
Great Ideas in Computing

University of Toronto CSC196
Fall 2020

Week 2: September 27-October 1 (2021)

1 / 21

Week 3 slides
Announcements:

Assignment A1 is now available for submission on Markus. Please let
me know if there is an issue downloading your submission. It is due
Friday, October 8, 8AM. There is a 5% penalty for each 24 hours the
assignment is late with a maximum of 96 hours to submit a late
assignment.

Our first guest presenter will be Professor David Duvenaud who will
talk about ML and neural neworks. He will conduct the presentation
Wednesday on zoom (usual class zoom link).

The agenda for this week

I will have some remarks regarding AI and ML in preparation for
Professor Duvenaud’s discussion on Wednesday.

I will have a few brief comments on fixed point vs floating point
representation.

We will then continue where we left off last week. Namely, we will
continue to discuss the dictionary data type and differert ways to
implement a dictionary.

2 / 21

Some remarks about AI and ML
One hears about AI, machine learning (ML) and data science every day.

In our DCS research MSc and PHd applications, perhaps 60-70% of
applicants indicate that ML is their first choice of fileds. In our applied
research MScAC program, perhaps 60-70% indicate ML or data science is
their first choice. One of the “concentrations” in the MScAC is data
science which we do together with the Department of Statistics.

We can have a discussion about data bases vs data science vs ML vs AI.
These are terms that don’t have precise mathematical meanings but we
can give some examples of what we might have in mind. (You might have
your own more illustrative examples in mind.) Each of these is considered
a different field and DCS and other departments offer several courses in
each area.

In data bases we decide how to store and retrieve information about
records within some data base.

In data science we are often trying to obtain statistical and statistical
predictive information about large amounts of data.

3 / 21

Current ML

ML is today the major part of AI (say in terms of impact and current
research and development). The goal in ML is more ambitious in that
it attempts (currently “learning” by using large sets of training data)
to match or exceed performance at activities what we usually
associate with human intelligence.

As an example of a very succcessful activity consider recognizing
human faces or identifying different parts of a scene (eg find all the
birds in this photo). This example is part of what we call the area of
computer vision. Playing Chess or Go is another example.

As I said, the distinction between these areas is not entirely clear. Is
computing the probability that an individual will default on a bank
loan can be considered data science or ML. And, of course, when
such predictive results are being made by an algorithm (with or
wothout some human oversight), we clearly have some ethical issues.

4 / 21

ML vs AI
The field of artifical intelligence (AI) as envisioned by its pioneers considers
what might be the ultimate raison d’etre for computer science, namely to
be able to match or outperform human intellignece and moreover to
understand how to learn even with little or no training examples.

That is, how do we as humans learn different things (e.g. natural language,
recognizing different types of objects, forming concepts, reasoning)?

The history of AI has been called a rooler coaster, many promises and
failures, followed by huge successes in what ML can now do.

But still now the fundamental debate continues: To what extent can
machines learn and reason.

On the web site I am providing a link to an article on the history of AI and
also Geoff Hinton’s commencement address at IIT,Mumbai.

One specific question is the following: To what extent, can we learn new
“useful” (and even possibly, theroetically optimal) algorithms for say a
specific combinatorial optimization problem?

5 / 21

Fixed and Floating point representation: A quick
review

As we have already discussed. we have to approximate non integers
by fractions where in particular . say every real number in the interval
[0, 1] can be approximated by a fraction .bn−1 . . . b1b0 where
bi ∈ {0, 1}. The more bits better the approximation.

Some fractions can be represented exactly in such a binary
representation (e.g. 1/2, 1/4, 3/4, etc.) while other numbers like
1/10 and is 1/3 can only be approximated. (Note: One can, of
course, represent these numbers exactly as a ratio of two integers.)

We may need very small or very large numbers but the number of bits
in a computer word is fixed (for example, 32 bits) so this limits how
big or how small numbers can be. This is not an artifact of the binary
representation. The same limitations would apply to any base.

In a fixed point representation, we represent numbers by agreeing to
have some fixed number of fractional bits.

6 / 21

Fixed and floating point numbers continued
For example, in an 8 bit fixed point representation b7b6 . . . b0, where b7 is
the sign bit, we can agree that the two lower order bits b1 and b0 are the
fractional parts. Then the decimal number −18.5 would be represented
exactly by 11001010 and −18.25 would be represented exactly by
11001001.

Note that in a pure integer or fixed point representation, the sizes of the
smallest and largest numbers are severly restricted. For a 32 bit word with
a sign bit, the largest number is 231 − 1 ≈ (10)9 (i.e. approximately one
billion). And every bit of precision we use for the fractional part decreases
the range of numbers representable by approximately a factor of 2.

Moreover, the precision for the fractional part is also severly restricted by
the the number of bits in the fractional part.

The benefit of fixed point notation is that integers (or the integral part of
a non-integer) is represented exactly within the range that the number of
integral bits allows. Fixed point is the usual representation for integers
within the allowable range.

7 / 21

Floating point numbers

The common solution to provide a large range as well as providing good
precision is to use floating point representation.

The tradeoff is that we lose some precision for some numbers that have an
exact fixed point representation. For example, the decimal fraction 1

10
cannot be represented exactly.

All integers requiring at most 24 bits can be represented exactly.

Floating point arithmetic also has some delicate issues.

The “wonder” of the von Neuman model and programming languages is
that the end user “usually” doesn’t have to be aware of these
represntation issus. However, algorithm designers for numerical
computations do have to worry about how rounding errors can propogate.
(Advice: Take a course in numerical analysis.)

8 / 21

End of Monday September 27 class

I clearly didn’t get much past our discussion on ML and AI but that us
fine. The discussion today shows that there is a good deal of class interest
in ML and AI. I tbhink we are all looking forward to the Wednesday class.

Next Monday, I will finish up the discussion of the distionary data type and
its implementation in different data structures. Ortv we might do that in
the tutorial.

I will soon stop using zoom for meetings and classes will be in person only.
Exception: If you email me and tell me why you cannot attend in person
on a given day, I will run a zoom session at the same time as the in person
class. But you much tell me in advance.

9 / 21

Dictionaries: A quick review and some additional
data structures
The basic operations in a dictionary are the following:

Search: Look up if someone is in the organization and if so retrieve
the information for this person.
Update content: Change the information regarding an item
Insert: Add a new person to the organization
Delete: Remove a person from the organzation.

Sets of objects with these opeartions are refered to as a Dictionary data
type. It is a static dictionary if we only want to look up and possibly
modify records and a dynamic dictionary if we also want to add and delete.
We can use different data structures to implement such a data type.

There can be many more operations that we want to perform on
collections of data. More generally how one maintains and operates on
data is known as the subfield of data bases. Analyzing data and extracting
new (often statistical) information from collections of data is now called
data science or data analytics. More ambitious learning of new information
from data can be called machine learning.

10 / 21

Dictionaries lead to interesting concepts and ideas

Many ways to implement a dictionary. What is important to note is
that there are almost always TRADEOFFS in whatever we do in
computing (and in life). How do you compare alternatives when there
are multiple criteria for any given choice?. When can we say that
choice 1 is better than choice 2 according to the given criteria.

Here are some well known ways (called data structures) to implement
a dictionary.

1 An unordered list in an array
2 An ordered list in an array
3 A linked list
4 A (balanced) search tree.
5 A hash table.

We will briefly talk about each of these possibilities. I do not want to
get into details. Instead I just want to give a very high level idea of
these different ways to implement a dynamic dictionary mentioning
some tradeoffs and introducing some related concepts.

11 / 21

Dictionaries lead to interesting concepts and ideas

Many ways to implement a dictionary. What is important to note is
that there are almost always TRADEOFFS in whatever we do in
computing (and in life). How do you compare alternatives when there
are multiple criteria for any given choice?. When can we say that
choice 1 is better than choice 2 according to the given criteria.

Here are some well known ways (called data structures) to implement
a dictionary.

1 An unordered list in an array
2 An ordered list in an array
3 A linked list
4 A (balanced) search tree.
5 A hash table.

We will briefly talk about each of these possibilities. I do not want to
get into details. Instead I just want to give a very high level idea of
these different ways to implement a dynamic dictionary mentioning
some tradeoffs and introducing some related concepts.

11 / 21

Brief discussion on these different methods

Let n be the current number of items in dictionary.

Each item has a unique name or identifier.

After I describe each method (on the white board), lets discuss some pros
and cons of each method.

12 / 21

Some pros and cons of an unordered list in array for
a dictionary

Relatively easy to add or delete an item (assuming we don’t exceed the
size of the array)

Requires an “average”of n/2 comparisons to find a current item and n
comparisons to determine if the requested item is not in the current array.
This is a hint of an important issue: namely, what does average mean?

We usually have to indicate the size of the array in advance and would
then have to allocate a new array if the number of entries exceeds the
array size.

We need some memory management system for dynamic dictionaries. But
this is true for any data structure.

13 / 21

Some pros and cons of an unordered list in array for
a dictionary

Relatively easy to add or delete an item (assuming we don’t exceed the
size of the array)

Requires an “average”of n/2 comparisons to find a current item and n
comparisons to determine if the requested item is not in the current array.
This is a hint of an important issue: namely, what does average mean?

We usually have to indicate the size of the array in advance and would
then have to allocate a new array if the number of entries exceeds the
array size.

We need some memory management system for dynamic dictionaries. But
this is true for any data structure.

13 / 21

Some pros and cons of an unordered list in array for
a dictionary

Relatively easy to add or delete an item (assuming we don’t exceed the
size of the array)

Requires an “average”of n/2 comparisons to find a current item and n
comparisons to determine if the requested item is not in the current array.
This is a hint of an important issue: namely, what does average mean?

We usually have to indicate the size of the array in advance and would
then have to allocate a new array if the number of entries exceeds the
array size.

We need some memory management system for dynamic dictionaries. But
this is true for any data structure.

13 / 21

Some pros and cons of an ordered list in an array

Note: This is only applicable if the items or the identifiers can be ordered
which is usually the case.

Can search for an item in at most ≈ log2 n comparisons. Doing an
asymptotic analysis of the time (and memory) for an algorithm is one of
the main aspects in the analysis of an algorithm. Of course, correctness of
the algorithm is paramount.

log2 n = x : 2x = n. Note that x will not be an integer unless n = 2k for
some k .

To be precise the worst case number of comparions is blog2 nc+ 1 where
the floor function is defined as b xc = the largest integer k ≤ x . You can
verify that for n = 2k − 1, the worst case number of comparison is k .

14 / 21

Some pros and cons of an ordered list in an array

Note: This is only applicable if the items or the identifiers can be ordered
which is usually the case.

Can search for an item in at most ≈ log2 n comparisons. Doing an
asymptotic analysis of the time (and memory) for an algorithm is one of
the main aspects in the analysis of an algorithm. Of course, correctness of
the algorithm is paramount.

log2 n = x : 2x = n. Note that x will not be an integer unless n = 2k for
some k .

To be precise the worst case number of comparions is blog2 nc+ 1 where
the floor function is defined as b xc = the largest integer k ≤ x . You can
verify that for n = 2k − 1, the worst case number of comparison is k .

14 / 21

Ordered lists in an array continued

The differences between log n and n, can be dramatic (say if a search is
within a loop of instructions). Even more dramatic is the difference
between n and 2n. We will be discussing further the importance of
complexity issues.
It is more difficult to insert and delete records or modify the identifier of a
record even for a fixed size array although updating the content of a record
is easy once the item is accessed.

Can easily identify the i th largest or smallest element.

And we usually have to specify the size of the array in advance.

15 / 21

Tables of some complexity bounding functions
Tables of some complexity bounding functions

Tables of some complexity bounding functions

5

Let us for a moment contemplate why polynomial algorithms are usually considered as

efficient and exponential algorithms are not. The first, elementary point we want to make by

Table 1 (taken from Papadimitriou, Steiglitz 1982, p. 164), namely that the rate of growth of

polynomial functions is substantially higher than that of exponential ones.

Table 1

The Growth of Polynomial and Exponential Functions

Function Approximate Values

n 10 100 1000

nlogn 33 664 9966

n3 1000 1,000,000 109

106 n8 1014 1022 1030

2n 1024 1.27 xlO30 1.05 x 10301

nlogn 2099 1.93 x 1013 7.89 x 1029

n! 3,628,800 10158 4 x102567

Table 2

PolynomialTime Algorithms Take Better Advantage of Computation Time

Time n = 10 n = 20 n = 30 n = 40 a II o

n = 60
Complexity

n 0.00001 0.00002 0.00003 0.0000 0.00005 0.00006
second second second second second second

n2 0.0001 0.0004 0.0009 0.0016 0.0025 0.0036
second second second second second second

n3 0.001 0.008 0.027 0.064 0.125 0.216
second second second second second second

n5 0.1 3.2 24.3 1.7 5.2 13.0
second seconds seconds minutes minutes minutes

2n 0.001 1.0 17.9 12.7 35.7 366
second second minutes days years centuries

3n 0.059 58 6.5 3855 2xl08 1.3 x 1013
second minutes years centuries centuries centuries

Figure: Figure taken from Garey and Johnson “Computers and intractability : a
guide to the theory of NP-completeness

15 / 22

Figure: Figure taken from Garey and Johnson “Computers and intractability : a
guide to the theory of NP-completeness”. Time in seconds based on an estimate
of computers in the late 1970s. What if today computers are 100 times faster.
Does this change the “message” in this figure.

23 / 28

Figure: Figure taken from Garey and Johnson “Computers and intractability : a
guide to the theory of NP-completeness”. Time in seconds based on an estimate
of computers in the late 1970s. What if today computers are 100 times faster.
Does this change the “message” in this figure.

16 / 21

A linked list

I may want to jump ahead to hash tables to motivate the exercises on
Assignment A1.

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

17 / 21

A linked list

I may want to jump ahead to hash tables to motivate the exercises on
Assignment A1.

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

17 / 21

A linked list

I may want to jump ahead to hash tables to motivate the exercises on
Assignment A1.

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

17 / 21

A linked list

I may want to jump ahead to hash tables to motivate the exercises on
Assignment A1.

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

17 / 21

Blank page for drawing

18 / 21

A balanced binary search tree

A balanced binary tree with n “nodes” will have depth log2 n and hence
can search a balanced binary search tree in at most log2 n “edge”
traversals and comparisons.

I use the terminology of nodes and edges as a tree (in the sense of a search
tree) is a special case of a graph. Graphs are also referred to as networks
in many contexts (i.e. a social network, a transportation network, etc.).

The nodes (also called vertices) and egdes (also called arcs in some
applications) can be undirected or directed. In the latter case, we call a
graph with directed edges a directed graph and usually mean an
undirected graph if we just say graph.

We will be discussing further some graph concepts as the term progresses.

19 / 21

A hash table

We have a hash function h : I → M where I = {ID1, . . . IDN} is the set of
all possible integer identifiers and M = {A[0], . . . ,A[m − 1]} is a small set
of memory locations

That is, we are going to hash each of the N = |I | possible items to a small
set of m = |M| memory locations.

Here we can have N >> n where n is the actual number of items we are
storing.
What is a suitable hash function h?

One possiblility is h(ID) = (a · ID + b)(mod p)(mod m) where p is a large
prime.

20 / 21

A hash table

We have a hash function h : I → M where I = {ID1, . . . IDN} is the set of
all possible integer identifiers and M = {A[0], . . . ,A[m − 1]} is a small set
of memory locations

That is, we are going to hash each of the N = |I | possible items to a small
set of m = |M| memory locations.

Here we can have N >> n where n is the actual number of items we are
storing.
What is a suitable hash function h?
One possiblility is h(ID) = (a · ID + b)(mod p)(mod m) where p is a large
prime.

20 / 21

A hash table

Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. One possibility is to use a pointer to a linked list
containing the IDs matched to the same place in the hash table.
Nash tables introduce the use of probability, pseudo random numbers and
pseudo random functions.

Note: When we draw random numbers in the execution of an algorithm,
we are not drawing truly random numbers. The generation of pseudo
random numbers and pseudo random functions is an interesting and
substantial topic, one related to comlexity theory, our next topic.

21 / 21

A hash table

Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. One possibility is to use a pointer to a linked list
containing the IDs matched to the same place in the hash table.

Nash tables introduce the use of probability, pseudo random numbers and
pseudo random functions.

Note: When we draw random numbers in the execution of an algorithm,
we are not drawing truly random numbers. The generation of pseudo
random numbers and pseudo random functions is an interesting and
substantial topic, one related to comlexity theory, our next topic.

21 / 21

A hash table

Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. One possibility is to use a pointer to a linked list
containing the IDs matched to the same place in the hash table.
Nash tables introduce the use of probability, pseudo random numbers and
pseudo random functions.

Note: When we draw random numbers in the execution of an algorithm,
we are not drawing truly random numbers. The generation of pseudo
random numbers and pseudo random functions is an interesting and
substantial topic, one related to comlexity theory, our next topic.

21 / 21

The birthday paradox

The birthday paradox: In probability theory, the birthday problem or
birthday paradox concerns the probability that, in a “small” set of n
randomly chosen people, some pair of them will have the same birthday
with high probability.

By the pigeonhole principle, the probability reaches 100% when the
number of people reaches 366 (since there are only 365 possible birthdays,
excluding February 29).

However, 99.9% probability is reached with just 70 people, and 50%
probability with 23 people. These conclusions are based on the assumption
that each day of the year (excluding February 29) is equally probable for a
birthday.

22 / 21

Concluding remark

The choice of any particularv data structure or algorithm will usually
depend on the app[ication. For example, in choosing a data structure what
operations are being done more often than others is an essential
consideration.

23 / 21

	Week 3

