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Appendix: Network (graph) definitions and examples

Graphs come in two varieties

© undirected graphs (“graph” usually means a
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Visualizing Networks as Graphs

@ nodes: entities (people, countries, companies, organizations, .. .)
@ links (may be directed or weighted): relationship between entities
» friendship, classmates, did business together, viewed the same web

pages, ...
» membership in a club, class, political party, ...

Figure: Internet: Dec. 1970 [E&K, Ch.2]
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Adjacency matrix for graph induced by eastern sites
) in 1970 internet graph: another way to represent a
graph

0100001
101000
01 0100
AlC) = 001010
000101
100010

@ This node induced subgraph (for the sites MIT = 1, LINC = 2, CASE
= 3, CARN = 4, HARV = 5, BBN = 6) is a 6 node regular graph of
degree 2. It is a simple graph in that there are no self-loops or
multiple edges.

@ Note that the adjacency matrix of an (undirected) simple graph is a
symmetric matrix (i.e. A;jj = A;;) with {0,1} entries.

@ To specify distances, we would need to give weights to the edges to

represent the distances.
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The matrix A> where A = A(G)

Consider squaring the previous matrix A = A(G). That is, A2 = Ax A,

A? =

oORr O+ OO
— O, OOO
O R O OOoOH
_ = O OO
CoOoO O~ OR
O = O+ O

Draw a visualization of the graph represented by A?. If we let cij be the
i,j entry in A2, can you desribe the meaning of ¢;;?
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The matrix B= A+ |

Consider the 6 x 6 identity matrix / = (¢;j). Thatis, ¢;; =1for 1 <i <6
and ¢t j =0for1 </, j<6andi#j.

Let B= A+ (as above). Thatis, b;j = a;j + ¢ for all i,j. We have

110001
111000
011100
B(6) = 001110
000111
100011

Note that now the matrix B has self loops and hence is not a simple graph.
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Kidney Exchange: Swap Cycles

@ Live kidney donation common in N.A. to get around waiting list
problems: donor-recipient pairs are nodes and links are directed.
@ Exchange: supports willing pairs who are incompatible

@ allows multiway-exchange
@ supported by sophisticated algorithms to find matches
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Kidney Exchange: Swap Cycles
@ Live kidney donation common in N.A. to get around waiting list
problems: donor-recipient pairs are nodes and links are directed.
@ Exchange: supports willing pairs who are incompatible
@ allows multiway-exchange
@ supported by sophisticated algorithms to find matches
o But what if someone reneges? =- require simultaneous
transplantation! Non-cyclic paths can be started by an altruistic
donor!

Kidney Swap Chain Involving Four Donor-Recipient Pairs

DONORS —* @\ ° @
RECIPIENTS —* @ o @ @

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010
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Recall: undirected graphs vs. directed graphs
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More definitions and terminology

@ In order to refer to the nodes and edges of a graph, we define graph
G = (V,E), where
» V is the set of nodes (often called vertices)
» E is the set of edges (sometimes called links or arcs)
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More definitions and terminology

@ In order to refer to the nodes and edges of a graph, we define graph
G = (V,E), where
» V is the set of nodes (often called vertices)
» E is the set of edges (sometimes called links or arcs)

@ Undirected graph: an edge (u, v) is an unordered pair of nodes.
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More definitions and terminology

@ In order to refer to the nodes and edges of a graph, we define graph
G = (V,E), where
» V is the set of nodes (often called vertices)
» E is the set of edges (sometimes called links or arcs)

@ Undirected graph: an edge (u, v) is an unordered pair of nodes.

@ Directed graph: a directed edge (u, v) is an ordered pair of nodes
(u, v).
» However, we usually know when we have a directed graph and just
write (u, v).

9/20



Basic definitions continued

@ First start with undirected graphs G = (V,E).
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Basic definitions continued

@ First start with undirected graphs G = (V,E).

@ A path between two nodes, say u and v is a sequence of nodes, say
Uy, Us, ..., Ug, where forevery 1 < i< k—1,
» the pair (u;, uiy1) is an edge in E,
» u=u; and v = uy
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Basic definitions continued

@ First start with undirected graphs G = (V,E).

@ A path between two nodes, say u and v is a sequence of nodes, say
Uy, Us, ..., Ug, where forevery 1 < i< k—1,

» the pair (u;, uiy1) is an edge in E,
» u=u; and v = uy

@ The length of a path is the number of edges on that path.
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Basic definitions continued

@ First start with undirected graphs G = (V,E).
@ A path between two nodes, say u and v is a sequence of nodes, say
Uy, Us, ..., Ug, where forevery 1 < i< k—1,
» the pair (u;, uiy1) is an edge in E,
» u=u; and v = uy
@ The length of a path is the number of edges on that path.
@ A graph is a connected if there is a path between every pair of nodes.
For example, the following graph is connected.
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Romantic Relationships [Bearman et al, 2004]
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Figure: Dating network in US high school over 18 months.

o lllustrates common “structural” properties of many networks

@ What predictions could you use this for?
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More basic definitions
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More basic definitions
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More basic definitions
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Observation

Many connected components including one “giant component” J

@ We will use this same graph to illustrate some other basic concepts.

@ A cycle is path u1, up, ..., ux such that u; = uy; that is, the path
starts and ends at the same node.
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Simple paths and simple cycles

@ Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)
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Simple paths and simple cycles

@ Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)
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Observation

@ There is one big simple cycle and (as far as | can see) three small

simple cycles in the “giant component”.

@ Only one other connected component has a cycle: a triangle having
three nodes. Note: this graph is “almost” bipartite and “almost”

acyclic.




Example of an acyclic bipartite graph

Amazon

Shirley
Tilghman
Arthur
Levinson

General
Electric

Susan
Hockfield

Figure: [E&K, Fig 4.4] One type of affiliation network that has been widely
studied is the memberships of people on corporate boards of directors. A very
small portion of this network (as of mid-2009) is shown here.
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Florentine marriages and “centrality”

@ Medici connected to more families, but not by much
@ More importantly: lie between most pairs of families

> shortest paths between two families: coordination, communication
» Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%
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Figure: see [Jackson, Ch 1]
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Breadth first search and path lengths [E&K, Fig 2.8]

distance 1 your friends

distance 2 friends of friends

friends of friends
of friends

distance 3

all nodes, not already discovered, that have an
edge to some node in the previous layer

Figure: Breadth-first search discovers distances to nodes one “layer” at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V, E), where now the edges in E are directed.
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V, E), where now the edges in E are directed.

@ Formally, an edge (u,v) € E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

» However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).
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Analogous concepts for directed graphs

@ We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V, E), where now the edges in E are directed.

@ Formally, an edge (u,v) € E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

» However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

@ We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:
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\ » red numbers: edge weights
/ \ > blue numbers: vertex weights
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or

undirected) graph G = (V, E). Example:

8

c @
\ » red numbers: edge weights

> blue numbers: vertex weights
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@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:
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/ \ » red numbers: edge weights
\ > blue numbers: vertex weights

g@

@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.

@ For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.
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Weighted graphs

@ We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V, E). Example:

\ :

Qb —¢c ©

/ \ » red numbers: edge weights
\ > blue numbers: vertex weights

g@

@ We can have a weight w(v) for each node v € V and/or a weight
w(e) for each edge e € E.

@ For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

@ The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

@ When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) =0 or w(e) = 0o
meaning no edge depending on the context).

@ In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

@ Sometimes (as in Chapter 3) we will only have a qualitative (rather
than quantitative) weight, to reflect a strong or weak relation (tie).

@ Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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