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Week 2 slides

Announcement: I will post Assignment A1 today (Monday, September 20).
It is due Friday, October 8, 8AM.

The agenda for this week

We will continue where we left off last week. Namely, we will first
finish the dsicussion of the von Neumann model.

We will then discuss floating point representation

A brief discussion of Wikipedia

The dictionary data type and differert ways to implement a dictionary.
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Memory and the von Neumann architecture
The von Neumann architecture is a random access stored program model.

The von Neuman model assumes a random access memory in which
each fixed length word is “addressable” and can be accessed at some
unit (of time) cost.
Is this how your lap top memory is organized?

The“von Neumann bottleneck” addressed by caching and the memory
hierarchy

Algorithms consist of individual instructions that say what ”basic
operations” to perform on data and also to indicate what instruction
to do next.

Now here is a great idea (relating to digitalization): Instructions can
also be represented by strings of symbols (indeed by strings of bits)!
So instructions can also be stored in the memory, say for example one
instruction per word!
Why is this such a great idea?
Why is the von Neumann model such a great idea?
Are we stuck in a “von Neumann tarpit?”
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The benefits of a well agreed upon abstract model
of computation
One of the main reasons to consider the von Neumann model a great idea
is that by being a well agreed upon model, coordination amongst different
people is minimized. That is,

A computer architect doesn’t need to know which programming
languages will be run on their specific architecture. (The von
Neumann model doesn’t specify the instruction set, the memory
management, how interupts are handled, etc.)

A compiler writer for a programming language L doesn’t have to
know what algorithms will be implemented using the language L.

Without complete knowledge of the architecture, and the compiler,
the algorithm designer can make a rough approximation for the
memory and time requirements of their algorithm.

Progress in parallel computation had been relatively slow but there is now
some common approaches (e.g., MapReduce for large scale parallel
computation).
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Dataflow architecture

Direct from Wikipedia:

Dataflow architecture is a computer architecture that directly contrasts
the traditional von Neumann architecture or control flow architecture.
Dataflow architectures do not have a program counter (in concept): the
executability and execution of instructions is solely determined based on
the availability of input arguments to the instructions,[1] so that the order
of instruction execution is unpredictable, i.e. behavior is nondeterministic.
Although no commercially successful general-purpose computer hardware
has used a dataflow architecture, it has been successfully implemented in
specialized hardware such as in digital signal processing, network routing,
graphics processing, telemetry, and more recently in data
warehousing.[citation needed] It is also very relevant in many software
architectures today including database engine designs and parallel
computing frameworks.[citation needed]
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More on data flow architecture

From J. Paul Morrison’s Flow-Based Programming text

The von Neumann machine is perfectly adapted to the kind of
mathematical or algorithmic needs for which it was developed: tide tables,
ballistics calculations, etc., but business applications are rather different in
nature. . . .
Business programming works with data and concentrates on how this data
is transformed, combined, and separated. . . . Broadly speaking, whereas
the conventional approaches to programming (referred to as “control
flow”) start with process and view data as secondary, business applications
are usually designed starting with data and viewing processes as
secondary—processes are just the way data is created, manipulated, and
destroyed. We often call this approach “data flow.” (21)
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Multicore and Parallel Computation
As you probably already know, computers today are often multicore
machines meaning that some “small” constant number of processes
can be running simultaneously.

When people refer to large scale parallelism hey have in mind that the
number of processes running in parallel can depend (at least
conceptually) on the computation.

The von Neumann architecture is an abstract model for sequential
computation.

In contrast to the well accepted von Neumann model for sequential
computation, the situation for parallel computation is more nuanced.

I There is the issue of a constant number of parallel processes vs a
number of processes that depends on the size of the data and/or the
computation as it evolves.

I Do the processes run syncronously (i.e. according to some golbal
clock) or asynchronously?

I Do the processes communicate mainly through a shared memory or via
some communication bus?

I How do we maintain consistency of the information being shared?
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End of Monday September 20 class

We ended the Monday class a little after slide 7 where we very briefly
mentioned fixed point repreeentation. For continuity we will continue on
what is now slide 9.

Important discussion regarding in-person nature of this course.
Starting next week, I intend to mainly be conducting this course as an
in-person course as it is listed. I expect students to normally show up in
person as it is awkward trying to run a discussion course in a hybrid
manner. If you do not plan to regularly attend in person you should
consider dropping the course this week when you can still enrol in other
courses. I hope everyone will stay in the course but want to have an
honest understanding.
My plan is to run a zoom session for the one student who is not able to
attend in person but just do so on my lap top and not try to integrate it
with the class as we have been doing.
The tutorial sessions will continue to be remote only.
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Fixed and Floating point representation

As mentioned we have to approximate real non rational numbers by
fractions. It is easy to see that say every real number can be
approximated to arbitrary precision. In particular, every number in the
interval [0, 1] can be approximated by a fraction .b0b1b2 . . . bn where
bi ∈ {0, 1}. The more bits better the approximation.

Some fractions can be represented exactly in such a binary
representation (e.g. 1/2, 1/4, 3/4, etc.) while other numbers like
1/10 and is 1/3 can only be approximated. (Note: One can, of
course, represent these numbers exactly as a ratio of two integers.)

We may need very small or very large numbers but the number of bits
in a computer word is fixed (for example, 32 bits) so this limits how
big or how small numbers can be. This is not an artifact of the binary
representation. The same limitations would apply to any base.

In a fixed point representation, we represent numbers by agreeing to
have some fixed number of fractional bits.
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Fixed and floating point numbers continued
For example, in an 8 bit fixed point representation b7b6 . . . b0, where b7 is
the sign bit, we can agree that the two lower order bits b1 and b0 are the
fractional parts. Then the decimal number −18.5 would be represented
exactly by 11001010 and −18.25 would be represented exactly by
11001001.

Note that in a pure integer or fixed point representation, the sizes of the
smallest and largest numbers are severly restricted. For a 32 bit word with
a sign bit, the largest number is 231 − 1 ≈ (10)9 (i.e. approximately one
billion). And every bit of precision we use for the fractional part decreases
the range of numbers representable by approximately a factor of 2.

The common solution to provide a large range as well as providing
good precision is to use floating point representation.

NOTE: I am going to simplify the discussion and ignore the special
meaning when all the bits are 0’s or 1’s (which in the IEEE standard
are used for special numebrs such as ∞). Let’s call this the simplified
representation. It will not effect the question on the assignment.
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Floating point numbers continued
We will stick to binary notation but again any base can be used.

A floating point number uses the following representation (where I am
using # just for clarity) as the bits would all be consecutive :

s#ek−1ek−2 . . . e0#b`−1 . . . b1b0

Here the bit s determines the sign (i.e. + or −) of the number.

The ei bits represent the unbiased exponent E with value E ∈ [0, 2k − 1].
The biased exponent E ′ = E − (2k−1 − 1).

The bi bits represent the significand (i.e, the significant bits)

The number being represented is
(−1)s · 2E ′ · (1.b`−1 . . . b1b0)2 = (−1)s · 2E ′ · (1 +

∑`
i=1 b`−i2

−i ).
NOTE: There is an implicit “1” preceding the implicit binary point.

For an 8 bit word, with say a k = 4 bit exponent field and 3 bit
significand, the integer -15 would be represented as
11010111 = −1 · 23 · (1 + 7

8) since E ′ = E − (2k−1 − 1) = 10− 7 = 3.
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Floating point numbers continued
The IEEE standard for a 32 bit single precision number uses 8 bits for
the exponent and 23 bits for the significand ( and therefore 24 bits of
precision counting the implicit “1”. .

There are also double (and multiple) precision numbers where a
double precision number would occupy two 32 bit words.

History: According to Wikipedia, Leonardo Torres y Quevedo used
floating point numbers in his design of Babbage’s Analytical Engine.
See also the reference to Konrad Zuse who designed a computer in
1938 and later versions in 1941 who using floating point numbers.

It is interesting to note that von Neumann argued for fixed point
numbers (and not floating point) in the design for an Institute of
Advanced Study machine.

It is important to note that an algorithm designer (usually) doesn’t
need to know the specifics of the fixed point and floating point
representations. but just needs to know the commands for specifying
the type (i.e. integer using fixed point or “real” using floating point)
of the number.
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Wikipedia

Is Wikipedia a great idea?

In a Netflix documentary that I saw, the following question/comment was
made: What if everyone was given their own Wikipedia page when they
made a query using Wikipedia?
The commentary notes that when we are on social media we are often
getting personalized news-feeds.

Confession: I didn’t think Wikipedia would work. More specifically, I
didn’t think that enough knowledgeable people would be willing to spend
their time to help create reassonably authoratative articles without getting
any credit.

What is your experience with Wikipedia? Do you always believe what you
read is accurate? How does it compare with other sources of information?

As you can see, I tend to use and trust Wikipedia especially about
mathematical and computational definitions and historical information.
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Further discussion of Wikipedia
In class there was an active discussion as to how much to trust Wikipedia.

It was mentioned that in high school, students are sometimes told ”not to
trust Wikipedia”. But does the teacher mean just to do not take this as
the only source and use it as an introduction to the topic and follow the
references?

It was also mentioned that Wikipedia has a hierarchy of board members
and contributors to help improve articles and resolve disputes.
Wikipedia articles sometimes requests more contributions about the article.

Wikipedia does ask for contributions to pay for the administrative costs.
But I do not think this biases what is posted on Wikipedia. (Or maybe I
am naive).

It could be that in some number of years the quality and trustworthiness of
Wikipedia will decline. We will see.

If ypu have had a “bad experience” with Wikiepedia (i.e. an article
that was factually wrong or misleading), please send it to me.
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Data Types

Let’s give an informal definition of what we mean by a data type. Namely,
a data type is a collection of items (data) and the alllowable
operations,relations and queries involving those items. So as an example
we can have a data type called Float where the data is numbers
represented in floating point representation, the operations are the
standard arithmetic operations +,−, ∗,÷, exponentiation and perhaps
logarithms. We also have the relations <,=, >.

You can check how Wikipedia states what is a data type.

We will next introduce the Dictionary data type.
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Looking up a record

Suppose with every person in an organization we have information stored
in some “devise”. It could be an old printed telephone directory, a folder in
a physical cabinet, or a file in a cell phone or computer.

Lets think about how it could be stored in a von Neuman archiecture type
computer in analogy to a file cabinet. Namely, think about one folder
placed after the other. And for simplicity, say we have the same amount of
information on each person.

In a computer one way to do this is to think of each person taking up
some p consecutive words in memory (i.e., an array), one word for the
name of the person, and p − 1 words for the information. The information
ablout a person can be called a record. If there are n people in the
organization then we would be taking up n · p words of memory if we
stored this information in an array.

Instead of the name of the person we could have some other (unique)
identifier (e.g., their social insurance number).
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Dictionaries
What are the most basic operations we want to associate with such a
collection of information?

Search: Look up if someone is in the organization and if so retrieve
the information for this person.
Update content: Change the information regarding an item
Insert: Add a new person to the organization
Delete: Remove a person from the organzation.

Sets of objects with these opeartions are refered to as a Dictionary data
type. It is a static dictionary if we only want to look up and possibly
modify records and a dynamic dictionary if we also want to add and delete.
We can use different data structures to implement such a data type.

There can be many more operations that we want to perform on
collections of data. More generally how one maintains and operates on
data is known as the subfield of data bases. Analyzing data and extracting
new (often statistical) information from collections of data is now called
data science or data analytics. More ambitious learning of new information
from data can be called machine learning.
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Dictionaries lead to interesting concepts and ideas

Many ways to implement a dictionary. What is important to note is
that there are almost always TRADEOFFS in whatever we do in
computing (and in life). How do you compare alternatives when there
are multiple criteria for any given choice?. When can we say that
choice 1 is better than choice 2 according to the given criteria.

Here are some well known ways (called data structures) to implement
a dictionary.

1 An unordered list in an array
2 An ordered list in an array
3 A linked list
4 A (balanced) search tree.
5 A hash table.

We will briefly talk about each of these possibilities. I do not want to
get into details. Instead I just want to give a very high level idea of
these different ways to implement a dynamic dictionary mentioning
some tradeoffs and introducing some related concepts.
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Brief discussion on these different methods

Let n be the current number of items in dictionary.

Each item has a unique name or identifier.

After I describe each method (on the white board), lets discuss some pros
and cons of each method.
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Some pros and cons of an unordered list in array for
a dictionary

Relatively easy to add or delete an item (assuming we don’t exceed the
size of the array)

Requires an “average”of n/2 comparisons to find a current item and n
comparisons to determine if the requested item is not in the current array.
This is a hint of an important issue: namely, what does average mean?

We usually have to indicate the size of the array and would then have to
allocate a new array if the number of entries exceeds the array size.

We need some memory management system for dynamic dictionaries. But
this is true for any data structure.
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Some pros and cons of an ordered list in an array

Note: This is only applicable if the items or the identifiers can be ordered
which is usually the case.

Can search for an item in at most ≈ log2 n comparisons. Doing an
asymptotic analysis of the time (and memory) for an algorithm is one of
the main aspects in the analysis of an algorithm. Of course, correctness of
the algorithm is paramount.

log2 n = x : 2x = n. Note that x will not be an integer unless n = 2k for
some k .

To be precise the worst case number of comparions is blog2 nc+ 1 where
the floor function is defined as b xc = the largest integer k ≤ x . You can
verify that for n = 2k − 1, the worst case number of comparison is k .
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Ordered lists in an array continued

The differences between log n and n, can be dramatic (say if a search is
within a loop of instructions). Even more dramatic is the difference
between n and 2n. We will be discussing further the importance of
complexity issues.
It is more difficult to insert and delete records or modify the identifier of a
record even for a fixed size array although updating the content of a record
is easy once the item is accessed.

Can easily identify the i th largest or smallest element.
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Tables of some complexity bounding functions

Tables of some complexity bounding functions

5 

Let  us  for  a  moment  contemplate  why  polynomial  algorithms  are  usually  considered  as 

efficient and exponential algorithms are not. The first, elementary point we want  to make by 

Table 1 (taken from Papadimitriou, Steiglitz 1982, p. 164), namely that the rate of growth of 

polynomial functions is substantially higher than that of exponential ones. 

Table 1 

The Growth of Polynomial and Exponential Functions 

Function  Approximate Values 

n  10  100  1000 

nlogn  33  664  9966 

n3  1000  1,000,000  109 

106 n8  1014  1022  1030 

2n  1024  1.27 xlO30  1.05 x 10301 

nlogn  2099  1.93 x 1013  7.89 x 1029 

n!  3,628,800  10158  4 x102567 

Table 2 

PolynomialTime Algorithms Take Better Advantage of Computation Time 

Time  n = 10  n = 20  n = 30  n = 40  a  II  o
 

n = 60 
Complexity 

n  0.00001  0.00002  0.00003  0.0000  0.00005  0.00006 
second  second  second  second  second  second 

n2  0.0001  0.0004  0.0009  0.0016  0.0025  0.0036 
second  second  second  second  second  second 

n3  0.001  0.008  0.027  0.064  0.125  0.216 
second  second  second  second  second  second 

n5  0.1  3.2  24.3  1.7  5.2  13.0 
second  seconds  seconds  minutes  minutes  minutes 

2n  0.001  1.0  17.9  12.7  35.7  366 
second  second  minutes  days  years  centuries 

3n  0.059  58  6.5  3855  2xl08  1.3 x 1013 
second  minutes  years  centuries  centuries  centuries 

Figure: Figure taken from Garey and Johnson “Computers and intractability : a
guide to the theory of NP-completeness
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Figure: Figure taken from Garey and Johnson “Computers and intractability : a
guide to the theory of NP-completeness”. Time in seconds based on an estimate
of computers in the late 1970s. What if today computers are 100 times faster.
Does this change the “message” in this figure.
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A linked list

I may want to jump ahead to hash tables to motivate the exercises on
Assignment A1.

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.
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Blank page for drawing
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A balanced binary search tree

A balanced binary tree with n “nodes” will have depth log2 n and hence
can search a balanced binary search tree in at most log2 n “edge”
traversals and comparisons.

I use the terminology of nodes and edges as a tree (in the sense of a search
tree) is a special case of a graph. Graphs are also referred to as networks
in many contexts (i.e. a social network, a transportation network, etc.).

The nodes (also called vertices) and egdes (also called arcs in some
applications) can be undirected or directed. In the latter case, we call a
graph with directed edges a directed graph and usually mean an
undirected graph if we just say graph.

We will be discussing further some graph concepts as the term progresses.
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A hash table

We have a hash function h : I → M where I = {ID1, . . . IDN} is the set of
all possible integer identifiers and M = {A[0], . . . ,A[m − 1]} is a small set
of memory locations

That is, we are going to hash each of the N = |I | possible items to a small
set of m = |M| memory locations.

Here we can have N >> n where n is the actual number of items we are
storing.
What is a suitable hash function h?

One possiblility is h(ID) = (a · ID + b)(mod p)(mod m) where p is a large
prime.
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A hash table
Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

Introduces the use of probability, pseudo random numbers and functions.

The birthday paradox: In probability theory, the birthday problem or
birthday paradox concerns the probability that, in a set of n randomly
chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of
people reaches 367 (since there are only 366 possible birthdays, including
February 29). However, 99.9% probability is reached with just 70 people,
and 50% probability with 23 people. These conclusions are based on the
assumption that each day of the year (excluding February 29) is equally
probable for a birthday.
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