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Announcements

Announcements

I hope everyone did well on the second quiz.

You might find the following November 2020) article interesting
about super infection spreaders and how it relates to the Barabasi and
Albert model we will be discussing in regard to social networks.
https://www.wired.com/story/covid-19-vaccine-super-spreaders/

The final assignment is due December 5 at 8AM.
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This weeks agenda

We will first finish up complexity based cryptograph and then try to
get to social networks quickly.

We begin a discussion of graphs/networks in general and social
networks in particular.

The social network question on Assignment A4 is mainly a thought
question so you should be able to provide reasonable answers based
on your own experience and the W11 slides.
If you have any question about graph concepts and social networks
raise them in class, or on piazza.

The undergraduate Easley and Kleinberg textbook “Networks,
Crowds, and Markets: Reasoning about a Highly Connected World” is
an excellent text for understanding the importance of network
concepts and applications. We teach an undergraduate course
CSC303 devoted to social networks.
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WARNING: Real world cryptography is sophisticated
Complexity based cryptography requires careful consideration of the
definitions and what precise assumptions are being made.

Complexity based cryptography has led to many important practical
protocols and there are a number of theorems. Fortunatley, many
complexity assumptions turn out to be equivalent.
In the Rackoff notes, the following theorem is stated as the fundamental
theorem of cryptography. (To make this result precise, one needs precise
definitions which we are omitting.)
Theorem: The following are equivalent:

It is possible to do “computationally secure sessions”
There exists pseudo-random generators; that is, create strings that
computationally look random)
There exist one way functions f ; that is functions such that f (x) is
easy to compute but given f (x) it is hard to find a z such that
f (z) = f (x). Here “hard to find” means not computable in
polynomial time.
There exist computationally secure digital signature schemes.
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The discrete log function

RSA is based on the assumed difficulty of factoring. Another assumption
that is widely used in cryptography is the discrete log function. Again, we
need some facts from number theory.

Let p be a large prime.

Z∗p denotes the set of integers {1, 2, . . . , p − 1} under the operations
of +,−, · mod p is a field. In particular, for every a ∈ Z∗p, there
exists a b ∈ Z∗p such that a · b = 1; i.e., b = a−1 mod p.

Moroever, Z∗p is cyclic. That is, there exists a g ∈ Z∗p such that
{1, g , g2, g3, . . . gp−2} mod p = Z∗p . Recall, as a special case of the
Euler totient function, ap−1 = 1 mod p.

The assumption is that given (g , p, g x mod p), it is computationally
difficult to find x . This is another example (factoring can also be an
example) of a one-way function. In fact the discrete log function is a
one-way permutation.
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A pseudo random generator

We started off our discussion of complexity based cryptpgraphy by noting
that randomness is essential. We have also noted that it is not clear (or at
what cost) one can obtain strings that “look like” truly random strings.

A pseudo random generator G is a deterministic function
G : {0, 1}k → {0, 1}` for ` > k . When ` is exponential in k, G is called a
pseudo random function generator. For now, lets even see how to be able
to have ` = k + 1.

The random input string s ∈ {0, 1}k is called the seed and the goal is that
r = G (s) should be “computationally indistinguishable” from a truly
random string in t = {0, 1}`. This means that no polynomial time
algorithm can distinguish between r and t with probability better than
1
2 + ε for any ε > 0. (Here I am being sloppy about the quantification but
hopefully the idea is clear.)

6 / 51



A pseudo random generator continued

On the previous slide there was a claim that having a pseudo random
generator is equivalent to having a one-way function.

How can we use (for example, the assumption that the discrete log
function is a one-way function) to construct a pseudo random generator
with ` = k + 1.

The Blum-Micali generator. Assumming the discrete log function is a
one-way function then the following is a pseudo random generator:

Let x0 be a random seed in Z∗p by interpeting (s1, . . . , sk)2 as a binary

number mod p. Let xk+1 = g xk mod p. Define sk+1 = 1 if xk ≤ p−1
2 .

Manual Blum won the Turing award for his contributions to cryptography
and Silvio Micali (along with Shafira Goldwasser) won the Turing award
for interactive zero knowledge proofs. (Note: The authors on the seminal
zero knowledge paper are Goldwasser, Micali, and Rackoff where I am
noting that Charlie Rackoff is a UT DCS Professor Emeritus.)
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What’s in a name? Graphs or Networks?

Networks are graphs with (for some people) different terminology where
graphs have vertices connected by edges, and networks have nodes
connected by links. I do not worry about this “convention”, to the extent
it is really a vague convention without any real significance.

Here is one explanation for the different terminology: We use networks for
settings where we think of links transmitting or transporting “things” (e.g.
information, physical objects, friendship).

Many different types of networks

Social networks

Information networks

Transportation networks

Communication networks

Biological networks (e.g., protein interactions)

Neural networks
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Visualizing Networks

nodes: entities (people, countries, companies, organizations, . . . )

links (may be directed or weighted): relationship between entities
I friendship, classmates, did business together, viewed the same web

pages, . . .
I membership in a club, class, political party, . . .

Figure: Initial internet: Dec. 1970 [E&K, Ch.2]
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December 1970 internet visualized geographically
[Heart et al 1978]
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The first social network analysis
In his 1934 book Who Shall Survive: A New Approach to the Problem of
Human Interrelations, Jacob Moreno (Romanian-US psychiatrist)
introduced sociograms and used these graphs/networks to understand
relationships. In one study (that was repeated to test changes) he asked
each child in various elementary grades at a public school to choose two
children to sit next to in class. He used this to study inter-gender
relationships (and other relationships). Here boys are depicted by triangles
and girls by circles.

Moreno’s sociograms, 1934

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1st grade 4th grade 8th grade
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A closer look at grade 1 in Moreno sociogramEVOLUTION OF GROUPS

Class Structure, 1st Grade

21 hoys and 14 girls. Unchosen, 18, GO, PR, CA, SH, FI, RS, DC, GA.
SM. BB, TS, VVI, KI. TA, HP, SA, SR, KR ; Pairs, 3, EI-GO. WO-CE,
CE-HN; Stars, 5, CE, WO, HC, FA, MB; Chains, 0; Triangles, 0;

Inter-sexual Attractions. 22.

Figure: 21 boys, 14 girls. Directed graph. Every node has out-degree 2. 18
unchosen having in-degree 0. Note also that there are some “stars” with high
in-degree.
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A closer look at grade 4 in Moreno sociogramEVOLUTION OF GROUPS

Class Structure, 4th Grade

17 boys and 16 girls. Unchosen, 6, BP, RY, EL, FA, SI, CF; Pairs, 17,

GR-SI, GR-LI, MR-LN, LN-SM, YL-KN, AB-BA, BA-BR, KI-KN,
AB-PN, FC-VN, BU-CV, LN-WI, LN-MR, BR-MC, BR-RS, WI-MR,
MC-RS; Stars, 2, LN, VN ; Chains, 0; Triangles, 2, BR-RS-MC; LN-

WI-MR ; Intcr-scxual Attractions, 1.

38

Figure: 17 boys, 16 girls. Directed graph with 6 unchosen having in-degree 0.
Moreno depicted his graphs to emphasize inter-gender relations. Note only one
edge from a boy to a girl.
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A closer look at grade 8 in Moreno sociogramEVOLUTION OF GROUPS

Class Structure, 8th Grade

22 boys and 22 girls. Unchosen, 12, KP, GL, SN, LI, SL, MT, KE, SO,

ZL, KI, HA, RA; Pairs, 13, BT-MR, SM-SK, GI-ZF, HF-MM, MM-YD,
HF-YD, ZF-PR, BT-KR, GL-PL, SE-HR, HS-OI, BA-ML, FN-LR,
Stars, 2, SM, PL; Chains, 0; Triangle, 1, HF-MM-YD; Inter-sexual

Attractions, 8.

42

Figure: 22 boys, 22 girls. Directed graph with 12 unchosen having in-degree 0.
Some increase in inter-gender relations. Double stars and circles above line
indicte different “groups”.
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Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

Illustrates common “structural” properties of many networks

What is the benefit of understanding this network structure?
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Kidney Exchange: Swap Chains
Waiting list for kidney donation: approximately 100K in US and
growing (i.e., new patients added but many deaths while waiting).
The wait for a deceased donor could be 5 years and longer.
Live kidney donations becoming somewhat more common in N.A. to
get around waiting list problems: requires donor-recipient pairs
Exchange: supports willing pairs who are incompatible

1 allows multiway-exchange
2 supported by sophisticated algorithms to find matches

But what if someone renegs? ⇒ Cyclyes require simultaneous
transplantation; Paths require altruisitic an donor!

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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Communities: Karate club division

Karate Club social network, Zachary 1977

3.6. ADVANCED MATERIAL: BETWEENNESS MEASURES AND GRAPH PARTITIONING71

27

15

23

10 20

4

13

16

34

31

14

12

18

17

30

33

32

9

2

1

5

6

21

24

25

3

8

22

11

7

19

28

29

26

Figure 3.13: A karate club studied by Wayne Zachary [421] — a dispute during the course
of the study caused it to split into two clubs. Could the boundaries of the two clubs be
predicted from the network structure?

A second example, in Figure 3.13, is a picture of the social network of a karate club studied

by Wayne Zachary [421] and discussed in Chapter 1: a dispute between the club president

(node 34) and the instructor (node 1) led the club to split into two. Figure 3.13 shows the

network structure, with the membership in the two clubs after the division indicated by the

shaded and unshaded nodes. Now, a natural question is whether the structure itself contains

enough information to predict the fault line. In other words, did the split occur along a weak

interface between two densely connected regions? Unlike the network in Figure 3.12, or in

some of the earlier examples in the chapter, the two conflicting groups here are still heavily

interconnected. So to identify the division in this case, we need to look for more subtle

signals in the way in which edges between the groups e↵ectively occur at lower “density”

than edges within the groups. We will see that this is in fact possible, both for the definitions

we consider here as well as other definitions.

A. A Method for Graph Partitioning

Many di↵erent approaches have been developed for the problem of graph partitioning, and

for networks with clear divisions into tightly-knit regions, there is often a wide range of

methods that will prove to be e↵ective. While these methods can di↵er considerably in their

specifics, it is useful to identify the di↵erent general styles that motivate their designs.

Figure: Karate club splis into two clubs (or communities)
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Communities: 2004 Political blogsphere

Figure 1: Community structure of political blogs (expanded set), shown using utilizing a GEM
layout [11] in the GUESS[3] visualization and analysis tool. The colors reflect political orientation,
red for conservative, and blue for liberal. Orange links go from liberal to conservative, and purple
ones from conservative to liberal. The size of each blog reflects the number of other blogs that link
to it.

longer existed, or had moved to a different location. When looking at the front page of a blog we did
not make a distinction between blog references made in blogrolls (blogroll links) from those made
in posts (post citations). This had the disadvantage of not differentiating between blogs that were
actively mentioned in a post on that day, from blogroll links that remain static over many weeks [10].
Since posts usually contain sparse references to other blogs, and blogrolls usually contain dozens of
blogs, we assumed that the network obtained by crawling the front page of each blog would strongly
reflect blogroll links. 479 blogs had blogrolls through blogrolling.com, while many others simply
maintained a list of links to their favorite blogs. We did not include blogrolls placed on a secondary
page.

We constructed a citation network by identifying whether a URL present on the page of one blog
references another political blog. We called a link found anywhere on a blog’s page, a “page link” to
distinguish it from a “post citation”, a link to another blog that occurs strictly within a post. Figure 1
shows the unmistakable division between the liberal and conservative political (blogo)spheres. In
fact, 91% of the links originating within either the conservative or liberal communities stay within
that community. An effect that may not be as apparent from the visualization is that even though
we started with a balanced set of blogs, conservative blogs show a greater tendency to link. 84%
of conservative blogs link to at least one other blog, and 82% receive a link. In contrast, 74% of
liberal blogs link to another blog, while only 67% are linked to by another blog. So overall, we see a
slightly higher tendency for conservative blogs to link. Liberal blogs linked to 13.6 blogs on average,
while conservative blogs linked to an average of 15.1, and this difference is almost entirely due to
the higher proportion of liberal blogs with no links at all.

Although liberal blogs may not link as generously on average, the most popular liberal blogs,
Daily Kos and Eschaton (atrios.blogspot.com), had 338 and 264 links from our single-day snapshot

4
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Communities: 2017 Twitter online discourse
regarding Black Lives Matter

Disinformation as Collaborative Work 7	
 
4.1 Case Study 1: Trolling Operations by the Internet Research Agency Targeting U.S. 

Political Discourse (2015-2016) 
It	 is	 now	 widely	 recognized	 that	 the	 Internet	 Research	 Agency	 in	 St.	 Petersburg	 (RU-IRA)	 was	
conducting	a	years-long	information	operation	on	social	media	that	was	leveraged,	in	part,	to	influence	
political	views	in	the	United	States	leading	up	to	the	2016	election.	Evidence	supporting	this	view	has	
been	reported	in	academic	research	[41],	investigative	journalism	[65],	intelligence	committee	reports	
[58],	and	by	the	platforms	themselves	[92,	93,	101].		

Our	 lab	 initially	 encountered	 these	 operations	 accidentally,	 while	 studying	 other	 online	
phenomena—in	 particular,	 online	 discourse	 about	 the	 #BlackLivesMatter	movement.	 In	November	
2017,	we	published	a	paper	[87]	about	that	highly	polarized	discourse	on	Twitter,	examining	“framing	
contests”	between	politically	left-leaning,	pro-#BlackLivesMatter	accounts	and	politically	right-leaning,	
anti-#BlackLivesMatter	 accounts.	 Shortly	 after	 publication,	 the	 U.S.	 House	 of	 Representatives	
Intelligence	 Committee	 released	 a	 list	 of	 Twitter	 accounts	 that	 had	 been	 determined	 to	 have	 been	
operated	by	the	RU-IRA	[94].	Upon	first	seeing	that	 list	of	accounts,	we	recognized	several	 from	our	
study,	 including	 some	 that	we	had	 featured	 in	our	paper.	After	 systematically	 cross-checking	 those	
accounts	against	our	#BlackLivesMatter	data,	we	found	that	RU-IRA	accounts	were	embedded	in,	and	
in	some	cases	quite	influential	within,	both	“sides”	of	that	polarized	conversation	(see	Figure	1).	Later,	
Twitter	released	a	full	data	set	of	all	of	these	accounts	and	all	of	their	tweets,	and	we	were	able	to	see	
how	the	conversation	we	had	studied	(#BlackLivesMatter)	fit	within	the	broader	operations	of	the	RU-
IRA.	As	it	turned	out,	we	had	stumbled	into	a	significant	element	of	their	operation.	

4.1.1 Data and Methods:  This	case	study	incorporates	four	different	stages	of	analysis,	each	based	
on	different	data.	It	begins	with	our	initial	#BlackLivesMatter	study	[87],	relying	on	data	collected	from	
Twitter	related	to	shooting	events	in	2016.	It	then	shifts	to	focus	specifically	upon	the	role	of	RU-IRA	
accounts	in	that	same	dataset	[3],	and	then	pulls	back	to	examine	the	online	activities	of	those	accounts	
more	broadly	through	qualitative	analysis	based	on	available	trace	data,	accessed	through	the	Internet	
Archive	[90].	Finally,	it	makes	use	of	the	more	recently	released	archive	of	RU-IRA	operations	[93]	to	
add	important	context	to	earlier	findings	by	examining	the	entire	scope	of	those	operations.	Though	the	
specific	 analyses	varied	across	 the	different	parts	of	 this	 study,	 each	was	 informed	by	our	broader	
methodological	 approach,	 which	 deeply	 integrates	 qualitative	 and	 quantitative	 (including	 visual)	
methods	to	provide	a	grounded,	interpretative	explanation	of	the	phenomena.	

 

Fig.	1.	Retweet	Network	Graph:	RU-IRA	Agents	in	#BlackLivesMatter	Discourse.	The	graph	
(originally	published	[3])	shows	accounts	active	in	Twitter	conversations	about	

#BlackLivesMatter	and	shooting	events	in	2016.	Each	node	is	an	account.	Accounts	are	closer	
together	when	one	account	retweeted	another	account.	The	structural	graph	shows	two	

distinct	communities	(pro-BlackLivesMatter	on	the	left;	anti-BlackLivesMatter	on	the	right).	
8   

 
PACMHCI, Vol. X, No. CSCW, Article Z. Publication Date: TBD. 

Accounts	colored	orange	were	determined	by	Twitter	to	have	been	operated	by	Russia’s	
Internet	Research	Agency.	Orange	lines	represent	retweets	of	those	account,	showing	how	their	

content	echoed	across	the	different	communities.		
The	graph	shows	IRA	agents	active	in	both	“sides”	of	that	discourse.	

4.1.2  Synthesized Findings: RU-IRA Agents Targeted, Infiltrated, and Cultivated Politically Active 
Communities Online:   RU-IRA	 agents	 “worked”	 together	 through	 the	 operation	 of	 more	 than	 3000	
accounts	that	presented	 themselves	as	people	and	organizations.	About	half	were	active	 in	English-
language	discourse.	The	others	primarily	targeted	Russian-speaking	audiences.	Focusing	on	the	English-
language	accounts,	using	content	and	network	analysis,	we	identified	three	distinct	types	of	accounts:	
1)	 “local”	 news	 accounts	 that	 reposted	 headlines	 from	 actual	 news	 in	 those	markets;	 2)	 “hashtag	
warrior”	accounts	that	initiated	and	spread	humorous	hashtags	in	a	game-like	fashion	to	gain	attention	
and	followers;	and	3)	highly	personalized	accounts	enacting	politically	active	U.S.	citizens.	Among	the	
third	type,	there	were	two	distinct	groups,	one	with	accounts	that	impersonated	African	Americans	and	
#BlackLivesMatter	 activists,	 and	 another	 that	 impersonated	 white,	 politically	 active	 conservatives,	
primarily	from	southern	U.S.	states.		

RU-IRA	 accounts	 impersonating	 members	 of	 these	 two	 politically	 active	 groups—the	 African	
American	“left”	and	the	white,	conservative	“right”—created	about	one-third	(more	than	1M	tweets)	of	
all	the	English-language	tweets	posted	by	RU-IRA	accounts.	More	importantly,	this	rather	small	subset	
of	RU-IRA	accounts	(~300)	garnered	85%	of	all	English-language	retweets	(18.5M	retweets).	In	other	
words,	accounts	impersonating	activists	within	these	groups	were	about	a	third	of	the	RU-IRA’s	overall	
English-language	operations,	and	by	far	their	most	successful	in	terms	of	receiving	traction	in	the	online	
crowd.	Content	analysis	suggests	that	these	accounts	operated	towards	multiple	objectives	including:	
amplifying	 political	 divisions	 in	 the	 U.S.;	 criticizing	 and	 demotivating	 support	 for	 U.S.	 presidential	
candidate	Hillary	Clinton	on	the	left;	and	promoting	candidate	and	later	President	Trump	on	the	right.	

	

 

Fig.	2.	Example	#BlackLivesMatter	related	content	that	was	circulated	by	RU-IRA	social	media	
accounts	to	different	audiences.	

There	is	now	a	significant	body	of	evidence	documenting	how	RU-IRA	agents	targeted	the	African	
American	community,	in	part	by	impersonating	#BlackLivesMatter	activists	[3,	17,	75].	Our	analyses	
reveal	that	they	also	specifically	targeted,	and	had	some	success	infiltrating,	“grassroots”	conservative	
activist	 communities	(see	Figure	2	 for	 examples).	We	quote	 “grassroots”	here,	because	 some	of	 the	
communities	have	themselves	been	shaped	by	domestic	campaigns	to	build	conservative	networks	on	
Twitter.	A	notable	example	is	the	Patriotic	Journalist	Network	(PJNET),	a	group	of	Twitter	activists	that	
use	coordinated—and	in	some	cases	automated—tweeting	practices	to	simulate	or	trigger	virality	for	
conservative	messages	[87].	PJNET	is	an	online	organization	that	has	been	active	since	at	least	2014.	

Figure: From Starbird et al [2017, 2019]
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Communities and hierarchical structure: Email
communication

HP Research email communication network (436 employees)
Figure: Email communication amongst 436 employees of Hewlett Packard
Research Lab, superimposed on the Lab organizational hierarchy
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The current interest in networks
Clearly there are complex systems and networks that we are in
contact with daily.

The population of the world can be thought of as social network of
approximately 7.8 billion people. AS of January 2020, The people on
Facebook are a subnetwork of approximatley 2.9 billion active
monthly users of which 1.6 billion are daily users. (Different numbers
are reported in different sites.)

The language of networks and graph analysis provides a common
language and framework to study systems in diverse disciplines.
Moreover, networks relating to diverse disciplines may sometimes
share common features and analysis.

The ability to store and process massive amounts of data, makes
computational aspects of networks essential.

The current impact of social and information networks will almost
surely continue to escalate (even if Facebook and other social
networks are under increasing presure to protect privacy, eliminate
“bad actors”, and eliminate “divisive policies”).
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What can one accomplish by studying networks

We use networks as a model of real systems. As such, we always have to
keep in mind the goals of any model which neceessarily simplifies things to
make analysis possible.
In studying social and information networks we can hopefully

Discover interesting phenomena and statistical properties of the
network and the system it attempts to model.

Formulate hypotheses as to say how networks form and evolve over
time

Predict behaviour for the system being modeled.

Understand how special interests can target information and
misinformation to selected “communities”
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And how do we accomplish stated goals
Much of what people do in this research field is empirical analysis.
Researchers formulate network models, hypotheses and predictions and
then compare against the real world (or sometimes synthetically
generated) data.

Sometimes we can theoretically analyze properties of a network and then
again compare to real or synthetic data.

What are the challenges?

Real world data is sometimes hard to obtain. Like search enginess,
social networks treat much of what they do as proprietary.
Many graph theory problems are known to be computationally
difficult (i.e., NP hard) and given the size of many networks, results
can often only be approximated and even then this may require a
significant amount of specialized heuristics and approaches to help
overcome (to some extent) computational limitations.
And we are always faced with the difficulty of bridging the
simplification of a model with that of the many real world details.
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Social networks
A social network is a network G = (V ,E ) where the nodes in V are people
or organizations. Social networks can be undirected or directed networks.

The edges can be relations between people (e.g. friendship) or
membership of an individual in an organization.

Social networks can be of any size (e.g., a small network like the Karate
Club on slide 18) or enormous networks like Facebook and Twitter. We
usually think of Facebook as an undirected graph (where friendship is an
undirected edge) and Twitter as a directed graph (i.e., where follows is a
directed edge).

Understanding how networks evolve, the resulting structure of social
networks, and computational aspects for dealing with large networks is an
active field of study in CS as well as in sociology, political science,
economics, epidemiology, and any field that studies human behaviour. J.
Kleinberg’s 2000 analysis with regard to the six degrees of separation
phenomena is an early result that sparked interest in algorithmic aspects of
social networks.
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The computational challenge presented by super
large networks

The size of some modern networks such as the web and social networks
such as Facebook are at an unprecedented scale.

As of Februay, 2022, xThe average facebook user has about 155 friends
which then implies about 2.9 · 1552 ≈ 200 billion edges. It is interesting to
note that 90% of daily active users are outside USA and Canada. See
https://www.omnicoreagency.com/facebook-statistics/ // for lots of
interesting demographic and other facts about Facebook.

What does this imply for the complexity of algorithms involving such super
large networks?
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Linear is the new exponential

In complexity theory (e.g. in the P vs NP issue that we will be discussing)
we say (as an abstraction) that polynomial time algorithms are “efficient”
and “exponential time” is infeasible. There are, of course, exceptions but
as an abstraction this has led to invaluable fundamental insights.

As problem instances have grown, there was a common saying that
“quadratic (time) is the new exponential”.

But with the emergence of networks such as the web graph and the
Facebook network, we might now say that “linear is the new exponential”
when it comes to extracting even the most basic facts about these
networks. For example, how do we even estimate the average node degree
in a giant network?

There are many facts about large networks that we would like to extract
from the network. For example, how do we find “influential” or
“interesting nodes” in a social network?
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Sublinear time algorithms

What is sublinear time?
In general when we measure complexity, we do so as a funtion of the
input/output size. For graphs G = (V ,E ), the size of the input is usually
the number of edges E . (An exception is that when the graph is presented
say as an adjacency matrix, the size is n2 where n = |V |.)
Since our interest is in massive information and social networks, we
consider sparse graphs (e.g. average constant degree) so that
|E | = O(|V |) and hence we will mean sublinear time as a function of n.
The desired goal will be time bounds of the form O(nα) with α < 1 and in
some cases maybe even O(log n) or polylog(n).

Given that optimal algorithms for almost any graph property will depend
on the entire graph, we will have to settle for approximations to an
optimum solution. Furthermore, we will need to sample the graph so as to
avoid having to consider all nodes and edges. And we will need a way to
efficiently access these massive graphs,
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Coping with massive social graphs continued

One way to help coping with massive networks is to hope to utilize some
substantial amount of parallelism. There is an area of current research
concerning massive parallel computation (MPC) models where (in
principle) we can achieve sublinear time by distributing computation
amongst a large (i.e., non constant) number of processors.

But even if we could muster and organize thousands of machines, we will
still need random samplng, approximation, and have highly efficient “local
information algorithms”.

Finally, in addition to random sampling and parallelism, we will have to
hope that social networks have some nice structural properties that can be
exploited to as to avoid complexity barriers that exist for arbitrary (sparse)
graphs. These complexity barriers are hopefully clear from our discussion
of complexity theory, NP completeness and NP hardness.
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Preferential attachment models
Preferential attachnment models (also called “rich get richer” models) are
probabilistic generative models explaining how various networks can be
generated. Namely, after starting with some small graph, when we add a
new node u, we create a number of links between u to some number m of
randomly chosen nodes v1, v2, . . . , vm. The probability of choosing a vi is
proportional to the current degree of vi . More generally, the probability of
choosing a node vi can be an increasing function of the degree,

These models have been used to help explain the structure of the web as
well as social networks. Furthermore, networks generated by such a
process have some nice structural properties allowing for substantially
more efficient algorithms than one can obtain for arbitrary graphs.

For such models, there are both provable analytic results as well as
experimental evidence on synthetic and real networks that support
provable results that follow from the model. (Remember, a model is just a
model and is not “reality”; as models are implifications of real networks,
they may not account for many aspects in a real network. For example, in
this basic model, all the edges for a new node are set upon arrival. 29 / 51



Consequences for networks generated by a
preferential attachment process

There are many properties, believed and sometimees proven. about
preferential attachment network models that do not hold for uniformly
generated random graphs (e.g., create sparse graphs with constant average
degree by choosing each possible edge with say probability proportional to
1
n ).

One of the most interesting and consequential proerties is that vertex
degrees satisfy a power law distribution in expectation. Specifically, the
expectation fraction P(d) of nodes whose degree is d is proportional to
d−γ for some γ ≥ 1. Such a distribution is said to have a fat tail.

In a uniformaly random sparse graph (with average degree davg ), with high
probability , the fraction of nodes having a large degree d > davg is
proportional to c−d for some c > 1.

30 / 51



The Barabasi and Albert preferential model
Barabasi and Albert [1999] specified a particular preferential attachment
model and conjectured that the vertex degrees satisfy a power law in
which the fraction of nodes having degree d is proportional to d−3.

They obtained γ ≈ 2.9 by experiments and gave a simple heuristic
argument suggesting that γ = 3. That is, P(d) is proportional to d−3

Bollobas et al [2001] prove a result corresponding to this conjectured
power law. Namely, they show for all d ≤ n1/15 that the expected degree
distribution is a power law distribution with γ = 3 asymptotically (with n)
where n is the number of vertices.

Note: It is known that an actual realized distribution may be far from its
expectation, However, for small degree values, the degree distribution is
close to expectation.

When we say that a distribution P(d) is a power law distribtion this is
often meant to be a ”with high probaility” whereas results for networks
generated by a preferential attachment process the power law is usually
only in expectation. 31 / 51



Proven or observed properties of nodes in a social
network generated by preferential attachment
models

In addition to the power law phenomena suggesting many nodes with high
degree, other properies of social networks have been obseerved such as a
relatively large number of nodes u having some or all of properties such as
the following: .

high clustering coefficient defined as : (u,v),(u,w),(v ,w)∈E
(u,v),(u,w)∈E . That is,

mutual friend of u are likely to be friends.

high centrality ; e,g, nodes on many pairs of shortest paths.

Brautbar and Kearns refer to such nodes (as above) as “interesting
indiviudals” and these individuals might be candidates for being “highly
influential individuals”. Bonato et al [2015] refers to such nodes as the
elites of a social network.
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Other proven or observed properties of networks
generated by preferentical attachment models

correlation between the degree of a node u and the degrees of the
neighboring nodes.

graph has small diameter; suggesting “6 degrees of separation
phenomena”

relatively large dense subgraph communities.

rapid mixing (for random walks to approach stationary distribution)

relatively small (almost) dominating sets .

On my spring 2020 CSC303 web page, I posted a paper by Avin et al
(2018) that shows that preferential attachment is the only “rational
choice” for players (people) playing a simple natural network formation
game. It is the rational choice in the sense that the strategy of the players
will lead to a unique equilibrium (i.e. no player will want to deviate
assumming other players do not deviate). For those intersted, I have
posted (in my CSC303 webpage) a number of other papers on elites in a
social network and preferential attachment.
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The Small World Phenomena

I already mentioned the small worlds phenomena. A mathematical
explanation of this phenomiena (expecially how one hones in on a target
recipient) was given by J. Kleinberg in a network formation model that
explicitly forces a power law property.

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path. Moreover, such a path can be found in a
decentralized manner

In Milgram’s 1967 small world experiment, he asked random people in
Omaha Nebraska to forward a letter to a specified individual in a suburb of
Boston which became the origin of the idea of six degrees of separation.
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Network concepts will be mainly introduced in
context

But at the of the slides I will provide an appendix of basic graph
definitions.

We will use some of the previous examples and some new ones to illustrate
the basic graph concepts and terminology we will be using.
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Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

Illustrates common “structural” properties of many networks

What predictions could you use this for?
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More basic definitions

Observation

Many connected components including one “giant component”

We will use this same graph to illustrate some other basic concepts.

A cycle is path u1, u2, . . . , uk such that u1 = uk ; that is, the path
starts and ends at the same node.
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Simple paths and simple cycles
Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)

Observation

There is one big simple cycle and (as far as I can see) three small
simple cycles in the “giant component”.

Only one other connected component has a cycle: a triangle having
three nodes. Note: this graph is “almost” bipartite and “almost”
acyclic.
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Example of an acyclic bipartite graph94 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS
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Figure 4.4: One type of affiliation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the
interactions among both the board members and the companies.

A very simple example of such a graph is depicted in Figure 4.3, showing two people (Anna

and Daniel) and two foci (working for a literacy tutoring organization, and belonging to a

karate club). The graph indicates that Anna participates in both of the foci, while Daniel

participates in only one.

We will refer to such a graph as an affiliation network, since it represents the affiliation of

people (drawn on the left) with foci (drawn on the right) [78, 323]. More generally, affiliation

networks are examples of a class of graphs called bipartite graphs. We say that a graph is

bipartite if its nodes can be divided into two sets in such a way that every edge connects a

node in one set to a node in the other set. (In other words, there are no edges joining a pair

of nodes that belong to the same set; all edges go between the two sets.) Bipartite graphs

are very useful for representing data in which the items under study come in two categories,

and we want to understand how the items in one category are associated with the items

in the other. In the case of affiliation networks, the two categories are the people and the

foci, with each edge connecting a person to a focus that he or she participates in. Bipartite

Figure: [E&K, Fig 4.4] One type of affiliation network that has been widely
studied is the memberships of people on corporate boards of directors. A very
small portion of this network (as of mid-2009) is shown here.
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Florentine marriages and “centrality”
Medici connected to more families, but not by much
More importantly: lie between most pairs of families

I shortest paths between two families: coordination, communication
I Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%

Figure: see [Jackson, Ch 1]
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Some additional comments on how graph structure
can reveal personal and individual information:
Detecting the romantic relation in Facebook

There is an interesting paper by Backstrom and Kleinberg
(http://arxiv.org/abs/1310.6753) on detecting “the” romantic
relation in a subgraph of facebook users who specify that they are in
such a relationship.

Backstrom anbd Kleinberg construct two datasets of randomly
sampled Facebook users: (i) an extended data set consisting of 1.3
million users declaring a spouse or relationship partner, each with
between 50 and 2000 friends and (ii) a smaller data set extracted
from neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

The main experimental results are nearly identical for both data sets.
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Detecting the romantic relation (continued)

They consider various graph strucutral features of edges, including
1 the embeddedness of an edge (A,B) which is the number of mutual

friends of A and B.
2 various forms of a new dispersion measure of an edge (A,B) where high

dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

3 One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of u and v such that (s, t) /∈ E and s, t have no
common neighbours except for u and v .

They also consider various “interaction features” including
1 the number of photos in which both A and B appear.
2 the number of profile views within the last 90 days.
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Embeddedness and disperison example from paper

Figure 1. A network neighborhood, contributed by a Facebook em-
ployee (drawn as the circled node at the center), and displayed as an
example in the work of Marlow et al [21]. Two clear clusters with highly
embedded links are visible at the top and right of the diagram; in the
lower left of the diagram are smaller, sparser clusters together with a
node that bridges between these clusters.

gests a natural predictor for identifying a user u’s partner: se-
lect the link from u of maximum embeddedness, and propose
the other end v of this link as u’s partner.

We will evaluate this embeddedness-based predictor, and oth-
ers, according to their performance: the fraction of instances
on which they correctly identify the partner. Under this mea-
sure, embeddedness achieves a performance of 24.7% —
which both provides evidence about the power of structural
information for this task, but also offers a baseline that other
approaches can potentially exceed.

Next, we show that it is possible to achieve more than twice
the performance of this embeddedness baseline using our new
network measure, dispersion. In addition to this relative im-
provement, the performance of our dispersion measure is very
high in an absolute sense — for example, on married users in
our sample, the friend who scores highest under this disper-
sion measure is the user’s spouse over 60% of the time. Since
each user in our sample has at least 50 friends, this perfor-
mance is more than 30 times higher than random guessing,
which would produce a performance of at most 2%.

Theoretical Basis for Dispersion.
We motivate the dispersion measure by first highlighting a
basic limitation of embeddedness as a predictor, drawing on
the theory of social foci [10]. Many individuals have large
clusters of friends corresponding to well-defined foci of in-
teraction in their lives, such as their cluster of co-workers or
the cluster of people with whom they attended college. Since
many people within these clusters know each other, the clus-
ters contain links of very high embeddedness, even though
they do not necessarily correspond to particularly strong ties.
In contrast, the links to a person’s relationship partner or other
closest friends may have lower embeddedness, but they will
often involve mutual neighbors from several different foci, re-
flecting the fact that the social orbits of these close friends are

b

c f

d

h

k
j

e

a

u

i

g

Figure 2. A synthetic example network neighborhood for a user u; the
links from u to b, c, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from u to h has an embeddedness
of 4. On the other hand, nodes u and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, c, and f .

not bounded within any one focus — consider, for example, a
husband who knows several of his wife’s co-workers, family
members, and former classmates, even though these people
belong to different foci and do not know each other.

Thus, instead of embeddedness, we propose that the link be-
tween an individual u and his or her partner v should display a
‘dispersed’ structure: the mutual neighbors of u and v are not
well-connected to one another, and hence u and v act jointly
as the only intermediaries between these different parts of the
network. (See Figure 2 for an illustration.)

We now formulate a sequence of definitions that captures this
idea of dispersion. To begin, we take the subgraph Gu in-
duced on u and all neighbors of u, and for a node v in Gu we
define Cuv to be the set of common neighbors of u and v. To
express the idea that pairs of nodes in Cuv should be far apart
in Gu when we do not consider the two-step paths through
u and v themselves, we define the absolute dispersion of the
u-v link, disp(u, v), to be the sum of all pairwise distances
between nodes in Cuv , as measured in Gu − {u, v}; that is,

disp(u, v) =
∑

s,t∈Cuv

dv(s, t),

where dv is a distance function on the nodes of Cuv . The
function dv need not be the standard graph-theoretic distance;
different choices of dv will give rise to different measures
of absolute dispersion. As we discuss in more detail below,
among a large class of possible distance functions, we ulti-
mately find the best performance when we define dv(s, t) to
be the function equal to 1 when s and t are not directly linked
and also have no common neighbors in Gu other than u and
v, and equal to 0 otherwise. For the present discussion, we
will use this distance function as the basis for our measures
of dispersion; below we consider the effect of alternative dis-
tance functions. For example, in Figure 2, disp(u, h) = 4 un-
der this definition and distance function, since there are four
pairs of nodes in Cuh that are not directly linked and also
have no neighbors in common in Gu − {u, h}. In contrast,
disp(u, b) = 1 in Figure 2, since a and e form the only pair
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Qualitative results from Backstrom and Kleinberg
The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%

Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?

By itself, dispersion outperforms various interaction features.

For most measures, performance is better for male users and also
better for data when restricted to marriage as the relationship.

By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.

There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct
predictions

Recall that we argue that the fraction might be .005 when randomly
choosing an edge. Do you find anything surprising?
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Figure 3. Performance of (disp(u, v) + b)↵/(emb(u, v) + c) as a func-
tion of ↵, when choosing optimal values of b and c.

type embed rec.disp. photo prof.view.
all 0.247 0.506 0.415 0.301
married 0.321 0.607 0.449 0.210
married (fem) 0.296 0.551 0.391 0.202
married (male) 0.347 0.667 0.511 0.220
engaged 0.179 0.446 0.442 0.391
engaged (fem) 0.171 0.399 0.386 0.401
engaged (male) 0.185 0.490 0.495 0.381
relationship 0.132 0.344 0.347 0.441
relationship (fem) 0.139 0.316 0.290 0.467
relationship (male) 0.125 0.369 0.399 0.418

Figure 4. The performance of different measures for identifying spouses
and romantic partners: the numbers in the table give the precision at the
first position — the fraction of instances in which the user ranked first by
the measure is in fact the true partner. Averaged over all instances, re-
cursive dispersion performs approximately twice as well as the standard
notion of embeddedness, and also better overall than measures based on
profile viewing and presence in the same photo.

of non-neighboring nodes in Cub that have no neighbors in
common in Gu � {u, b}.

Strengthenings of Dispersion.
We can learn a function that predicts whether or not v is
the partner of u in terms of the two variables disp(u, v)
and emb(u, v), where the latter denotes the embeddedness
of the u-v link. We find that performance is highest for
functions that are monotonically increasing in disp(u, v) and
monotonically decreasing in emb(u, v): for a fixed value of
disp(u, v), increased embeddedness is in fact a negative pre-
dictor of whether v is the partner of u. A simple combina-
tion of these two quantities that comes within a few percent
of more complicated functional forms can be obtained by the
expression disp(u, v)/emb(u, v), which we term the normal-
ized dispersion norm(u, v) since it normalizes the absolute
dispersion by the embeddedness. Predicting u’s partner to
be the individual v maximizing norm(u, v) gives the correct
answer in 48.0% of all instances.

There are two strengthenings of the normalized dispersion
that lead to increased performance. The first is to rank nodes
by a function of the form (disp(u, v) + b)↵/(emb(u, v) + c).
Searching over choices of ↵, b, and c leads to maximum per-
formance of 50.5% at ↵ = 0.61, b = 0, and c = 5; see
Figure 3. Alternately, one can strengthen performance by ap-

type embed rec.disp. photo prof.view.
all 0.391 0.688 0.528 0.389
married 0.462 0.758 0.561 0.319
married (fem) 0.488 0.764 0.538 0.350
married (male) 0.435 0.751 0.586 0.287
engaged 0.335 0.652 0.553 0.457
engaged (fem) 0.375 0.674 0.536 0.492
engaged (male) 0.296 0.630 0.568 0.424
relationship 0.277 0.572 0.460 0.498
relationship (fem) 0.318 0.600 0.440 0.545
relationship (male) 0.239 0.546 0.479 0.455

Figure 5. The performance of the four measures from Figure 4 when
the goal is to identify the partner or a family member in the first position
of the ranked list. The difference in performance between the genders
has largely vanished, and in some cases is inverted relative to Figure 4.

plying the idea of dispersion recursively — identifying nodes
v for which the u-v link achieves a high normalized disper-
sion based on a set of common neighbors Cuv who, in turn,
also have high normalized dispersion in their links with u. To
carry out this recursive idea, we assign values to the nodes
reflecting the dispersion of their links with u, and then update
these values in terms of the dispersion values associated with
other nodes. Specifically, we initially define xv = 1 for all
neighbors v of u, and then iteratively update each xv to be

P
w2Cuv

x2
w + 2

P
s,t2Cuv

dv(s, t)xsxt

emb(u, v)
.

Note that after the first iteration, xv is 1+2 ·norm(u, v), and
hence ranking nodes by xv after the first iteration is equiv-
alent to ranking nodes by norm(u, v). We find the highest
performance when we rank nodes by the values of xv after
the third iteration. For purposes of later discussion, we will
call this value xv in the third iteration the recursive disper-
sion rec(u, v), and will focus on this as the main examplar
from our family of related dispersion-based measures. (See
the Appendix for further mathematical properties of the re-
cursive dispersion.)

PERFORMANCE OF STRUCTURAL AND INTERACTION
MEASURES
We summarize the performance of our methods in Figure 4.
Looking initially at just the first two columns in the top row of
numbers (‘all’), we have the overall performance of embed-
dedness and recursive dispersion — the fraction of instances
on which the highest-ranked node under these measures is
in fact the partner. As we will see below in the discussion
around Figure 6, recursive dispersion also has higher perfor-
mance than a wide range of other basic structural measures.

We can also compare these structural measures to features de-
rived from a variety of different forms of real-time interaction
between users — including the viewing of profiles, sending of
messages, and co-presence at events. The use of such ‘inter-
action features’ as a comparison baseline is motivated by the
way in which tie strength can be estimated from the volume of
interaction between two people [8, 17]. Within this category
of interaction features, the two that consistently display the
best performance are to rank neighbors of u by the number of

type max. max. all. all. comb.
struct. inter. struct. inter.

all 0.506 0.415 0.531 0.560 0.705
married 0.607 0.449 0.624 0.526 0.716
engaged 0.446 0.442 0.472 0.615 0.708
relationship 0.344 0.441 0.377 0.605 0.682

Figure 10. The performance of methods based on machine learning
that combine sets of features. The first two columns show the highest
performing individual structural and interaction features; the third and
fourth columns show the highest performance of machine learning clas-
sifiers that combine structural and interaction features respectively; and
the fifth column shows the performance of a classifier that combines all
structural and interaction features together.

links over their time on Facebook, and it is also correlated
with the time since the relationship was first reported. (As we
will see later in Figure 11, performance varies as a function
of this latter quantity as well.) To understand whether there
is any effect of a user’s time on site beyond its relation to
these other parameters, we consider a subset of users where
we restrict the neighborhood size to lie between 100 and 150,
and the time since the relationship was reported to lie between
100 and 200 days. Figure 9 shows that for this subset, there is
a weak increase in performance as a function of time on site;
while the effect is not strong, it points to a further source of
enhanced performance for users with mature neighborhoods.

COMBINING FEATURES USING MACHINE LEARNING
Different features may capture different aspects of the user’s
neighborhood, and so it is natural to ask how well we can pre-
dict partners when combining information from many struc-
tural or interaction features via machine learning.

Machine Learning Techniques.
For our machine learning experiments, we compute 48 struc-
tural features and 72 interaction features for all of the nodes
in the neighborhoods from our primary dataset. This gives us
a total of approximately 18.7 million labeled instances with
120 features each — each instance consists of a node v in
a neighborhood Gu, with a positive label indicating v is the
partner of u, or a negative label indicating v is not.

The 48 structural features are the absolute and normalized
dispersion based on six distinct distance functions defined for
Figure 6, as well as the recursive versions using iterations 2
through 7 (recall that the recursive dispersion corresponds to
the third iteration, and is hence included). The 72 interac-
tion features represent a broad range of properties including
the number of photos in which u and v are jointly tagged,
the number of times u has viewed v’s profile over the last 30,
60, and 90 days, the number of messages sent from u to v,
the number of times that u has ‘liked’ v’s content and vice
versa, and measures based on a number of forms of interac-
tion closely related to these.

To improve the performance of the learning algorithms, we
transformed each of the 120 features into 4 different versions:
(a) the raw feature, (b) a normalized version of the feature
with mean 0 and standard deviation 1, (c) a rank version of
the feature (where the individual with highest score on this
feature has rank 1, and other individuals are sorted in ascend-
ing rank order from there), and (d) a rank-normalized version

where we divide (c) by total number of friends a user has.
Thus, the input to our machine learning algorithms has 480
features derived from 120 values per instance. In addition to
the full set of features, we also compute performance using
only the structural features, and only the interaction features.

We performed initial experiments with different machine
learning algorithms and found that gradient tree boosting [13]
out-performed logistic regression, as well as other tree-based
methods. Thus, all of our in-depth analysis is conducted with
this algorithm. In our experiments, we divide the data so that
50% of the users go into a training set and 50% go into a test
set. We perform 12 such divisions into sets A and B; for each
division we train on set A and test on B, and then train on B
and test on A. For each user u, we average over the 12 runs in
which u was a test user to get a final prediction.

Performance of Machine Learning Methods.
We find (Figure 10) that by using boosted decision trees to
combine all of the 48 structural features we analyzed, we can
increase performance from 50.8% to 53.1%. We can use the
same technique to predict relationships based on interaction
features. We find that, overall, interaction features perform
slightly better than structural features (56.0% vs. 53.1%),
though for married users, structural features do much better
(62.4% vs. 52.6%). In addition, on all categories we find that
the combination of interaction features and structural features
significantly outperforms either on its own. When combining
all features with boosted trees, the top predicted friend is the
user’s partner 70.5% of the time.

Machine Learning to Predict Relationship Status.
Earlier we noted that our focus is on the problem of identify-
ing relationship partners for users where we know that they
are in a relationship. It is natural to ask about the connec-
tion to a related but distinct question — estimating whether
an arbitrary user is in a relationship or not.

This latter question is quite a different issue, and it seems
likely to be more challenging and to require a different set of
techniques. To see why, consider a user u who has a link of
high dispersion to a user v. If we know that u is in a rela-
tionship, then v is a good candidate to be the partner. But our
point from the outset has been that methods based on disper-
sion are useful more generally to identify individuals v with
interesting connections to u, in the sense that they have been
introduced into multiple foci that u belongs to. A user u can
and generally will have such friends even when u is not in
a romantic relationship. For example, Figure 5 suggests that
family members often have this property, and this can apply
to users who are not in romantic relationships as well as to
users in such relationships. Thus, simply knowing that u has
links of high dispersion should not necessarily give us much
leverage in estimating whether u is in a relationship.

We now describe some basic machine-learning results that
bear out this intuition. We took approximately 129,000 Face-
book users, sampled uniformly over all users of age at least
20 with between 50 and 2000 friends. 40% of these users
were single, while the remaining were either in a relation-
ship, engaged, or married. We attempt two different predic-
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Triadic closure (undirected graphs)48 CHAPTER 3. STRONG AND WEAK TIES
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(a) Before B-C edge forms.
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the effects of triadic
closure, since they have a common neighbor A.

seeking, and offers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, offering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.

How do we measure the extent to which triadic closure is occurring?

How can we know why a new friendship tie is formed? (Friendship
ties can range from “just knowing someone” to “a true friendship” .)
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Measuring the extent of triadic closure

The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

∣∣{(B,C ) ∈ E : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

∣∣{{B,C} : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

The numerator is the number of all edges (B,C ) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

The denominator is the total number of all unordered pairs {B,C}
such that B and C are adjacent to A.
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Example of clustering coefficient
3.1. TRIADIC CLOSURE 49
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(a) Before new edges form.

B

A

C

G

F

E D

(b) After new edges form.

Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.

the fact that the B-C edge has the effect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coefficient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coefficient [320, 411]. The clustering coefficient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coefficient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coefficient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coefficient will tend to be.

The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C ,D) among the six pairs of friends:
{B,C}, {B,D}, {B,E}, {C ,D}, {C ,E}, and {D,E}). We
sometimes refer to a pair of adjacent edges like (A,B), (A,C ) as an
“open triangle” if (B,C ) does not exist.
The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B,C ), (C ,D), and (D,E )).
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Interpreting triadic closure

Does a low clustering coefficient suggest anything?

Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
contemplating suicide (compared to those with high clustering
coeficient). Note:The value of the clustering coefficient is also
referred to as the intransitivity coefficient.

They report that “ Social network effects for girls overwhelmed other
variables in the model and appeared to play an unusually significant
role in adolescent female suicidality. These variables did not have a
significant impact on the odds of suicidal ideation among boys. ”

How can we understand these findings?
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Bearman and Moody study continued

Triadic closure (or lack thereof) can provide some plausible
explanation.

Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
As far as I can tell, no conclusions are being made about why there is
such a difference in gender results.

The study by Bearman and Moody is quite careful in terms of identifying
many possible factors relating to suicidal thoughts. Clearly there are many
factors involved but the fact that network structure is identified as such an
important factor is striking.
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Bearman and Moody factors relating to suicidal
thoughts

January 2004, Vol 94, No. 1 | American Journal of Public Health Bearman and Moody | Peer Reviewed | Research and Practice | 93

⏐ RESEARCH AND PRACTICE ⏐

TABLE 3—Logistic Regression of Suicide Attempts, Among Adolescents With Suicidal
Ideation, on Individual, School, Family and Network Characteristics

Suicide Attempts, OR (95% CI)

Males Females

Demographic
Age 0.956 (0.808, 1.131) 0.920 (0.810, 1.046)
Race/ethnicity

Black 0.872 (0.414, 1.839) 1.086 (0.680, 1.736)
Other 1.069 (0.662, 1.728) 1.134 (0.810, 1.586)

Socioeconomic status 0.948 (0.872, 1.031) 1.008 (0.951, 1.069)
School and community

Junior high school 1.588 (0.793, 3.180) 1.271 (0.811, 1.993)
Relative density 0.049 (0.005, 0.521) 0.415 (0.086, 1.996)
Plays team sport 0.985 (0.633, 1.532) 1.020 (0.763, 1.364)
Attachment to school 1.079 (0.823, 1.414) 1.066 (0.920, 1.235)

Religion
Church attendance 0.975 (0.635, 1.496) 0.818 (0.618, 1.082)

Family and household
Parental distance 0.925 (0.681, 1.256) 0.955 (0.801, 1.139)
Social closure 1.004 (0.775, 1.299) 0.933 (0.781, 1.115)
Stepfamily 1.058 (0.617, 1.814) 1.368 (0.967, 1.935)
Single-parent household 1.142 (0.698, 1.866) 1.117 (0.800, 1.560)
Gun in household 1.599 (1.042, 2.455) 1.094 (0.800, 1.494)
Family member attempted suicide 1.712 (0.930, 3.150) 1.067 (0.689, 1.651)

Network
Isolation 0.767 (0.159, 3.707) 1.187 (0.380, 3.708)
Intransitivity index 0.444 (0.095, 2.085) 1.076 (0.373, 3.103)
Friend attempted suicide 1.710 (1.095, 2.671) 1.663 (1.253, 2.207)
Trouble with people 1.107 (0.902, 1.357) 1.119 (0.976, 1.284)

Personal characteristics
Depression 1.160 (0.960, 1.402) 1.130 (0.997, 1.281)
Self-esteem 1.056 (0.777, 1.434) 0.798 (0.677, 0.942)
Drunkenness frequency 1.124 (0.962, 1.312) 1.235 (1.115, 1.368)
Grade point average 0.913 (0.715, 1.166) 0.926 (0.781, 1.097)
Sexually experienced 1.323 (0.796, 2.198) 1.393 (0.990, 1.961)
Homosexual attraction 1.709 (0.921, 3.169) 1.248 (0.796, 1.956)
Forced sexual relations 1.081 (0.725, 1.613)
No. of fights 0.966 (0.770, 1.213) 1.135 (0.983, 1.310)
Body mass index 0.981 (0.933, 1.032) 1.014 (0.982, 1.047)

Response profile (n = 1/n = 0) 139/493 353/761
F statistic 1.84 (P = .0170) 2.88 (P < .0001)

Note. OR = odds ratio; CI = confidence interval. Logistic regressions; standard errors corrected for sample clustering and
stratification on the basis of region, ethnic mix, and school type and size.

alent to running a global interaction with gen-
der in a pooled model.

Suicidal Thoughts
Table 2 shows the odds ratios and 95%

confidence intervals for models that regressed

suicidal ideation on the full set of explanatory
variables. The overall model fits were quite
good (F=17.08 for males, F=16.28 for fe-
males; P<.0001 for both males and females).
Close examination of the odds ratios reveals
that although some general similarities exist

in the pattern of risk factors by gender, strik-
ing differences are also evident.

Both boys and girls were more likely to
have suicidal thoughts if they engaged in
fewer activities with their parents (male odds
ratio [OR]=1.57, female OR=1.74), if there
was a gun in the household (male OR=1.33,
female OR=1.54), and if a family member
had attempted suicide in the past year (male
OR=2.14, female OR=1.48). Similarly, the
odds of having suicidal thoughts increased for
both boys and girls when a friend has at-
tempted suicide in the past year (male OR=
2.73, female OR=2.37). The effect of a
friend’s suicide attempt on the respondent’s
suicidal ideation was extremely strong for
both boys and girls. Finally, being depressed
(male OR=1.63, female OR=1.45), experi-
encing homosexual romantic attraction (male
OR=1.39, female OR=1.54), or getting
drunk or high frequently (male OR=1.11, fe-
male OR=1.11) increased the odds of think-
ing about suicide for all adolescents. For both
boys and girls, having high self-esteem low-
ered the likelihood of suicidal ideation (male
OR=0.81, female OR=0.81). (Although
other studies have identified an interaction
between depression and alcohol abuse as a
significant covariate of suicidality, this interac-
tion was not significant for our study popula-
tion [analyses not shown].) These findings are
consistent with those of previous studies.

In addition to revealing these general risk
factors, the models of suicidal ideation
showed marked differences by gender. Specif-
ically, although we found no age effect for
boys, younger girls were more likely than
older girls to think about suicide (OR=0.89).
Beyond the age effect, however, we found im-
portant gender differences in the effect of so-
cial network and relational variables. For girls,
being socially isolated from peers (OR=2.01)
or having intransitive friendships (OR=2.19)
substantially increased the odds of thinking
about suicide. Additionally, being in a school
with dense social networks lowered the risk
of suicidal ideation for girls (OR=0.333). So-
cial network effects for girls overwhelmed
other variables in the model and appeared to
play an unusually significant role in adoles-
cent female suicidality. These variables did
not have a significant impact on the odds of
suicidal ideation among boys.
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Appendix: Network (graph) definitions and examples

Graphs come in two varieties
1 undirected graphs (“graph” usually means an undirected graph.)

a

b c

d e

f g

2 directed graphs (often called di-graphs).

a

b c

d e

f g
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Visualizing Networks as Graphs

nodes: entities (people, countries, companies, organizations, . . . )

links (may be directed or weighted): relationship between entities
I friendship, classmates, did business together, viewed the same web

pages, . . .
I membership in a club, class, political party, . . .

Figure: Internet: Dec. 1970 [E&K, Ch.2]
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Adjacency matrix for graph induced by eastern sites
) in 1970 internet graph: another way to represent a
graph

A(G ) =




0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0




This node induced subgraph (for the sites MIT = 1, LINC = 2, CASE
= 3, CARN = 4, HARV = 5, BBN = 6) is a 6 node regular graph of
degree 2. It is a simple graph in that there are no self-loops or
multiple edges.
Note that the adjacency matrix of an (undirected) simple graph is a
symmetric matrix (i.e. Ai ,j = Aj ,i ) with {0,1} entries.
To specify distances, we would need to give weights to the edges to
represent the distances.
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The matrix A2 where A = A(G )

Consider squaring the previous matrix A = A(G ). That is, A2 = A ∗ A.

A2 =




0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 1 0 1
0 1 0 1 0 0




Draw a visualization of the graph represented by A2. If we let ci ,j be the
i , j entry in A2, can you desribe the meaning of ci ,j?
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The matrix B = A+ I

Consider the 6× 6 identity matrix I = (ιi ,j). That is, ιi ,i = 1 for 1 ≤ i ≤ 6
and ιi ,j = 0 for 1 ≤ i , j ≤ 6 and i 6= j .

Let B = A + I (as above). That is, bi ,j = ai ,j + ιi ,j for all i , j . We have

B(G ) =




1 1 0 0 0 1
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1




Note that now the matrix B has self loops and hence is not a simple graph.
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Breadth first search and path lengths [E&K, Fig 2.8]
2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most efficient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you

Figure: Breadth-first search discovers distances to nodes one “layer” at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.

Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

I However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.

a

b c

d e

f g
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:

a

b c

d e

f g

10

3 7

2 1

12

9

7

8
5

9 7

515

6 8

9

11

I red numbers: edge weights

I blue numbers: vertex weights

We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .

For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) = 0 or w(e) =∞
meaning no edge depending on the context).

In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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