) or
perhaps | would prefer to not let everyone know that | am looking for
person X. And as was pointed out in class, there is also possibly a
“social cost” in terms of annoyance to people in the network receiving
multiple requestss to pass on a message.

o Clearly if everyone cooperates, the broadcast method ensures the
shortest path to the intended target X in the leveled tree/graph of
reachable nodes. 55/79



Reachable nodes without triadic closure

@ If there is no triadic closure (i.e. your friends are not mutual friends,
etc.), it is easy to see why every path is a shortest path to everyone in
the network.

@ Consider the number of people that you could reach by a path of
length at most t if every person has say at least 5 friends.

() () () () () your friends
SO0 Q000000 N0ODOOOOD 0§y friends of your friends

Figure: Pure exponential growth produces a small world [Fig 20.1 (a), E&K]
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Reachable nodes with triadic closure

@ Given that our friends tend to be mostly contained within a few small
communities, the number of people reachable will be much smaller.

your friends

friends of your friends

Figure: Triadic closure reduces the growth rate [Fig 20.1 (b), E&K]
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The Watts-Strogatz model

@ Is it possible to have extensive triadic closure and still have short
paths?

@ Homophily is consistent with triadic closure especially for strong ties
whereas weak ties can connect different communities and thereby
provide the kind of branching that yields short paths to many nodes.

@ One stylized model to demonstrate the effect of these different kinds
of ties is the Watts-Strogatz model, which considers nodes lying in a
two dimensional grid and then having two types of edges:

» Short-range edges to all nodes within some small distance r. This
captures an idealized sense of homophily

» A small number of random longer-distance edges to other nodes in the
network; in fact, one needs very few such random edges to achieve the
effect of short paths.
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Very few random edges are needed

@ A k by k “town” with probability 1/k that a person has a random
weak tie.

@ This would be sufficient to establish short paths.
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[Fig 20.3, E&K]
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But how does this explain the ability to find people

in a decentralized manner

@ In the Watts-Strogatz type of model, we can use the random edges
(in addition to the short grid edges) and the geometric location of
nodes to keep trying to reduce the grid distance to a target node.

» This is analogous to the Milgram experiment where individuals seem to
use geographic information to guide the search.
» However, completely random edges does no reflect real social networks

@ Furthermore, having uniformly random edges will not work in general
as:

» Completely random edges (i.e. going to a random node anywhere in
the network) are too random.

» A random edge in an n x n grid is likely to have grid distance ©(n).

» Without some central guidance, such random edges will essentially just
have us bounce around the network causing a substantially longer path
to the target than the shortest path.
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A modification of the model

@ Random edges outside of ones “close community” are still more likely
to reflect some relation to closeness.

@ So assume as in the Watts-Strogatz model, from every node v we
have edges to all nodes x within some grid distance r from v.

@ And now in addition random edges are generated as follows: we
(independently) create an edge from v to w with probability
proportional to d(v, w)~9 where d(v, w) is the grid distance from v
to w and g > 0 is called the clustering exponent.

@ The smaller g > 0 is, the more completely random is the edge
whereas large g > 0 leads to edges which are not sufficiently random
and basically keeps edges within or very close to ones community.

@ What is the best choice of g > 07
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So what is a good or the best choice of the
clustering exponent q?

@ It turns out that in this 2-dimensional grid model decentralized search works best
when g = 2. (This is a result that holds and can be proven for the limiting

behaviour, in the limit as the network size increases.)
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[Fig 20.6, E&K]

» Simulation of decentralized search in the grid-based model with clustering exponent gq.

> Each point is the average of 1000 runs on (a slight variant of) a grid with 400 million
nodes.

> The delivery time is best in the vicinity of exponent g = 2, as expected.

» But even with this number of nodes, the delivery time is comparable over the range
between 1.5 and 2.
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More precise statements of Kleinberg’s results on
navigation in small worlds
The Milgram-like experiment

o Consider a grid network and construct (local contact) directed edges
from each node u to all nodes v within grid distance d(u,v) = k > 1.

@ Also probabilistically construct m (long distance) directed edges
where each such edge is chosen with probability proportional to
d(v,w)~9 for g > 0.

@ We think of k and m as constants and consider the impact of the
clustering exponent g as the network size n increases.

@ We assume that each node knows its location and the location of its
adjacent edges and its distance to the location of a target node t.

@ The Milgram-like experiment is that each node it tries (without
knowing the entire network) to move from a node u to a node v that
is closest to t (in grid distance).
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Reflection on the Kleinberg-Milgram model

As we said at the start of this topic, the real surprise is that a “short” (but
not shortest) path is (probably wrt to the randomly generated network)
being found by a decentralized search.

It is true that each node will pursue a “greedy strategy” but this is
different than say Dijkstra’s least cost/distance algorithm which entails a
centralized search.
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Navigation in small worlds results

Theorem

(J. Kleinberg 2000)

(a) For0 < g < 2, the (expected) delivery time T of any ‘decentralized
algorithm” in the n X n grid-based model is Q (n%>

(b) For g =2, there is a decentralized algorithm with delivery time
O(log n).

(c) For g > 2, the delivery time of any decentralized algorithm in the
—2
grid-based model is Q (nh)

(The lower bounds in (a) and (c) hold even if each node has an arbitrary
constant number of long-range contacts, rather than just one.)

65/79



Intuition as to why g = 2 is best for the grid

@ It is instructive to see why this choice of g provides links at the
different “scales of resolution” seen in the Milgram experiment.

@ That is, if D is the maximum distance to be travelled, then we would
like links with distances between d and 2d for all d < log D

@ Given that we have a 2-dimensional grid, the number of points with
distance say d from a given node v will be ~ d?.

@ We are choosing such a node with probability proportional to 1/d2
and hence we expect to have a link to some node whose distance
from v is between d and 2d for all d.

number of nodes is
proportional to d2

probabilty of linking to
each is proportional to d"2

[Fig 20.7, E&K]
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More realistic (nonuniformly spread) population data

@ In the grid model, the population density is completely uniform which
is not what one would expect in real data.

@ How can this 1/d? (inverse-square) distribution be modified to
account for population densities that are very non-uniform?

@ The idea is to replace distance d(v,w) from v to w by the rank of w

relative to v.
» For a fixed v, define the rank(w) to be the number of nodes closer to

v than w.
> In the 2D grid case, when d(v,w) ~ d, then rank(w) ~ d?.

distance d

rank ~d?

[Fig 20.9, E&K]

67/79



More realistic geographic data continued

@ We can then restate the inverse-square distribution by saying that the
probability that v links to w is proportional to 1/rank(w).

@ Using zip code information, for every pair of nodes (500,000 users on
the blogging site LiveJournal) one can assign ranks.

@ Liben-Nowell et al did such a study in 2005, and then for different
rank values examined the fraction f of edges that are actually friends.

@ The theory tells us that this fraction f should be a decreasing
function proportional to 1/rank.

@ That is, f ~ rank™!. Taking logarithms, log f ~ (—1)log rank.
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More realistic (LiveJournal) friendship data
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[Fig 20.10, E&K]

@ In Figure 20.10 (a), the Lower (upper) line is exponent = —1.15
(resp. -1.12).

@ In Figure 20.10 (b), the Lower (upper) line is exponent = —1.05
(resp. -1). The red data is East Coast data and the blue data is West
Coast data.
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Liben-Nowell: practice closely matches theory
Liben-Nowell prove that for “essentially” any population density (i.e. no
matter where people are located) if links are randomly constructed so that
the probability of a friendship is proportional to rank—!, then the resulting
network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg's result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d~=2 to rank™! is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?
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Liben-Nowell: practice closely matches theory
Liben-Nowell prove that for “essentially” any population density (i.e. no
matter where people are located) if links are randomly constructed so that
the probability of a friendship is proportional to rank—!, then the resulting
network is one that can be efficiently searched in a decentralized manner.

That is, Kleinberg's result for the grid generalizes. This is a rather
exceptional result in that the abstraction from d~=2 to rank™! is not at all
an obvious generalization.

How surprised should we be that natural populations locate themselves in
this probabilistic manner since there is no centralized organizing
mechanism that is causing this phenomena?

The EK text refers to a 2008 article by Oscar Sandberg who analyzes a
network model where decentralized search takes place which in turn causes
links to “re-wire” so as to fascilitate more efficient decentralized search.

It remains an intringing question as to the extent this does happen in
social networks and the implicit mechanisms that would cause networks to
evolve this way. 70/79



IP addresses and the TCP/IP routing protocol

For those taking (or having taken) a computer networks course, you can
observe how IP addresses allow the IP transmission protocol to send
messages along a decnetralized route.

TCP/IP originated in the earlyh 1980's which is much after Milgram but
well before Strogatz and Kleinberg. To what extent was the TCP/IP
protocol and IP addresses motivated by Milgram's work?

But perhaps postal codes are the original motivation?

Aside Interesting ideas usually have a history and the best we can do is
document some of the major events in the adoption of any important idea.
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The Backstrom et al rank-based study

@ Backstrom et al study US Facebook 2010 geographic user data.

© Roughly 100 million users

@ About 6% of which enter home address info and of that population
about 60% can be parsed into longitude and lattiude information.

© This gave a set of 3.5 million users (of which 2.9 million had at least
one friend with a well specified address and each of these 2.9 million
users had an average of 10 friends with specified addresses resulting in
30.6 million edges.

© Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficently large and representative for experimental study.
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those probabilities depend on population densities for where people
live. This study provides more evidence as to the power law relation
between distance/rank and probability (= rank=°%) of friendship.
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The Backstrom et al rank-based study
@ Backstrom et al study US Facebook 2010 geographic user data.

© Roughly 100 million users

@ About 6% of which enter home address info and of that population
about 60% can be parsed into longitude and lattiude information.

© This gave a set of 3.5 million users (of which 2.9 million had at least
one friend with a well specified address and each of these 2.9 million
users had an average of 10 friends with specified addresses resulting in
30.6 million edges.

© Although a small part of Facebook, this 2.9 million person “geolocated
data set” is sufficently large and representative for experimental study.

@ They study probability of friendships vs distance and rank and how
those probabilities depend on population densities for where people
live. This study provides more evidence as to the power law relation
between distance/rank and probability (= rank=°%) of friendship.

@ Furthermore, they utilize this relationship between friends and
distance to create an algorithm that will predict the location of an
individual from a small set of users with known locations. They claim
their algorithm can predict geographic locations better than using IP
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[Figure 9 from Backstrom et al]
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Predicting locations

Performance Curve for Leave-One-Out Evaluation

IP Baseline
1P Basaline on New Members
aseline Performance

Computed Location w/ Links

Computed Location w/ Links — 16+ friends
Computed Location w/ Links and Comm - 16+ friends

Fraction within x Miles
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Figure 11: Location Prediction Performance. This
figure compares external predictions from an IP
geolocation service, the same service constrained
to users who have recently updated their address,
a baseline of randomly choosing the location of a
friend, along with three predictions: our algorithm
with all links, for users with 16+ friends, and finally
for users with 16+ friends constraining to only those
with whom they have communicated recently.

[Figure 11 from Backstrom et al]
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From geographic distance to social distance

@ What if there is no (reliable) distance information in a social network?
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@ What if there is no (reliable) distance information in a social network?

@ It is, of course, natural that we tend to have more common interests
with people who live closer to us (e.g. based on ethnicity, economic
status, etc), but clearly there are other notions of social distance that
should be considered.

@ Early in the course we considered social foci (clubs, shared interests,
language, etc.) we tend to share a number of focal interests with the
same person.

@ But, of course, belonging to a small group of people in a course, is

different than attending the same University, and speaking Mandarin
is different than being interested in Esperanto.
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It is, of course, natural that we tend to have more common interests
with people who live closer to us (e.g. based on ethnicity, economic
status, etc), but clearly there are other notions of social distance that
should be considered.

Early in the course we considered social foci (clubs, shared interests,
language, etc.) we tend to share a number of focal interests with the
same person.

But, of course, belonging to a small group of people in a course, is
different than attending the same University, and speaking Mandarin
is different than being interested in Esperanto.

So the suggestion is made that we define social distance s(v, w)

between individuals v, w to be the minimum size of a common focus.
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Smallest size shared focus as a distance measure

o Kleinberg (2001) gives theoretical results indicating that when
friendships follow a distribution proportional to 1/s(v, w) then the
resulting social network will support efficient decentralized search.

@ This is somewhat verified in a study (by Adamic and Adar) of ‘who
talks to whom' friendship data (based on frequency of email
exchanges) amongst a small group of HP employees.

@ The focal groups are defined by the organizational hierarchy of the
company.

@ The Adamic and Adar 2005 study shows that the distribution for this
friendship relationship is proportional to the inverse of s(v, W)_3/4 so
that it doesn’t match as closely with the previous geographical rank
based results but still observes a power law relation governing how
social ties decrease with “distance”.
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Probability of email exchanges vs distance in the
organizational hierarchy

-O- observed
- - fit exp(0.94'h)

0.6 4

probability of linking pL(h)

4 5 6 7 8 9 10
hierarchical distance h

Fig. 4. Probability of linking as a function of the fon in the izational hierarchy. The
parameter o = 0.94, is in the searchable range of the Watts model (Watts et al., 2002).

[Figure 4 from Adamic and Adar]
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Probability of email exchanges vs size of smallest
common organizational unit

O observed
Wi

probability of linking

group size g

Figure 5: Probability of two individuals corresponding by email as a function of the size of the
smallest organizational unit they both belong to. The optimum relationship derived in [7)is
p~g~", g being the group size. The observed relationship is p ~ g=%/%.

[Figure 5 from Adamic and Adar]
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Final observations in chapter 20 of EK text

@ The EK text suggests viewing the Milgram experiment as an example
of decentralized problem solving (in this case solving a shortest path
problem). An advertisement for distributed systems course.

@ The EK text asks what other problem solving tasks might be
amenable to such decentralized problem solving and how to analyze
what can be done especially in large online networks.

@ Finally the EK text briefly suggests the role of social status in
determining the effectiveness of reaching a given target.
» An email forwarding Milgram type 2003 study by Dodds et al shows
that completion rates to all targets were low but were highest for “high
status” targets and particularly small for “low status” targets.

@ In section 12.6, the EK text speculates on structural reasons for the
impact of status. This discussion leaves me with the sense that we are
far from having any comprehensive understanding of such phenomena.
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