Great Ideas in Computing

University of Toronto CSC196 Fall 2021

Week 11: Appendix

Appendix: Network (graph) definitions and examples

Graphs come in two varieties
(1) undirected graphs ("graph" usually means an undirected graph.)

(2) directed graphs (often called di-graphs).

Visualizing Networks as Graphs

- nodes: entities (people, countries, companies, organizations, ...)
- links (may be directed or weighted): relationship between entities
- friendship, classmates, did business together, viewed the same web pages, ...
- membership in a club, class, political party, ...

Figure: Internet: Dec. 1970 [E\&K, Ch.2]

Adjacency matrix for graph induced by eastern sites) in 1970 internet graph: another way to represent a graph

$$
A(G)=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

- This node induced subgraph (for the sites MIT $=1$, LINC $=2$, CASE $=3, \mathrm{CARN}=4, \mathrm{HARV}=5, \mathrm{BBN}=6)$ is a 6 node regular graph of degree 2. It is a simple graph in that there are no self-loops or multiple edges.
- Note that the adjacency matrix of an (undirected) simple graph is a symmetric matrix (i.e. $A_{i, j}=A_{j, i}$) with $\{0,1\}$ entries.
- To specify distances, we would need to give weights to the edges to represent the distances.

The matrix A^{2} where $A=A(G)$

Consider squaring the previous matrix $A=A(G)$. That is, $A^{2}=A * A$.

$$
A^{2}=\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Draw a visualization of the graph represented by A^{2}. If we let $c_{i, j}$ be the i, j entry in A^{2}, can you desribe the meaning of $c_{i, j}$?

The matrix $B=A+I$

Consider the 6×6 identity matrix $I=\left(\iota_{i, j}\right)$. That is, $\iota_{i, i}=1$ for $1 \leq i \leq 6$ and $\iota_{i, j}=0$ for $1 \leq i, j \leq 6$ and $i \neq j$.

Let $B=A+I$ (as above). That is, $b_{i, j}=a_{i, j}+\iota_{i, j}$ for all i, j. We have

$$
B(G)=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1
\end{array}\right)
$$

Note that now the matrix B has self loops and hence is not a simple graph.

Kidney Exchange: Swap Cycles

- Live kidney donation common in N.A. to get around waiting list problems: donor-recipient pairs are nodes and links are directed.
- Exchange: supports willing pairs who are incompatible
(1) allows multiway-exchange
(2) supported by sophisticated algorithms to find matches

Kidney Exchange: Swap Cycles

- Live kidney donation common in N.A. to get around waiting list problems: donor-recipient pairs are nodes and links are directed.
- Exchange: supports willing pairs who are incompatible
(1) allows multiway-exchange
(2) supported by sophisticated algorithms to find matches
- But what if someone reneges? \Rightarrow require simultaneous transplantation! Non-cyclic paths can be started by an altruistic donor!

Figure: Dartmouth-Hitchcock Medical Center, NH, 2010

Recall: undirected graphs vs. directed graphs

More definitions and terminology

- In order to refer to the nodes and edges of a graph, we define graph $G=(V, E)$, where
- V is the set of nodes (often called vertices)
- E is the set of edges (sometimes called links or arcs)

More definitions and terminology

- In order to refer to the nodes and edges of a graph, we define graph $G=(V, E)$, where
- V is the set of nodes (often called vertices)
- E is the set of edges (sometimes called links or arcs)
- Undirected graph: an edge (u, v) is an unordered pair of nodes.

More definitions and terminology

- In order to refer to the nodes and edges of a graph, we define graph $G=(V, E)$, where
- V is the set of nodes (often called vertices)
- E is the set of edges (sometimes called links or arcs)
- Undirected graph: an edge (u, v) is an unordered pair of nodes.
- Directed graph: a directed edge (u, v) is an ordered pair of nodes $\langle u, v\rangle$.
- However, we usually know when we have a directed graph and just write (u, v).

Basic definitions continued

- First start with undirected graphs $G=(\mathrm{V}, \mathrm{E})$.

Basic definitions continued

- First start with undirected graphs $G=(\mathrm{V}, \mathrm{E})$.
- A path between two nodes, say u and v is a sequence of nodes, say $u_{1}, u_{2}, \ldots, u_{k}$, where for every $1 \leq i \leq k-1$,
- the pair $\left(u_{i}, u_{i+1}\right)$ is an edge in E ,
- $u=u_{1}$ and $v=u_{k}$

Basic definitions continued

- First start with undirected graphs $G=(\mathrm{V}, \mathrm{E})$.
- A path between two nodes, say u and v is a sequence of nodes, say $u_{1}, u_{2}, \ldots, u_{k}$, where for every $1 \leq i \leq k-1$,
- the pair $\left(u_{i}, u_{i+1}\right)$ is an edge in E ,
- $u=u_{1}$ and $v=u_{k}$
- The length of a path is the number of edges on that path.

Basic definitions continued

- First start with undirected graphs $G=(\mathrm{V}, \mathrm{E})$.
- A path between two nodes, say u and v is a sequence of nodes, say $u_{1}, u_{2}, \ldots, u_{k}$, where for every $1 \leq i \leq k-1$,
- the pair $\left(u_{i}, u_{i+1}\right)$ is an edge in E ,
- $u=u_{1}$ and $v=u_{k}$
- The length of a path is the number of edges on that path.
- A graph is a connected if there is a path between every pair of nodes. For example, the following graph is connected.

Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

- Illustrates common "structural" properties of many networks
- What predictions could you use this for?

More basic definitions

More basic definitions

Observation

Many connected components including one "giant component"

More basic definitions

Observation

Many connected components including one "giant component"

- We will use this same graph to illustrate some other basic concepts.
- A cycle is path $u_{1}, u_{2}, \ldots, u_{k}$ such that $u_{1}=u_{k}$; that is, the path starts and ends at the same node.

Simple paths and simple cycles

- Usually only consider simple paths and simple cycles: no repeated nodes (other than the start and end nodes in a simple cycle.)

Simple paths and simple cycles

- Usually only consider simple paths and simple cycles: no repeated nodes (other than the start and end nodes in a simple cycle.)

Observation

- There is one big simple cycle and (as far as I can see) three small simple cycles in the "giant component".
- Only one other connected component has a cycle: a triangle having three nodes. Note: this graph is "almost" bipartite and "almost" acyclic.

Example of an acyclic bipartite graph

Figure: [E\&K, Fig 4.4] One type of affiliation network that has been widely studied is the memberships of people on corporate boards of directors. A very small portion of this network (as of mid-2009) is shown here.

Florentine marriages and "centrality"

- Medici connected to more families, but not by much
- More importantly: lie between most pairs of families
- shortest paths between two families: coordination, communication
- Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%

Figure: see [Jackson, Ch 1]

Breadth first search and path lengths [E\&K, Fig 2.8]

Figure: Breadth-first search discovers distances to nodes one "layer" at a time. Each layer is built of nodes adjacent to at least one node in the previous layer.

Analogous concepts for directed graphs

- We use the same notation for directed graphs, i.e. denoting a di-graph as $G=(V, E)$, where now the edges in E are directed.

Analogous concepts for directed graphs

- We use the same notation for directed graphs, i.e. denoting a di-graph as $G=(V, E)$, where now the edges in E are directed.
- Formally, an edge $\langle u, v\rangle \in E$ is now an ordered pair in contrast to an undirected edge (u, v) which is unordered pair.
- However, it is usually clear from context if we are discussing undirected or directed graphs and in both cases most people just write (u, v).

Analogous concepts for directed graphs

- We use the same notation for directed graphs, i.e. denoting a di-graph as $G=(V, E)$, where now the edges in E are directed.
- Formally, an edge $\langle u, v\rangle \in E$ is now an ordered pair in contrast to an undirected edge (u, v) which is unordered pair.
- However, it is usually clear from context if we are discussing undirected or directed graphs and in both cases most people just write (u, v).
- We now have directed paths and directed cycles. Instead of connected components, we have strongly connected components.

Weighted graphs

- We will often consider weighted graphs. Lets consider a (directed or undirected) graph $G=(V, E)$. Example:

- red numbers: edge weights
- blue numbers: vertex weights

Weighted graphs

- We will often consider weighted graphs. Lets consider a (directed or undirected) graph $G=(V, E)$. Example:

- red numbers: edge weights
- blue numbers: vertex weights
- We can have a weight $w(v)$ for each node $v \in V$ and/or a weight $w(e)$ for each edge $e \in E$.

Weighted graphs

- We will often consider weighted graphs. Lets consider a (directed or undirected) graph $G=(V, E)$. Example:

- red numbers: edge weights
- blue numbers: vertex weights
- We can have a weight $w(v)$ for each node $v \in V$ and/or a weight $w(e)$ for each edge $e \in E$.
- For example, in a social network whose nodes represent people, the weight $w(v)$ of node v might indicate the importance of this person.

Weighted graphs

- We will often consider weighted graphs. Lets consider a (directed or undirected) graph $G=(V, E)$. Example:

- red numbers: edge weights
- blue numbers: vertex weights
- We can have a weight $w(v)$ for each node $v \in V$ and/or a weight $w(e)$ for each edge $e \in E$.
- For example, in a social network whose nodes represent people, the weight $w(v)$ of node v might indicate the importance of this person.
- The weight $w(e)$ of edge e might reflect the strength of a friendship.

Edge weighted graphs

- When considering edge weighted graphs, we often have edge weights $w(e)=w(u, v)$ which are non negative (with $w(e)=0$ or $w(e)=\infty$ meaning no edge depending on the context).
- In some cases, weights can be either positive or negative. A positive (resp. negative) weight reflects the intensity of connection (resp. repulsion) between two nodes (with $w(e)=0$ being a neutral relation).
- Sometimes (as in Chapter 3) we will only have a qualitative (rather than quantitative) weight, to reflect a strong or weak relation (tie).
- Analogous to shortest paths in an unweighted graph, we often wish to compute least cost paths, where the cost of a path is the sum of weights of edges in the path.

