Great Ideas in Computing

University of Toronto CSC196
Fall 2021

Week 9: November 15-19 (2021')

1/23

Announcements

Announcements

@ | have posted all of Assignment 3 (A3) on the web page. A3 is due
this Friday at 8AM,.

@ The next quiz is scheduled for November 26.

@ We have our final guest presenter this Wednesday, November 17.
Professor Fanny Chevalier will discuss human computer interaction
HCI and more specifically visualization.

2/23

This weeks agenda

Agenda

@ We will continue our discussion of complexity theory,
NP-completeness and the P # NP conjecture.

@ We ended the Friday, November 5 class on slide 13 with an example
of a language Lyc in the class NP.

We will begin today by restating that slide, then giving the definition
of the class NP and work our way towards the definition of
NP-completeness and the P # NP conjecture. .

@ Then (probably next week) we begin complexity based cryptography.

3/23

A language “probably not” in the class P

Consider the following language:

Luc = {G = (V, E)|G has a simple cycle including all nodes in V}.

It is strongly believed (but not proven) that Lyc is not polynomial time
computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(or traveling salesperson to be gender neutral) (TSP) is to find an HC of
least cost in an edge weighted graph. Have you heard of this problem?.)

4/23

A language “probably not” in the class P

Consider the following language:

Luc = {G = (V, E)|G has a simple cycle including all nodes in V}.

It is strongly believed (but not proven) that Lyc is not polynomial time
computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(or traveling salesperson to be gender neutral) (TSP) is to find an HC of
least cost in an edge weighted graph. Have you heard of this problem?.)

But suppose | know that a given graph G has Hamiltonian cycle.
How can | convince you that G has such a cycle?

4/23

A language “probably not” in the class P

Consider the following language:

Luc = {G = (V, E)|G has a simple cycle including all nodes in V}.

It is strongly believed (but not proven) that Lyc is not polynomial time
computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(or traveling salesperson to be gender neutral) (TSP) is to find an HC of
least cost in an edge weighted graph. Have you heard of this problem?.)

But suppose | know that a given graph G has Hamiltonian cycle.
How can | convince you that G has such a cycle?

| can simply show you a Hamiltonian cycle C and you can easily and
efficiently verify that C is indeed a HC. That is, | can prove to you that G
has a HC.

4/23

A language “probably not” in the class P

Consider the following language:

Luc = {G = (V, E)|G has a simple cycle including all nodes in V}.

It is strongly believed (but not proven) that Lyc is not polynomial time
computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(or traveling salesperson to be gender neutral) (TSP) is to find an HC of
least cost in an edge weighted graph. Have you heard of this problem?.)

But suppose | know that a given graph G has Hamiltonian cycle.
How can | convince you that G has such a cycle?

| can simply show you a Hamiltonian cycle C and you can easily and
efficiently verify that C is indeed a HC. That is, | can prove to you that G
has a HC.

But can | prove to you the G does not have a HC?

4/23

A language “probably not” in the class P

Consider the following language:

Luc = {G = (V, E)|G has a simple cycle including all nodes in V}.

It is strongly believed (but not proven) that Lyc is not polynomial time
computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(or traveling salesperson to be gender neutral) (TSP) is to find an HC of
least cost in an edge weighted graph. Have you heard of this problem?.)

But suppose | know that a given graph G has Hamiltonian cycle.
How can | convince you that G has such a cycle?

| can simply show you a Hamiltonian cycle C and you can easily and
efficiently verify that C is indeed a HC. That is, | can prove to you that G
has a HC.

But can | prove to you the G does not have a HC?

“Probably not”

4/23

NP: the class of languages which are “efficiently

verifiable”
Using the HC problem as an example, lets define what it means to be

efficiently verifiable.

Let L be a language (like HC) that saitisfies the following conditions:
There is a polynomial time decidable relation R(x,y) and a polynomial p
such that for every x, x € L if and only if there exists a y with |y| < p(|x|)
and R(x,y) = TRUE.

R(x,y) is a verification relation (or predicate) and y is called a certificate
with respect to R that verifies x being in L.

Definition: The class NP is the class of languages (decision problems)
that have such a verification relation and certificate.

For example Lyc is in NP. Namely, given a representation x of a graph
G = (V,E), a certificate y is an encoding of a sequence of vertices
specifying a Hamiltonian cycle C. R(x, y) checks the conditions for C
being a simple cycle containing all the nodes in V.

5/23

Many many decision problems are in the class NP

First we will note that the class P (decision problems decideable in
polynomial time) is a subset of NP; that is, P C NP. Is this obvious?

6/23

Many many decision problems are in the class NP
First we will note that the class P (decision problems decideable in
polynomial time) is a subset of NP; that is, P C NP. Is this obvious?

Suppose a language L (like Lconnected) is decideable in polynomial time.
Then in the definition of NP, we can let let R(x,y) be the relation that is
TRUE iff x € L ignoring y and R(x,y) is polynomial time since we can
decide if x € L in polynomial time by the assumption that L € P.

6/23

Many many decision problems are in the class NP

First we will note that the class P (decision problems decideable in
polynomial time) is a subset of NP; that is, P C NP. Is this obvious?

Suppose a language L (like Lconnected) is decideable in polynomial time.
Then in the definition of NP, we can let let R(x,y) be the relation that is
TRUE iff x € L ignoring y and R(x,y) is polynomial time since we can
decide if x € L in polynomial time by the assumption that L € P.

In saying P C NP, we have left open the possibility that P = NP.
However, the widely believed assumption (conjecture) is that P # NP.
This question (conjecture) was implicitly asked by (for example) Gauss
(early 1800's), von Neumann, Godel (1950's) , Cobham, and Edmonds
(1960s). The conjecture was formalized by Cook in 1971 (indpendently by
Levin in the FSU but his work was not known until about 1973).

More specifically Cook defined the concept of NP-completeness and gave
a couple of examples of such problems, namely SAT and CLIQUE,
problems in NP that are believed to not be in P. We wil define

NP-completeness and the evidence for the conjecture that P # NP.
6/23

Some other examples of decision problems in NP
and believed to not be in P

In all of the examples below we always assume some natural way to
represent the inputs as strings over some finite alphabet. In particular,
integers are represented in say binary or decimal. Polynomial time means
time bounded by a polynomial p(n) where n is the length of the input
string. (I will explain each of the following decision problems as we
introduce them. Some problems are naturally decision problems. Others
are decision variants of optimization problems and other relations or
functions)

SAT = {F|F is a propositional formula that is satisfiable}
PARTITION = {(a1,a2,...,an)|35 1 Y, c5ai = 5 >i1—1 ai}
VERTEX-COLOUR = {(G, k)|G can be vertex coloured with k
colours}

FACTOR = {(N, k)|N is an integer that has a proper factor m < k}

You should be able to provide certificates for the above problems with
respect to natural verification predicates.

7/23

NP completeness

We will see that with the exception of FACTOR, the other decision
problems are NP-complete, a concept we will now motivate and define.

A decison problem (or any problem) L is NP-hard if every problem
L’ € NP can be "efficicently reduced” to L. There are different notions of
how to formalize “efficiently reduced” and we will discuss this shortly.

A problem L is NP-complete if it is both in NP and NP-hard.
Here are the immediate consequences of a problem being
NP-complete.

e If Lis NP complete, and L € P, then every L’ € NP is in P

@ Equivalently, if any L’ € NP is not in P, then every NP-complete
problem is not in P.

@ There are hundreds (and really thousands) of problems that are
NP-complete and since we “religously” believe P £ NP, we believe
that none of these complete problems can be decided in polynomial
time. (I emphasize this is in terms of worst case complexity.)

8/23

Why the religious belief and co-NP

Why do we believe so strongly that P £ NP. It is simply that many very
talented people over literally centuries have tried to efficiently solve
problems that are in NP (and believed to not be in P and especially those
that are NP-complete) and failed to do so.

Even so, there have been surprises in complexity theory and one still has to
keep in mind that P # NP is still a conjecture and not a proven result.

Our confidence in this conjecture is strong enough that modern day
cryptography makes this assumption and indeed makes even stronger
assumptions. For example, cryptographic protocols usually assume that
there exist one-way functions f for which it is easy (i.e. poly time) to
compute f(x) for any x but given y, it is difficult to find an x such that
fx)=y.

9/23

What would happen if someone solves the P vs NP
guestion?

| was asked at the end of our last class (on Friday, November 5) what
would be the consequences if someone resolves the P vs NP question.

10/23

What would happen if someone solves the P vs NP
guestion?

| was asked at the end of our last class (on Friday, November 5) what
would be the consequences if someone resolves the P vs NP question.

While the mathematical and scientfiic impact will be enormous, science
will not end.

If someoone proves that (as we do not believe) P = NP, then the
“pracical impact” will depend on how efficiently we can solve NP complete
problems; that is, what are the polynomial time bounds.

If someone prove P # NP, then the “practical impact” will depend on
whether or not a given problem can be solved efficiently “in practice” (i.e.
for most inputs of for “the inputs we care about”). More later.

10/23

Returning to the concept of reduction

At the heart of NP completeness and more generally algorithm analysis is
the concept of (efficient) reduction of problems. When we say that
problem A “efficiently” reduces to problem B, we can conclude that an
efficient algorithm for B will result in an efficient algorithm for A (and
equivalently, the contrapositive states that A not efficiently computable
implies that B is not efficiently computable).

There are different definitions for what we mean by an efficient reduction
and the precise definition matters in terms of what we want to conclude
from the reduction.

One major distinction is between a very general type of reduction (which
we will just call poly time reduction (i.e., the poly time version of Turing
reduction) and the more restricted reduction which we will call poly time
transformation.

11/23

Two types of reductions continued

The general version of reduction A §‘}°Iy B means that there is a poly
time algorithm ALG that can call a subroutine for B (as often as it likes)
and ALG computes A. Here we count each call to the subroutine as 1
step. It is not difficult to see that if A <+ B and B is computable in
polynomial time, then A is computable in polynomial time.

The S’;f’ly reduction is what Cook used in his seminal 1971 paper.

The more restricted transformation (which we call a polynomial time
transformation) A <P%_ B means that there is a polynomial time function
h (transforming an input instance of A to an input instance of B) such
that x € A if and only if h(x) € B.

It is again easy to see that A <”°”_ B and B € P implies A € P.

—trans

Following Cook’s paper, Karp provided a list of 21 combinatorial and
graph theoretical problems that are NP complete. Karp used the more

restrictive _. If you like names associated with these reductions then
we can denote <2 as <ok and <EA as <y

12/23

Comparing the reductions g”TOIy and </%

Let first explicitly give the definition NP-complete.
Definition: A language (or decision problem) L is NP complete if
Q Le NP
@ L is NP-hard with respect to some polynomial time reduction, for
example with respect to either §’;°ly, of <trans poly. That is, if we
are using gf,?;,{s, then L is is NP-hard if for every A € NP, there there
is a polynomial time computable function h such that w € A if and
only if h(w) € L.

It is not difficult to show :

Fact: B € NP and A <P°”_ B implies A € NP.

—trans

13/23

The importance of NP-completeness

To simplify the notation, lets sometimes use <cook and <karp respectively
for genneral poly time

Basic Fact: If L is NP-complete (wrt to either <coox OF <Karp, then
L € P if and only if P = NP.

It can be shown that Lyc, SAT, Partition, Vertex-Colour and thousands of
other problems are NP complete.

So now we know that if we can polynomial time decide any one of these
NP-complete problems we can solve them all in polynomial time. Any
even if a problem L is in NP but possibly not NP-complete, then P = NP
would imply L is polynomial time decidable.

14/23

But how do we prove that prove that a decision
propblem is NP-complete?

Suppose we know that some problem (for example, SAT) is NP-complete.
Then if we can show SAT can be poly time reduced or transformed to (for
example) VC = vertex-cover, then VC must also be NP-complete.

Fact: Polytime reductions and polytime transformations are transitive
relations. That is, for example, A <k,r, B and B <y ., C implies
A §Karp C.

In this way, thousands of decision problems L has been created by a tree of
polynomial time transformations. (On the next slide, we will show Karp's
initial tree.) But we have to start the tree with some NP problem that we
prove is NP-complete.

Cook did this for SAT by showing how to efficiently encode any
polynomial time Turing machine computation of a verification predicate
R(x,y) and a “guess” for a certificate y within propositional logic. (We
discuss this in CSC373.)

15/23

A tree of reductions/transformations

Polynomial-Time Reductions

constraint satisfaction

ol il

Dick Karp (1972)

X0
o v”f\;:;‘(£ 1985 Turing Award
32 e
BN
INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING
SET COVER TSP
packing and covering sequencing partitioning numereical

16/23

End of Monday, November 15 class

We ended the class just showing the initial Karp tree of reductions. In next
Monday'’s class | will quickly show some simple reductions and how we can
“Cook reduce” (i.e., using §pT°Iy) optimization problems and finding
certifcates to the corresponing decision problem. Wednesday we have our
final guest presentation.

Polynomial time transformations are algorithms and some are “easy’and
some can be very difficult to derive and prove that the transformation h()
satisfies what is needed for a poly time transformation <?°Y

—trans-

| am posting on quercus a link to a video by David Scot Taylor at San
Jose State University that explains very nicely some polynomial time
transformatons.

17/23

Optimization problems

Each of these problems has an associated optimization problem. For
example, the Vertex-Cover problem is usually expressed as the following
optimization problem:

Given a graph G = (V, E), find a minimum size vertex cover for G; that
is, a subset V' C V such that for every edge e = (u,v) € E, either u € V’
or v € V. This is the inculusive “or" so that it is possible that both u, v
are in V',

If we can solve the optimization problem efficiently, we can immediately
solve the decision problem. Does everyone understand this?

What is not as immediate, is the fact that if we can solve the
Vertex-Cover decision problem then we can solve the Vertex-Cover
optimization problem.

We would do this by first determining (using the decision problem) the size
of the minimum vertex cover. Does everyone see how to do this?

18/23

The vertex-cover optimization problem continued

Suppose k is the size of the minimum vertex cover. We then iteratively
decide for each vertex v, whether or not we can include v € V'. That is,
we determine if we can remove v and all its djacent edges and ask if the
resulting graph G ihas a vertex cover of size k — 1. If v cannot be in the
minimum vertex cover then we go on to look at another vertex.

Note that while we can “probably” restrict attention to <y, polynomial
time transformations for the purpose of showing new problems are
NP-complete, we are using the more general <c,ox polynomial time
reductions to reduce the optimization problem to the decision problem.

19/23

Another conjecture: NP # co-NP

FACT: If L is NP-complete wrt <k,, then L € NP if and only if NP =
co-NP

There is another widely believed conjecture again based on the inability of
experts to show that L € NP for any NP-complete problem which states
that NP # co-NP. For example, as stated before, we do not believe there
is a “short” certificate for showing that a graph does not have a
Hamiltonian cycle.

As | mentioned before, we believe factoring intergers is not polynomial
time computable. In fact, there is a sense in which we believe it is not
polynomial time computable “on average” (whereas the basic theory of
NP completeness is founded on worst case analysis).

Surprisingly, co-FACTOR is in NP. That is, given an input (N, k), we can
provide a certificate verifying that N does not have a proper factor m < k.

Since co-FACTOR is in NP, and we conjecture that NP # co-NP, this
leads us then to believe that FACTOR is in NP\ P but not NP-complete.

20/23

Returning to the two different reductions

As far as | know, there is no proof that the two reductions are different but
there is good reason to believe that they are different in general.

@ Clearly A <cook A for any language A.
@ A <karp B and B € NP implies A € NP.

@ Hence our assumption that NP # co — NP implies that we cannot
have A <karp A for any NP-complete A.

On the other hand as far as | know all known NP complete problems can
be shown to be complete using transformations <kap.

| know of no compelling evidence that general reductions and
transformations are different when resticted to the class NP.

NOTE: The general reduction concept makes sense when reducing say a
search or optimization problem to a decision problem (and indeed this is
what said about Vertex-Cover and we will be doing next for SAT). On the
other hand, transformations are only about decision problems (i.e.,
languages).

21/23

Finding a certificate for an NP-complete problem

One might wonder if we can always efficiently find a certificate if we can
decide whether or not a certicifcate exists. In fact, for NP-complete
problems we can (Cook) reduce finding a certificate to deciding if a
certificate exists.

Fact Let L be a NP-complete problem. We can prove that for every YES
input instance x (where we know that a certificate exists wrt some
verification predicate) that a certificate can be computed in polynomial
time assuming we can solve the decision problem in polynomial time.

Of course, we do not believe the decision problem can be solved in
polynomial time so this is just a claim that it is sufficient to just focus on
the decision problem.

As an example, consider SAT and suppose F is satisfiable. That means we
can set each propositional variable (to TRUE or FALSE) so that the
formula evaluates to TRUE. So how do we find a satsifying truth
assignment for F?

22/23

Finding a satisfying assignment for a formula F
assuming P = NP

Once we assume P = NP, we would know that the decision problem for
SAT is satisfiable. So we would first test if the given formula F is
satisfiable. If so, we can construct a satisfying assignment one variable at
a time. Consider the following example:

F = ()_(1 \/X2) VAN ()_<2 \/X3) VAN ()_(3 V)‘q) = (X1 — X2) A (X2 — X3) VAN (X3 —)_<1)

Now since F is satisfiable, there must be some way to set (say) x; to
either TRUE or FALSE so that the resulting formula still is satisfiable.

If we set x; to TRUE, then the resulting formula F = F|,,—1rue will
become FALSE so it must be that x; is FALSE in any satisfying
assignment.

How would we know that F/ = F|x; = FLASE is satisfiable?

23/23

Finding a satisfying assignment for a formula F
assuming P = NP

Once we assume P = NP, we would know that the decision problem for
SAT is satisfiable. So we would first test if the given formula F is
satisfiable. If so, we can construct a satisfying assignment one variable at
a time. Consider the following example:

F= ()_(1 \/X2) A ()_Q \/X3) VAN ()_<3 V)‘q) = (X1 — X2) A (X2 — X3) VAN (X3 —)_<1)

Now since F is satisfiable, there must be some way to set (say) x; to
either TRUE or FALSE so that the resulting formula still is satisfiable.

If we set x; to TRUE, then the resulting formula F = F|,,—1rue will
become FALSE so it must be that x; is FALSE in any satisfying
assignment.

How would we know that F' = F|x; = FLASE is satisfiable? We would
again use the decision procedure SAT applied to F’. We would continue
this way to see how to set xp, x3. In this example, x» can be set TRUE or
FALSE and we would just choose one value. In general, a formula can

have many satisfying assignments. 23/23

	Week 9

