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Machine learning is ubiquitous

Use patterns inwhat a billion
people look for to predictwhat
youmight be searching for

Learning patterns to identify
classes from amillion
labelled datapoints



Theopportunitywith electronicmedical records

The adoption of electronic medical records 
has dramatically increased in the last two 

decades!

Source: https://www.healthit.gov/data/quickstats/office-based-physician-electronic-health-record-adoption

Electronic medical records 
give us a view into a 
patient’s underlying 
physiological state.



Supervised learning

• Step 1: Collect adataset or curateasubsetofdatawith labels fromanexistingdataset
• Step 2: Learn themodelusing thedataset
• Step 3: Use theoutputof themodel tobuild software tohelpclinicians reachbetter
decisions, faster.

• Examples: Logistic regression, randomforests, XGBoost,Deepneural networks

Patient features

Chest X-ray image

Time to readmission

pneumonia/pneumothorax
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Unsupervised learning

• Step 1: Collect adataset or curateasubsetofdatawith labels fromanexistingdataset
• Step 2: Learn themodelusing thedataset
• Step 3: Useparametersof themodeluncover insights about thedataandvalidatewith
domainexperts

• Examples: Nearestneighbors, latent factormodels, hiddenmarkovmodels, variational
autoencoders
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Vision: A learninghealthcare system

Source: https://www.medicaldevice-network.com/analysis/ai-in-healthcare-2021-2/

CaseStudy: MachineLearning forDiseasePhenotyping

Electronic Medical Records

Clinical Decision Support tools

Scientific discoveries 
across scales of  the human 

body 

Predicting outcomes Finding digital twins Resource utilization  
in hospitals

AI & 
ML



Whyshouldhealthcare care about language
models?

• Text data is an importantmodeof storing and transcribing
information in healthcare
• Nurse anddoctornotes

• Routinepart of care for critical patients, aswell as those suffering from
chronic diseases

• Unstructuredbut rich source of data about patient disease state
• Statusquo:

• Lot of promise around theuse ofmachine learning for healthcare
• Languagemodels canhelpwith extractingpatient information,
summarizing state and forming embeddings of clinical concepts [Alsentzer
et. al]



Languagemodels over the years

• Pre-2013
• Ethos: Need tohavemodels that capture fine-grained structure in
sentences

• Parse trees
• N-gram languagemodels
• Workswell but brittlewhen sentence syntaxdeviates from trainingdata

• Post-2013
• Ethos: The context of aword is sufficient to predict theword
• Word2Vec, Recurrent neural networks, transformer



A (brief) historyof languagemodels

• What is it: Languagemodel is a statisticalmodel of natural language
text
• How is it trained: Bymaximizing the likelihood of aword/sentence

The dog jumped over the creek. 

w1  w2      w3      w4    w5   w5. 

Each wi is a word in a vocabulary set [1…….V]

Goal: Maximize P(w1….w5) 



Thought experiments on thehardness of
modeling language



Modeling language via a recurrent processSeq2seq Model

Source: Sutskever et al. (2014)
Treat languagemodeling asmany
small supervised learning tasks –
predict the nextword given the

previousword!



The last fewyears have seen sentences
modeled via attentionAttention

Source: Jay Alammar (2018)

Review of NLP

I 2014: Seq2seq models

I 2015: Attention

I 2017: Transformer

I 2018: BERT (110M parameters)

I 2019: GPT-2 (1.5B parameters)

I 2020: GPT-3 (175B parameters)

I April 4, 2022: PaLM (540B parameters)



Recent trends in large languagemodels

• LanguageModels are Few-Shot Learners, Brownet. al
• 3 key ingredients

• Attention-based transformers
• Scales up themodels to be [very] overparameterized
• Trains onvery very largedatasets

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH+20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

Dataset
Quantity
(tokens)

Weight in
training mix

Epochs elapsed when
training for 300B tokens

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

A major methodological concern with language models pretrained on a broad swath of internet data, particularly large
models with the capacity to memorize vast amounts of content, is potential contamination of downstream tasks by
having their test or development sets inadvertently seen during pre-training. To reduce such contamination, we searched
for and attempted to remove any overlaps with the development and test sets of all benchmarks studied in this paper.
Unfortunately, a bug in the filtering caused us to ignore some overlaps, and due to the cost of training it was not feasible
to retrain the model. In Section 4 we characterize the impact of the remaining overlaps, and in future work we will
more aggressively remove data contamination.

2.3 Training Process

As found in [KMH+20, MKAT18], larger models can typically use a larger batch size, but require a smaller learning
rate. We measure the gradient noise scale during training and use it to guide our choice of batch size [MKAT18]. Table
2.1 shows the parameter settings we used. To train the larger models without running out of memory, we use a mixture
of model parallelism within each matrix multiply and model parallelism across the layers of the network. All models
were trained on V100 GPU’s on part of a high-bandwidth cluster provided by Microsoft. Details of the training process
and hyperparameter settings are described in Appendix B.
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Performance as a functionof scaling

Model Size

Source: Brown et al. (2020)

Model Size

Source: Brown et al. (2020)



Onemodelmany tasks

Figure 3.3: On TriviaQA GPT3’s performance grows smoothly with model size, suggesting that language models
continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains
over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG
[LPP+20]

and/or the style of their answers are out-of-distribution for GPT-3. Nevertheless, GPT-3 appears able to adapt to this
distribution, recovering strong performance in the few-shot setting.

On Natural Questions (NQs) GPT-3 achieves 14.6% in the zero-shot setting, 23.0% in the one-shot setting, and 29.9% in
the few-shot setting, compared to 36.6% for fine-tuned T5 11B+SSM. Similar to WebQS, the large gain from zero-shot
to few-shot may suggest a distribution shift, and may also explain the less competitive performance compared to
TriviaQA and WebQS. In particular, the questions in NQs tend towards very fine-grained knowledge on Wikipedia
specifically which could be testing the limits of GPT-3’s capacity and broad pretraining distribution.

Overall, on one of the three datasets GPT-3’s one-shot matches the open-domain fine-tuning SOTA. On the other two
datasets it approaches the performance of the closed-book SOTA despite not using fine-tuning. On all 3 datasets, we
find that performance scales very smoothly with model size (Figure 3.3 and Appendix H Figure H.7), possibly reflecting
the idea that model capacity translates directly to more ‘knowledge’ absorbed in the parameters of the model.

3.3 Translation

For GPT-2 a filter was used on a multilingual collection of documents to produce an English only dataset due to capacity
concerns. Even with this filtering GPT-2 showed some evidence of multilingual capability and performed non-trivially
when translating between French and English despite only training on 10 megabytes of remaining French text. Since we
increase the capacity by over two orders of magnitude from GPT-2 to GPT-3, we also expand the scope of the training
dataset to include more representation of other languages, though this remains an area for further improvement. As
discussed in 2.2 the majority of our data is derived from raw Common Crawl with only quality-based filtering. Although
GPT-3’s training data is still primarily English (93% by word count), it also includes 7% of text in other languages.
These languages are documented in the supplemental material. In order to better understand translation capability, we
also expand our analysis to include two additional commonly studied languages, German and Romanian.

Existing unsupervised machine translation approaches often combine pretraining on a pair of monolingual datasets
with back-translation [SHB15] to bridge the two languages in a controlled way. By contrast, GPT-3 learns from a
blend of training data that mixes many languages together in a natural way, combining them on a word, sentence,
and document level. GPT-3 also uses a single training objective which is not customized or designed for any task in
particular. However, our one / few-shot settings aren’t strictly comparable to prior unsupervised work since they make
use of a small amount of paired examples (1 or 64). This corresponds to up to a page or two of in-context training data.

Results are shown in Table 3.4. Zero-shot GPT-3, which only receives on a natural language description of the task,
still underperforms recent unsupervised NMT results. However, providing only a single example demonstration for
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Setting En!Fr Fr!En En!De De!En En!Ro Ro!En

SOTA (Supervised) 45.6a 35.0 b 41.2c 40.2d 38.5e 39.9e

XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8
MASS [STQ+19] 37.5 34.9 28.3 35.2 35.2 33.1
mBART [LGG+20] - - 29.8 34.0 35.0 30.5

GPT-3 Zero-Shot 25.2 21.2 24.6 27.2 14.1 19.9
GPT-3 One-Shot 28.3 33.7 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5

Table 3.4: Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU when translating
into English reflecting its strength as an English LM. We report BLEU scores on the WMT’14 Fr$En,
WMT’16 De$En, and WMT’16 Ro$En datasets as measured by multi-bleu.perl with XLM’s tokeniza-
tion in order to compare most closely with prior unsupervised NMT work. SacreBLEUf [Pos18] results re-
ported in Appendix H. Underline indicates an unsupervised or few-shot SOTA, bold indicates supervised SOTA
with relative confidence. a[EOAG18] b[DHKH14] c[WXH+18] d[oR16] e[LGG+20] f [SacreBLEU signature:
BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20]

Figure 3.4: Few-shot translation performance on 6 language pairs as model capacity increases. There is a consistent
trend of improvement across all datasets as the model scales, and as well as tendency for translation into English to be
stronger than translation from English.
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Setting PIQA ARC (Easy) ARC (Challenge) OpenBookQA

Fine-tuned SOTA 79.4 92.0[KKS+20] 78.5[KKS+20] 87.2[KKS+20]
GPT-3 Zero-Shot 80.5* 68.8 51.4 57.6
GPT-3 One-Shot 80.5* 71.2 53.2 58.8
GPT-3 Few-Shot 82.8* 70.1 51.5 65.4

Table 3.6: GPT-3 results on three commonsense reasoning tasks, PIQA, ARC, and OpenBookQA. GPT-3 Few-Shot
PIQA result is evaluated on the test server. See Section 4 for details on potential contamination issues on the PIQA test
set.

Figure 3.6: GPT-3 results on PIQA in the zero-shot, one-shot, and few-shot settings. The largest model achieves a
score on the development set in all three conditions that exceeds the best recorded score on the task.

such as the adversarially-mined Winogrande dataset [SBBC19] still significantly lag human performance. We test
GPT-3’s performance on both Winograd and Winogrande, as usual in the zero-, one-, and few-shot setting.

On Winograd we test GPT-3 on the original set of 273 Winograd schemas, using the same “partial evaluation” method
described in [RWC+19]. Note that this setting differs slightly from the WSC task in the SuperGLUE benchmark, which
is presented as binary classification and requires entity extraction to convert to the form described in this section. On
Winograd GPT-3 achieves 88.3%, 89.7%, and 88.6% in the zero-shot, one-shot, and few-shot settings, showing no clear
in-context learning but in all cases achieving strong results just a few points below state-of-the-art and estimated human
performance. We note that contamination analysis found some Winograd schemas in the training data but this appears
to have only a small effect on results (see Section 4).

On the more difficult Winogrande dataset, we do find gains to in-context learning: GPT-3 achieves 70.2% in the
zero-shot setting, 73.2% in the one-shot setting, and 77.7% in the few-shot setting. For comparison a fine-tuned
RoBERTA model achieves 79%, state-of-the-art is 84.6% achieved with a fine-tuned high capacity model (T5), and
human performance on the task as reported by [SBBC19] is 94.0%.

3.5 Common Sense Reasoning

Next we consider three datasets which attempt to capture physical or scientific reasoning, as distinct from sentence
completion, reading comprehension, or broad knowledge question answering. The first, PhysicalQA (PIQA) [BZB+19],
asks common sense questions about how the physical world works and is intended as a probe of grounded understanding
of the world. GPT-3 achieves 81.0% accuracy zero-shot, 80.5% accuracy one-shot, and 82.8% accuracy few-shot
(the last measured on PIQA’s test server). This compares favorably to the 79.4% accuracy prior state-of-the-art of a
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Data>> size ofmodel

An empirical analysis of compute-optimal large language model training, Hoffman et. al


