
Great Ideas in Computing

University of Toronto CSC196
Fall 2021

Week 10: November 21-25 (2022)

1 / 31

Announcements and todays agenda
Announcements

The next and final quiz is scheduled for this Friday, November 25.
I am changing the due date for Assignment 4 to be Monday,
December 5.
I recommend watching a PBS/NOVA presentation on the great
mathematical idea of the number 0 and ∞.
https://www.pbs.org/wgbh/nova/video/zero-to-infinity/

This weeks agenda
1 We will finish up the immediate discussion of the P 6= NP

conjecture/hypothesis. In particular, we will discuss:
I An example in the Karp tree of a not so obvious transformation: 3-SAT
≤poly

τ Independent Set. (In Cook’s paper, it was stated as 3-SAT ≤poly
T

Clique.) I will omit the poly superscript with the understanding that
we are talking about polynomial time reductions and transformations.

I Reducing Search and Optimization problems to a corresponding
decision problem.

I The NP 6= co − NP conjecture
I Can randomization help?

2 We begin complexity based cryptography. 2 / 31

A tree of reductions/transformations

45

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of n jobs with processing time
ti, release time ri, and deadline di, is it possible to schedule all jobs on
a single machine such that job i is processed with a contiguous slot of
ti time units in the interval [ri, di] ?

Claim. SUBSET-SUM ! P SCHEDULE-RELEASE-TIMES.
Pf. Given an instance of SUBSET-SUM w1, …, wn, and target W,

! Create n jobs with processing time ti = wi, release time ri = 0, and no
deadline (di = 1 + "j wj).

! Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W+1.

W W+1 S+10

Can schedule jobs 1 to n anywhere but [W, W+1]

job 0

Algorithm Design by Éva Tardos and Jon Kleinberg • Copyright © 2005 Addison Wesley • Slides by Kevin Wayne

8.9 A Partial Taxonomy of Hard Problems

47

Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

3-SAT reduces to

INDEPENDENT SET

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

3 / 31

3SAT reduces to Independent Set

Claim

3SAT ≤τ Independent Set

Given an instance F of 3SAT with k clauses, we construct an instance
(G , k) of Independent Set that has an independent set of size k iff F
is satisfiable.

G contains 3 vertices for each clause; i.e. one for each literal.

Connect 3 literals in a clause in a triangle.

Connect literal to each of its negations.

17

Polynomial-Time Reduction

Basic strategies.
! Reduction by simple equivalence.
! Reduction from special case to general case.
! Reduction by encoding with gadgets.

18

Ex:

Yes: x1 = true, x2 = true x3 = false.

Literal: A Boolean variable or its negation.

Clause: A disjunction of literals.

Conjunctive normal form: A propositional
formula ! that is the conjunction of clauses.

SAT: Given CNF formula !, does it have a satisfying truth assignment?

3-SAT: SAT where each clause contains exactly 3 literals.

Satisfiability

!

Cj = x
1
" x

2
" x

3

!

x
i
 or x

i

!

" = C
1
#C

2
C

3
C

4

!

x
1
" x

2
" x

3() # x
1
" x

2
" x

3() # x
2
" x

3() # x
1
" x

2
" x

3()

each corresponding to different variables

19

3 Satisfiability Reduces to Independent Set

Claim. 3-SAT " P INDEPENDENT-SET.
Pf. Given an instance ! of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff ! is
satisfiable.

Construction.
! G contains 3 vertices for each clause, one for each literal.
! Connect 3 literals in a clause in a triangle.
! Connect literal to each of its negations.

!

x
2

!

" = x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

4()

!

x
3

!

x
1

!

x
1

!

x
2

!

x
4

!

x
1

!

x
2

!

x
3

k = 3

G

20

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |!| iff ! is satisfiable.

Pf. # Let S be independent set of size k.
! S must contain exactly one vertex in each triangle.
! Set these literals to true.
! Truth assignment is consistent and all clauses are satisfied.

Pf $ Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k. !

!

x
2

!

x
3

!

x
1

!

x
1

!

x
2

!

x
4

!

x
1

!

x
2

!

x
3

k = 3

G

and any other variables in a consistent way

!

" = x
1
x

2
x

3() $ x
1
x

2
x

3() $ x
1
x

2
x

4()

4 / 31

Optimization problems

Each of these NP problems has an associated search or optimization
problem. For example, the Vertex-Cover problem is usually expressed as
the following optimization problem:
Given a graph G = (V ,E), find a minimum size vertex cover for G ; that
is, a subset V ′ ⊂ V such that for every edge e = (u, v) ∈ E , either u ∈ V ′

or v ∈ V ′. This is the inculusive “or” so that it is possible that both u, v
are in V ′.

If we can solve the optimization problem efficiently, we can immediately
solve the decision problemr?. Does everyone understand this?

What is not as immediate, is the fact that if we can solve the
Vertex-Cover decision problem then we can solve the Vertex-Cover
optimization problem.

We would do this by first determining (using the decision problem) the size
of the minimum vertex cover. Does everyone see how to do this?

5 / 31

The vertex-cover optimization problem continued

Suppose k is the size of the minimum vertex cover. We want to create a
vertex cover V ′ one vertex at a time starting with V ′ = ∅. We iteratively
decide for each vertex v , whether or not we can include v ∈ V ′. That is,
we determine if we can remove v and all its adjacent edges and if the
resulting graph G̃ has a vertex cover of size k − 1 then we add v to the
cover V ′ that we are creating. We then continue with the graph G̃ trying
to create a cover if size k − 1. If G̃ does not have a vertex cover of size
k − 1, we go back to graph G and try another node u to see if G̃ has a
vertex cover of size k − 1 if we remove u and its adjecent edges. We keep
searching for a vertex x that we can remove from G and add to V ′.

Note that while we can “probably” restrict attention to ≤Karp polynomial
time transformations for the purpose of showing new problems are
NP-complete, we are using the more general ≤Cook polynomial time
reductions to reduce the optimization problem to the decision problem.

6 / 31

Another conjecture: NP 6= co-NP

FACT: If L is NP-complete wrt ≤Karp then L̄ ∈ NP if and only if NP =
co-NP

There is another widely believed conjecture again based on the inability of
experts to show that L̄ ∈ NP for any NP-complete problem which states
that NP 6= co-NP. For example, as stated before, we do not believe there
is a “short” certificate for showing that a graph does not have a
Hamiltonian cycle.

As I mentioned before, we believe factoring intergers is not polynomial
time computable. In fact, there is a sense in which we believe it is not
polynomial time computable “on average” (whereas the basic theory of
NP completeness is founded on worst case analysis).

Surprisingly, co-FACTOR is in NP. That is, given an input (N, k), we can
provide a certificate verifying that N does not have a proper factor m ≤ k.

Since co-FACTOR is in NP, and we conjecture that NP 6= co-NP, this
leads us then to believe that FACTOR is in NP \ P but not NP-complete.

7 / 31

Returning to the two different reductions
As far as I know, there is no proof that the two reductions are different but
there is good reason to believe that they are different in general.

Clearly Ā ≤Cook A for any language A.

A ≤Karp B and B ∈ NP implies A ∈ NP.

Hence our assumption that NP 6= co − NP implies that we cannot
have Ā ≤Karp A for any NP-complete A.

On the other hand as far as I know all known NP complete problems can
be shown to be complete using transformations ≤Karp.

I know of no compelling evidence that general reductions and
transformations are different when resticted to the class NP.

NOTE: The general reduction concept is needed when reducing say a
search or optimization problem to a decision problem (and indeed this is
what we described for Vertex-Cover and we will be doing next for SAT).
On the other hand, transformations are what we use for decision problems
(i.e., languages).

8 / 31

Finding a certificate for an NP-complete problem

One might wonder if we can always efficiently find a certificate if we can
decide whether or not a certificate exists. In fact, for NP-complete
problems we can (Cook) reduce finding a certificate to deciding if a
certificate exists.
Fact Let L be a NP-complete problem. We can prove that for every YES
input instance x (where we know that a certificate exists wrt some
verification predicate) that a certificate can be computed in polynomial
time assuming we can solve the decision problem in polynomial time.

Of course, we do not believe that an NP-complerte decision problem can
be solved in polynomial time so this is just a claim that it is sufficient to
just focus on the decision problem.

As an another example, consider SAT and suppose F is satisfiable. That
means we can set each propositional variable (to TRUE or FALSE) so that
the formula evaluates to TRUE. So how do we find a satsifying truth
assignment for F?

9 / 31

Finding a satisfying assignment for a formula F
assuming P = NP
Once we assume P = NP, we would know that the decision problem for
SAT is satisfiable. So we would first test if the given formula F is
satisfiable. If so, we can construct a satisfying assignment one variable at
a time. Consider the following example:

F = (x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ (x̄3 ∨ x̄1) ≡ (x1 → x2) ∧ (x2 → x3) ∧ (x3 → x̄1)

Now since F is satisfiable, there must be some way to set (say) x1 to
either TRUE or FALSE so that the resulting formula still is satisfiable.

If we set x1 to TRUE, then the resulting formula F ′ = F |x1=TRUE will
become FALSE so it must be that x1 is FALSE in any satisfying
assignment.

How would we know that F ′ = F |x1=FLASE is satisfiable?

We would again
use the decision procedure SAT applied to F ′. We would continue this
way to see how to set x2, x3. In this example, x2 can be set TRUE or
FALSE and we would just choose one value. In general, a formula can
have many satisfying assignments.

10 / 31

Finding a satisfying assignment for a formula F
assuming P = NP
Once we assume P = NP, we would know that the decision problem for
SAT is satisfiable. So we would first test if the given formula F is
satisfiable. If so, we can construct a satisfying assignment one variable at
a time. Consider the following example:

F = (x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ (x̄3 ∨ x̄1) ≡ (x1 → x2) ∧ (x2 → x3) ∧ (x3 → x̄1)

Now since F is satisfiable, there must be some way to set (say) x1 to
either TRUE or FALSE so that the resulting formula still is satisfiable.

If we set x1 to TRUE, then the resulting formula F ′ = F |x1=TRUE will
become FALSE so it must be that x1 is FALSE in any satisfying
assignment.

How would we know that F ′ = F |x1=FLASE is satisfiable? We would again
use the decision procedure SAT applied to F ′. We would continue this
way to see how to set x2, x3. In this example, x2 can be set TRUE or
FALSE and we would just choose one value. In general, a formula can
have many satisfying assignments. 10 / 31

I know some (many?) students may find this to be difficult material as you
would not have seen it before. Please ask questions

I do think this material is fundamental to computer science (as a
discipline) and computing (in terms of its impact).

Some ideas are great ideas even when we are not that aware of them. I
argued that this was the case with respect to Turing’s work and the von
Neumann model.

The concept of NP completeness is something that algorithm designers
may or may not think of routinely but at some level of understanding we
do need to know that common (say optimization) problems cannot be
solved effciciently for all input instances.

I mentioned that there have been many surprises in complexity theory so I
again emphasize that a conjecture may guide our thinking but we always
have to be aware of what has and has not been proven.

11 / 31

Can randomization help?

We should note that there are many other fundamental questions in
complexity theory (in addition to the P vs NP question). One such
question is can randomization help.

Consider the following problem: We are implicitly given two multivariate
polynomials p(x1, . . . , xn) and q(x1, . . . , xn). For example, the polynomials
might be the result of a polynomial time computation using the arithmetic
operations +,−, ∗. Or p and q might be the determinants of n × n
matrices with entries that are linear functions of the {xi}.

The polynomial equivalence question whether or not p ≡ q as polynomials;
that is, does p(x1, . . . , xn) = q(x1, . . . , xn) for all values of the {xi}. Lets
say that the xi are all integers or rationals.
Note that this is the same as asking whether or not p − q ≡ 0 where 0 is
the zero polynomial.

How would you solve the identically zero question for a univariate
polynomial (again given implicitly)?

12 / 31

Polynomial equivalence problem continued

Fact: A non zero univariate polynomial p(x) of degree d has at most d
distinct zeros. This means that if we evaluate p(x) at say t > d random
points r1, . . . rt , the probability that p(ri) = 0 is at most d

t .

Schwartz-Zipple Lemma: This lemma extends the above fact to
multivariate polynomials. That is,
If p(x1, . . . , xn) is a non zero polynomial of total degree d (with coeficients
in a ring or field F like the integers or rationals) then
Prob[p(r1, . . . rn) = 0] ≤ d

|S | when the ri are chosen randomly in a finite
subset S ⊆ F .

13 / 31

Polynomial equaivalence and the class RP

So to test if p is identically zero, we take |S | sufficienlty large (or do
repeated independent trials with say |S | = 2d), and see if the evaluation
returns a non-zero value. If p(r1, . . . , rn) = 0, we will claim that p ≡ 0.
The error in this claim will be at most d

|S | and we will only make an error if
p 6≡ 0.

This is an example of a polynomial time randomized algorithm with
1-sided error (with say error at most 1

2) and RP is the class of languages
that have such an algorithm.

In fact the error can be as big as 1− 1
nk

for any fixed k as we can do
polynomially many repeated trials to reduce the error probability using the
fact that (1− 1/t)t → 1

e as t →∞.

Open question: Is RP = P? As a specific example, is the polynomial
equivalence problem in P?

14 / 31

RP and BP
Surprisingly, some prominent complexity theorists (but not everyone)
believe P = RP. More generally, they believe BPP = P where BPP is the
class of languages that can be solved by a polynomial time randomized
algorithm with 2-sided error (with probability of error at most 1

2 −
1
nk

).

Like RP, we can amplify the probability of a correct answer by running a
polynomial number of trials and taking the “majority vote” amongst the
outcomes of the individual trials.

A langauge in RP can be formulated so that there are many certificates
and hence RP ⊆ NP.

One final comment about the conjecture P 6= NP. While we strongly
believe P 6= NP, all is not lost if P 6= NP. For example, while an
optimization problem it can be NP-hard to compute an optimal solution,
for many NP-hard problems there are efficient approximately optimal
algorithms. And many natural problems have efficient algorithms when
considering restricted classes of (or distributions over) instances that tend
to occur naturally.

15 / 31

Complexity based cryptography and Public key
encryption

In our discussion of cryptography, I am relying on CSC2426F graduate
course notes by Charles Rackoff. See
http://www.cs.toronto.edu/ rackoff/2426f20/Cryptonotes.html

I may also be using web page notes by Paul Johnson. See
http://pajhome.org.uk/crypt/index.html

What is complexity based cryptography?
We are going to explore a counter-intuitive idea: Namely, the ability to use
assumptions about what cannot be computed efficiently (i.e., negative
results) to establish positive results for applications such as pseudo-random
number generators, public key cryptography, digital signatures, secret
sharing, and more. These applications all fall under the general topic of
complexity based cryptography. Our focus will be on pseudo-random
number generators (PRNG) and public key cryptography (PKC).

16 / 31

Randomization is necessary

Before we begin, we should note that randomization is almost always
necessary for cryptography. This is not the first time we have encountered
the need for randomization.
When have we used randomization before?
For various problems (say within NP), it seems that randomization is
helpful but perhaps not provably so. That is, we do not know if RP and
BPP are different from P or NP.
But there are applications where randomization is necessary

Simulating stochastic events

Hashing

Differential Privacy

And we can add cryoptography to this list

17 / 31

Randomization is necessary

Before we begin, we should note that randomization is almost always
necessary for cryptography. This is not the first time we have encountered
the need for randomization.
When have we used randomization before?
For various problems (say within NP), it seems that randomization is
helpful but perhaps not provably so. That is, we do not know if RP and
BPP are different from P or NP.
But there are applications where randomization is necessary

Simulating stochastic events

Hashing

Differential Privacy

And we can add cryoptography to this list

17 / 31

Randomization is necessary

Before we begin, we should note that randomization is almost always
necessary for cryptography. This is not the first time we have encountered
the need for randomization.
When have we used randomization before?
For various problems (say within NP), it seems that randomization is
helpful but perhaps not provably so. That is, we do not know if RP and
BPP are different from P or NP.
But there are applications where randomization is necessary

Simulating stochastic events

Hashing

Differential Privacy

And we can add cryoptography to this list

17 / 31

A secure shared secret key session
In this setting, two people called A and B (sometimes referred to as Alice
and Bob) have been able to share secret key (e.g., a secret string of bits)
and will use that secret key to communicate over an insecure channel.
This insecure channel can be observed or perhaps even modified by an
adversary.

A secure shared secret key session
In this setting, two people called A and B (sometimes referred to as Alice
and Bob) have been able to share secret key (e.g., a secret string of bits)
and will use that secret key to communicate over an insecure channel.
This insecure channel can be observed or perhaps even modified by an
adversary.

Computer Science 2426F Fall, 2020
St. George Campus University of Toronto

Notes #0

Introduction

We begin by describing – very informally – what the typical “man in the street” thinks of as the
quintessential application of cryptography: secure sessions (using a shared secret key). Two people
A and B have gotten together and chosen a random n bit key K. They then separate, and can only
communicate over a very insecure internet. We have the following picture:

A now, from time to time, wishes to send stu� – we call it “plain text” – to B. We refer to
the entirety of what A will ever want to send to B as the “message”, although A will only be
sending the message a “piece” at a time. For now, we can think of each piece as being a single bit.
Unfortunately, there is an adversary ADV who has complete control of the internet. ADV not only
listens to everything that A says, but also completely controls what is sent to B. To defend against
ADV , A will be in some sense “encrypting” each piece using the shared key K.

We will always assume that the adversary knows the algorithms that the good guys (A and B
in this case) are using; the only thing the adversary doesn’t know are the randomly chosen keys.
In this case we hope that ADV will not be able to learn anything “significant” about the message
– we will call this privacy – and that ADV will not have a significant chance of making B output
something wrong – we will call this integrity. We will define this all very carefully later in the
course. For now, to be a bit less vague, the first condition roughly means that even if ADV is able
to choose part of the message himself, he should be no good at figuring out any other part of it;
the second condition roughly means that even if ADV is able to choose the whole message himself,
he shouldn’t be able to cause B to output an incorrect piece. Of course, ADV can choose to stop
sending stu� to B causing B to output nothing, and A can send garbage to B causing B to “fail”.

Note that this session may go on for many years, and that our security conditions are with
respect to the entire message, not the individual pieces. It is not su�cient that each piece be
somehow sent securely. We will see later that it easy to come up with a system where each piece is
sent securely but the message (that is, all the pieces) is completely insecure.

1

Figure: One-way communication. Figure taken from Racko↵ notes

21 / 31

Figure: One-way communication. Figure taken from Rackoff notes

18 / 31

Shared-secret key session continued

An important consideration is how powerful is the adversary.
To do things reasonably carefully, we would probably need a full graduate
course on cryptography. It is difficult enough to develop the main ideas
even assuming that the adversary can only eavesdrop so lets make that
assumption.

In a one-way session, A has an m bit message
M = M1M2 . . .Mm ∈ {0, 1}m. (For simplicity, we are assuming that the
message and the secret key have been reresented as a binary strings but
this is not essential.) The message is called the plain text.

In the shared secret key setting we are assuming the A and B have agreed
upon a secret key n bit key K = K1K2 . . .Kn ∈ {0, 1}n.

A will encode his message by a function
ENC : {0, 1}m × {0, 1}n → {0, 1}∗. Here we are using the ∗ to suggest
that the encoded message length can depend on the plain text message.
The encoded message is called the cypher text.

19 / 31

Shared-secret key session continued

B will decode the cypher text by a function
DEC : {0, 1}∗ × {0, 1}n → {0, 1}m.

What properties do we want from the exchange?

Privacy: The adversary should not learn anyything “signifiicant”
about the plain text. What does the adversary know in advance about
the plain text?

Correctness: B should be able to correctly decode the message.
That is DEC (ENC (M,K),K) = M for all M and K .

We might ask what is perfectly secure session? In the Rackoff notes #0,
there are three equivalent definitions. Let’s just use the first one. For a
given plain text message M, a uniformly random key K induces a
distribution DM on the cypher texts. The session is perfectly private if the
distribution DM does not depend on M.

Is a perfectly secure session attainable?

20 / 31

Shared-secret key session continued

B will decode the cypher text by a function
DEC : {0, 1}∗ × {0, 1}n → {0, 1}m.

What properties do we want from the exchange?

Privacy: The adversary should not learn anyything “signifiicant”
about the plain text. What does the adversary know in advance about
the plain text?

Correctness: B should be able to correctly decode the message.
That is DEC (ENC (M,K),K) = M for all M and K .

We might ask what is perfectly secure session? In the Rackoff notes #0,
there are three equivalent definitions. Let’s just use the first one. For a
given plain text message M, a uniformly random key K induces a
distribution DM on the cypher texts. The session is perfectly private if the
distribution DM does not depend on M.

Is a perfectly secure session attainable?

20 / 31

End of Friday, November 27 class

We ended at slide 23.

We will finish up our discussion of complexity based cryptography next
Friday, December 4.

The second and final quiz will take place, Wednesday, December 2 during
the class time.

21 / 31

When is a perfectly secure session attainable?

Fact: A Perfectly secure session is attainable if and only if |M| ≤ |K |.

When |M| ≤ |K |, a one-time pad provides a single perfect secure session.
A one-time pad is defined as follows:

ENC (M,K) = E1E2 . . .Em where Ei = Mi ⊕ Ki for 1 ≤ i ≤ m and
DEC (E ,K) = E1 ⊕ K1, . . . ,Em ⊕ Km.

Note that ⊕, the exclusive OR, flips a bit.

Warning: Never use an old key for a new purpose. For example, we
cannot securely send two m bit messsages with the same m bit key.

So how are we going to continually generate random private keys (or long
keys that can be partitioned into session keys) for different people to
communicate? We cannot assume people can get together physically and
even so how can they generate truly random strings of bits?

22 / 31

Complexity based assumptions; public key
cryptography

The one-time pad does not need any assumptions and an adversary can
have unlimited computational power and still cannot gain any information
from a one-time pad. But as we noted, a one-time pad is not a very
practical solution especially for frequent transactions in e-commerce.

The major application of public key cryptography is to enable key
exchange. For public key cryptography (and almost all cryprographic
applications) we will need complexity assumptions stronger than (but still
widely accepted) P 6= NP. To make public key systems practical we will
also need some sort of trusted public key infrastructre.

We will just discuss one well known public key system, RSA, which is
based on the assumption that factoring large integers is hard even in some
average sense (rather than worse case sense). This is a much stronger
assumption than P = NP since P = NP would allow us to factor integers
in polynomial time.

23 / 31

The basic idea of public key encryption
Public key encryption was introduced by Diffie and Hellman, and a
particular method (RSA) was created by Rivest, Shamir and Adelman.

The basic idea is that in order for Alice (or anyone) to send Bob a
message, Bob is going to create two related keys, a public key allowing
Alice to send an encrypted mesasage to Bob, and a private key that allows
Bob to decrypt Alice’s message.

The basic idea of public key encryption
Public key encryption was introduced by Di�e and Hellman, and a
particular method (RSA) was created by Rivest, Shamir and Adelman.

The basic idea is that in order for Alice (or anyone) to send Bob a
message, Bob is going to create two related keys, a public key allowing
Alice to send an encrypted mesasage to Bob, and a private key that allows
Bob to decrypt Alice’s message.

Public key encryption is different, because it splits the key up into a public key for encryption and a secret key for
decryption. It's not possible to determine the secret key from the public key. In the diagram, Bob generates a pair of
keys and tells everybody (including Eve) his public key, while only he knows his secret key. Anyone can use Bob's
public key to send him an encrypted message, but only Bob knows the secret key to decrypt it. This scheme allows
Alice and Bob to communicate in secret without having to meet.

However, if Eve can tamper with Alice and Bob's communication as well as passively listening, she could
substitute her public key for Bob's, and then decrypt Alice's messages using her own private key. The practicalities
section explains how problems like this are avoided.

© 1998 - 2012 Paul Johnston, distributed under the BSD License Updated:13 Jul 2009

Paj's Home: Cryptography: RSA: Introduction http://pajhome.org.uk/crypt/rsa/intro.html

2 of 2 2020-11-16, 10:15 a.m.

Figure: Diagram of public key encryption. Figure taken from Paul Johnston notes

27 / 31

Figure: Diagram of public key encryption. Figure taken from Paul Johnston notes

24 / 31

The RSA method
Bob wants to generate two keys, a public key e,N and a private key d .
The claim is that it is hard on average to find d given e and N. Bob
chooses N = p · q for two large primes p, q (which for defining “on
average” may satisfy some constraint).

Bob will choose the public e such that gcd(e, φ(N)) = 1 where
φ(N) = φ(pq) = (p − 1)(q − 1). φ(N) is called the Euler totient function
which is equal to the number integers less than N that are relatively prime
to N. gcd(a, b) = 1 means that a and b are relatively prime (i.e. have no
common proper factors).

Alice encodes a message M by computing Me mod N.

Hiding some mathematics, BOB can compute a d such that de = 1 mod
(p − 1)(q − 1) since Bob knows p and q. But without knowing p, q,
finding d becomes computationally difficult.

Hiding some more mathematics, it will follow that Mde = M (mod N) for
any message M. That is, Bob decrypts a cypher text C by the function
Cd mod N. 25 / 31

What mathematical facts do we need to know.

The main mathematical facts are :

1 There are sufficiently many prime numbers in any range so one can
just randomly try to diffent numbers and test if they are prime.

2 aφ(N) = 1 mod N for any a such that gcd(a,N) = 1 As a special
case, ap−1 = 1 mod p for any prime p and a not a multiple of p. So
we have M(p−1)(q−1) = 1 mod N.

3 If gcd(a, b) = 1 then there exists s and t such that sa + tb = 1. In
the RSA algorithm, we can let a = e and b = (p − 1)(q − 1). Then s
will become the d we need for decryption. That is
de + t(p − 1)(q − 1) = 1.

4 It follows then that
Mde = M1−t(p−1)(q−1) = M ·M−t(p−1)(q=1) = M mod (p− 1)(q− 1).

26 / 31

What computational facts do we need to know?
1 The extended Euclidean algorithm can efficiently compute an s and t

such that sa + tb = gcd(a, b)
2 ak mod N can be computed efficiently for any a, k,N.
3 We can efficiently determine if a number p is prime.

In practice, public keys e are chosen to be reasonably small so that
encryption can be made more efficient.

Note that we have been assuming that an adversary EVE (i.e., is just
eavesdropping) and not changing messages. That is, EVE just wants to
learn the message or something about the message. If EVE could change
messages then EVE could pretend to be BOB. So one needs some sort of a
public key infrastructure.

Note that if EVE knows that the message M was one a few possibilities,
then EVE can try each of the possibilities; that is compute MemodN for
each possible M to see what message was being sent. So here is where
randomness can be used. We can pad or interspers random bits in the
plain text M so that the message being sent becomes some one of many
random messages M ′. 27 / 31

WARNING: Real world cryptography is sophisticated
Complexity based cryptography requires careful consideration of the
definitions and what precise assumptions are being made.

Complexity based cryptography has led to many important practical
protocols and there are a number of theorems. Fortunatley, many
complexity assumptions turn out to be equivalent.
In the Rackoff notes, the following theorem is stated as the fundamental
theorem of cryptography. (To make this result precise, one needs precise
definitions which we are omitting.)
Theorem: The following are equivalent:

It is possible to do “computationally secure sssions”

There exists pseudo-random generators; that is, create strings that
computationally look random)

There exist one way functions f ; that is functions such that f (x) is
easy to compute but given f (x) it is hard to find a z such that
f (z) = f (x)

There exist computationally secure digital signature schemes.
28 / 31

The discrete log function

RSA is based on the assume difficulty of factoring. Another assump;tion
that is widely used in cryptography is the discrete log function. Again, we
need some facts from number theory. Let p be a large prime.

Z∗p denotes the set of integers {1, 2, . . . , p − 1} under the operations
of +,−, · mod p is a field. In particular, for every a ∈ Z∗p, there
exists a b ∈ Z∗p such that a · b = 1; i.e., b = a−1 mod p.

Moroever, Z∗p is cyclic. That is, there exists a g ∈ Z∗p such that
{1, g , g2, g3, . . . gp−2} mod p = Z∗p . Recall, as a special case of the
Euler totient function, ap−1 = 1 mod p.

The assumption is that given (g , p, g x mod p), it is computationally
difficult to find x . This is another example (factoring can also be an
example) of a one-way function.

29 / 31

A pseudo random generator

We started off our discussion of complexity based cryptpgraphy by noting
that randomness is essential. We have also noted that it is not clear (or at
what cost) one can obtain strings that “look like” truly random strings.

A pseudo random generator G is a deterministic function
G : {0, 1}k → {0, 1}` for ` > k . When ` is exponential in k, G is called a
pseudo random function generator. For now, lets even see how to be able
to have ` = k + 1.

The random input string s ∈ {0, 1}k is called the seed and the goal is that
r = G (s) should be “computationally indistinguishable” from a truly
random string in t = {0, 1}`. This means that no polynomial time
algorithm can distinguish between r and t with probability better than
1
2 + ε for any ε > 0. (Here I am being sloppy about the quantification but
hopefully the idea is clear.)

30 / 31

A pseudo random generator continued

On the previous slide there was a claim that having a pseudo random
generator is equivalent to having a one-way function.

How can we use (for example, the assumption that the discrete log
function is a one-way function) to construct a pseudo random generator
with ` = k + 1.

The Blum-Micali generator. Assumming the discrete log function is a
one-way function then the following is a pseudo random generator:

Let x0 be a random seed in Z∗p by interpeting (s1, . . . , sk)2 as a binary

number mod p. Let xk+1 = g xk mod p. Define sk+1 = 1 if xk ≤ p−1
2 .

Manual Blum won the Turing award for his contributions to cryptography
and Silvio Micali (along with Shafira Goldwasser) won the Turing award
for interactive zero knowledge proofs.

31 / 31

	Week 10

