On the unreasonable effectiveness of scaling data and parameters in machine learning

UNIVERSITY OF

Rahul G. Krishnan Assistant Professor in CS & LMP (Medicine) CIFAR AI Chair

Ongoing work with Ethan Choi and Aryan Dhar

Machine learning is ubiquitous

Use patterns in what a billion people look for to predict what you might be searching for

The opportunity with electronic medical records

Source: https://www.healthit.gov/data/quickstats/office-based-physician-electronic-health-record-adoption

Supervised learning

- Step 1: Collect a dataset or curate a subset of data with labels from an existing dataset
- Step 2: Learn the model using the dataset
- Step 3: Use the output of the model to build software to help clinicians reach better decisions, faster.
- **Examples**: Logistic regression, random forests, XGBoost, Deep neural networks

Unsupervised learning x_1 x_2 x_3 x_1 x_2 x_3 x_1 x_2 x_3

- Step 1: Collect a dataset or curate a subset of data with labels from an existing dataset
- Step 2: Learn the model using the dataset
- Step 3: Use parameters of the model uncover insights about the data and validate with domain experts
- **Examples**: Nearest neighbors, latent factor models, hidden markov models, variational autoencoders

Vision: A learning healthcare system

Electronic Medical Records

Resource utilization

in hospitals

ML

Clinical Decision Support tools

Source: https://www.medicaldevice-network.com/analysis/ai-in-healthcare-2021-2/

Case Study: Machine Learning for Disease Phenotyping

Why should healthcare care about language models?

• Text data is an important mode of storing and transcribing information in healthcare

Nurse and doctor notes

- Routine part of care for critical patients, as well as those suffering from chronic diseases
- Unstructured but rich source of data about patient disease state

Status quo:

- Lot of promise around the use of machine learning for healthcare
- Language models can help with extracting patient information, summarizing state and forming embeddings of clinical concepts [Alsentzer et. al]

Language models over the years

- Pre-2013
 - **Ethos**: Need to have models that capture fine-grained structure in sentences
 - Parse trees
 - N-gram language models
 - Works well but brittle when sentence syntax deviates from training data
- Post-2013
 - Ethos: The context of a word is sufficient to predict the word
 - Word₂Vec, Recurrent neural networks, transformer

A (brief) history of language models

- What is it: Language model is a statistical model of natural language text
- How is it trained: By maximizing the likelihood of a word/sentence

The dog jumped over the creek.

w1 w2 w3 w4 w5 w5.

Each wi is a word in a vocabulary set [1......V]

Goal: Maximize P(w1....w5)

Thought experiments on the hardness of modeling language

Modeling language via a recurrent process

Source: Sutskever et al. (2014)

Treat language modeling as many small supervised learning tasks – predict the next word given the previous word!

The last few years have seen sentences modeled via attention

▶ 2014: Seq2seq models

2015: Attention

> 2017: Transformer

2018: BERT (110M parameters)

2019: GPT-2 (1.5B parameters)

2020: GPT-3 (175B parameters)

April 4, 2022: PaLM (540B parameters)

Source: Jay Alammar (2018)

Recent trends in large language models

- Language Models are Few-Shot Learners, Brown et. al
 - 3 key ingredients
 - Attention-based transformers
 - Scales up the models to be [very] overparameterized
 - Trains on very very large datasets

	Quantity	Weight in	Epochs elapsed when
Dataset	(tokens)	training mix	training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

Performance as a function of scaling

Model Size

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

 1
 Translate English to French:

 task description
 cheese =>
 cheese =>
 cheese =>

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Translate English to French:	← task descriptio
sea otter => loutre de mer	←— example
cheese =>	← prompt

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Translate English to French:	task description
sea otter => loutre de mer	\leftarrow examples
<pre>peppermint => menthe poivrée</pre>	<i>~</i>
<pre>plush girafe => girafe peluche</pre>	<i>←</i>
cheese =>	\longleftarrow prompt

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning performance on a simple task requiring the model to remove random symbols from a word, both with and without a natural language task description (see Sec. 3.9.2). The steeper "in-context learning curves" for large models demonstrate improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range of tasks.

Source: Brown et al. (2020)

One model many tasks

Setting	PIQA	ARC (Easy)	ARC (Challenge)	OpenBookQA
Fine-tuned SOTA	79.4	92.0[KKS ⁺ 20]	78.5[KKS+20]	87.2[KKS ⁺ 20]
GPT-3 Zero-Shot	80.5*	68.8	51.4	57.6
GPT-3 One-Shot	80.5*	71.2	53.2	58.8
GPT-3 Few-Shot	82.8*	70.1	51.5	65.4

Table 3.6: GPT-3 results on three commonsense reasoning tasks, PIQA, ARC, and OpenBookQA. GPT-3 Few-Shot PIQA result is evaluated on the test server. See Section 4 for details on potential contamination issues on the PIQA test set.

Data >> size of model

An empirical analysis of compute-optimal large language model training, Hoffman et. al