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Machine learningis ubiquitous
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Use patterns in what a billion
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The opportunity with electronic medical records
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Source: https://www.healthit.gov/data/quickstats/office-based-physician-electronic-health-record-adoption



Supervised learning
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Patient features Time to readmission

Chest X-ray image pneumonia/pneumothorax

Step1: Collect a dataset or curate a subset of data with labels from an existing dataset
Step 2: Learn the model using the dataset

Step 3: Use the output of the model to build software to help clinicians reach better
decisions, faster.

Examples: Logistic regression, random forests, XGBoost, Deep neural networks



Unsupervised learning
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Step1: Collect a dataset or curate a subset of data with labels from an existing dataset
Step 2: Learn the model using the dataset

Step 3: Use parameters of the model uncover insights about the data and validate with
domain experts

Examples: Nearest neighbors, latent factor models, hidden markov models, variational
autoencoders



Vision: A learning healthcare system

Scientific discoveries Electronic Medical Records

across scales of the human % %
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Clinical Decision Support tools
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Source: https://www.medicaldevice-network.com/analysis/ai-in-healthcare-2021-2/

[ Case Study: Machine Learning for Disease Phenotyping }




Why should healthcare care aboutlanguage
models?

* Textdataisanimportant mode of storing and transcribing
information in healthcare

* Nurse and doctor notes

* Routine part of care for critical patients, as well as those suffering from
chronic diseases

* Unstructured butrich source of data about patient disease state

* Status quo:
* Lotofpromise around the use of machine learning for healthcare

* Language models can help with extracting patientinformation,
summarizing state and forming embeddings of clinical concepts [Alsentzer
et. all



Language models over the years

e Pre-2o013

* Ethos: Need to have models that capture fine-grained structure in
sentences

* Parse trees
* N-gram language models
« Works well but brittle when sentence syntax deviates from training data

* Post-2013
* Ethos: The context of aword is sufficient to predict the word
* Word2Vec, Recurrent neural networks, transformer



A (brief) history of language models

* Whatisit: Language model is a statistical model of natural language
text

* How isittrained: By maximizing the likelihood of a word/sentence

The dog jumped over the creek.

wl w2 w3 w4 w5 ws.
Each wi is a word in a vocabulary set [1.......V]

Goal: Maximize P(w1l....w5)



Thought experiments on the hardness of
modeling language



Modeling language via arecurrent process
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Source: Sutskever et al. (2014)

Treatlanguage modeling as many
small supervised learning tasks —
predict the next word given the
previous word!




The lastfew years have seen sentences
modeled via attention
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Recenttrendsinlarge language models

* Language Models are Few-Shot Learners, Brown et. al

* 3keyingredients
 Attention-based transformers
 Scales up the models to be [very]l overparameterized

* Trains onvery very large datasets

Epochs elapsed when

Quantity Weight in
training for 300B tokens

Dataset (tokens) training mix

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34




Performance as a function of scaling

Model Size

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description
cheese => prompt
One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Zero-shot One-shot Few-shot
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

Source: Brown et al. (2020)



BLEU

One model many tasks

Translation (Multi-BLEU)
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Setting PIQA ARC (Easy) ARC (Challenge) OpenBookQA
Fine-tuned SOTA  79.4  92.0[KKS'20] 78.5[KKS*20] 87.2[KKS20]
GPT-3 Zero-Shot  80.5* 68.8 514 57.6
GPT-3 One-Shot ~ 80.5* 71.2 53.2 58.8
GPT-3 Few-Shot ~ 82.8* 70.1 51.5 65.4

Table 3.6: GPT-3 results on three commonsense reasoning tasks, PIQA, ARC, and OpenBookQA. GPT-3 Few-Shot
PIQA result is evaluated on the test server. See Section 4 for details on potential contamination issues on the PIQA test

set.



Data>>size of model
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An empirical analysis of compute-optimal large language model training, Hoffman et. al



