
Great Ideas in Computing

University of Toronto CSC196
Fall 2021

Week 11 (part 2): November 29-December 3

1 / 23



Announcements and agenda for oend of week 11
and week 12
Announcements

We hope to have everything graded by the end of the week.

I know at least one person had to miss quiz 1. If you had some reason
for missing any assignment or quiz, or it you had difficulty submitting
to markus and submitted a little late, please send me that
coprrespondence to be sure I have that properly noted.

At the end of the Wednesday December 1 class, we discussed the
Backstrom and Kleinberg study for discovering which edge represents
a romantic relation. We include that discussion in this part of the
slides.

Next week we will then briefly discuss two other studies which again
illustrate how graph structure can reveal interesting information.

Following social networks we will introdue the topic of mechanism
design in week 12.
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Some additional comments on how graph structure
can reveal personal and individual information:
Detecting the romantic relation in Facebook

There is an interesting paper by Backstrom and Kleinberg
(http://arxiv.org/abs/1310.6753) on detecting “the” romantic
relation in a subgraph of facebook users who specify that they are in
such a relationship.

Backstrom anbd Kleinberg construct two datasets of randomly
sampled Facebook users: (i) an extended data set consisting of 1.3
million users declaring a spouse or relationship partner, each with
between 50 and 2000 friends and (ii) a smaller data set extracted
from neighbourhoods of the above data set (used for the more
computationally demanding experimental studies).

The main experimental results are nearly identical for both data sets.
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Detecting the romantic relation (continued)

They consider various graph strucutral features of edges, including
1 the embeddedness of an edge (A,B) which is the number of mutual

friends of A and B.
2 various forms of a new dispersion measure of an edge (A,B) where high

dispersion intuitively means that the mutual neighbours of A and B are
not “well-connected” to each other (in the graph without A and B).

3 One definition of dispersion given in the paper is the number of pairs
(s, t) of mutual friends of u and v such that (s, t) /∈ E and s, t have no
common neighbours except for u and v .

They also consider various “interaction features” including
1 the number of photos in which both A and B appear.
2 the number of profile views within the last 90 days.
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Embeddedness and disperison example from paper

Figure 1. A network neighborhood, contributed by a Facebook em-
ployee (drawn as the circled node at the center), and displayed as an
example in the work of Marlow et al [21]. Two clear clusters with highly
embedded links are visible at the top and right of the diagram; in the
lower left of the diagram are smaller, sparser clusters together with a
node that bridges between these clusters.

gests a natural predictor for identifying a user u’s partner: se-
lect the link from u of maximum embeddedness, and propose
the other end v of this link as u’s partner.

We will evaluate this embeddedness-based predictor, and oth-
ers, according to their performance: the fraction of instances
on which they correctly identify the partner. Under this mea-
sure, embeddedness achieves a performance of 24.7% —
which both provides evidence about the power of structural
information for this task, but also offers a baseline that other
approaches can potentially exceed.

Next, we show that it is possible to achieve more than twice
the performance of this embeddedness baseline using our new
network measure, dispersion. In addition to this relative im-
provement, the performance of our dispersion measure is very
high in an absolute sense — for example, on married users in
our sample, the friend who scores highest under this disper-
sion measure is the user’s spouse over 60% of the time. Since
each user in our sample has at least 50 friends, this perfor-
mance is more than 30 times higher than random guessing,
which would produce a performance of at most 2%.

Theoretical Basis for Dispersion.
We motivate the dispersion measure by first highlighting a
basic limitation of embeddedness as a predictor, drawing on
the theory of social foci [10]. Many individuals have large
clusters of friends corresponding to well-defined foci of in-
teraction in their lives, such as their cluster of co-workers or
the cluster of people with whom they attended college. Since
many people within these clusters know each other, the clus-
ters contain links of very high embeddedness, even though
they do not necessarily correspond to particularly strong ties.
In contrast, the links to a person’s relationship partner or other
closest friends may have lower embeddedness, but they will
often involve mutual neighbors from several different foci, re-
flecting the fact that the social orbits of these close friends are
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Figure 2. A synthetic example network neighborhood for a user u; the
links from u to b, c, and f all have embeddedness 5 (the highest value in
this neighborhood), whereas the link from u to h has an embeddedness
of 4. On the other hand, nodes u and h are the unique pair of interme-
diaries from the nodes c and f to the nodes j and k; the u-h link has
greater dispersion than the links from u to b, c, and f .

not bounded within any one focus — consider, for example, a
husband who knows several of his wife’s co-workers, family
members, and former classmates, even though these people
belong to different foci and do not know each other.

Thus, instead of embeddedness, we propose that the link be-
tween an individual u and his or her partner v should display a
‘dispersed’ structure: the mutual neighbors of u and v are not
well-connected to one another, and hence u and v act jointly
as the only intermediaries between these different parts of the
network. (See Figure 2 for an illustration.)

We now formulate a sequence of definitions that captures this
idea of dispersion. To begin, we take the subgraph Gu in-
duced on u and all neighbors of u, and for a node v in Gu we
define Cuv to be the set of common neighbors of u and v. To
express the idea that pairs of nodes in Cuv should be far apart
in Gu when we do not consider the two-step paths through
u and v themselves, we define the absolute dispersion of the
u-v link, disp(u, v), to be the sum of all pairwise distances
between nodes in Cuv , as measured in Gu − {u, v}; that is,

disp(u, v) =
∑

s,t∈Cuv

dv(s, t),

where dv is a distance function on the nodes of Cuv . The
function dv need not be the standard graph-theoretic distance;
different choices of dv will give rise to different measures
of absolute dispersion. As we discuss in more detail below,
among a large class of possible distance functions, we ulti-
mately find the best performance when we define dv(s, t) to
be the function equal to 1 when s and t are not directly linked
and also have no common neighbors in Gu other than u and
v, and equal to 0 otherwise. For the present discussion, we
will use this distance function as the basis for our measures
of dispersion; below we consider the effect of alternative dis-
tance functions. For example, in Figure 2, disp(u, h) = 4 un-
der this definition and distance function, since there are four
pairs of nodes in Cuh that are not directly linked and also
have no neighbors in common in Gu − {u, h}. In contrast,
disp(u, b) = 1 in Figure 2, since a and e form the only pair
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Qualitative results from Backstrom and Kleinberg
The goal is to predict (for each user in the data set) which of their
friendship edges is the romantic relation. Note that each user has
between 50 and 2000 friends and assuming say a median of 200 users,
a random guess would have prediction accuracy of 1/200 = .5%

Various disperson measures do better than the embeddedness measure
in its ability to predict the correct romantic relationship. Why would
high dispersion be a better measure than high embeddedness?

By itself, dispersion outperforms various interaction features.

For most measures, performance is better for male users and also
better for data when restricted to marriage as the relationship.

By combining many features, structural and interaction, the best
performance is achieved using machine learning classification
algorithms based on these many features.

There are a number of other interesting observations but for me the
main result is the predictive power provided by graph structure
although there will generally be a limit to what can be learned solely
from graph structure.
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Some experimental results for the fraction of correct
predictions

Recall that we argue that the fraction might be .005 when randomly
choosing an edge. Do you find anything surprising?
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Figure 3. Performance of (disp(u, v) + b)↵/(emb(u, v) + c) as a func-
tion of ↵, when choosing optimal values of b and c.

type embed rec.disp. photo prof.view.
all 0.247 0.506 0.415 0.301
married 0.321 0.607 0.449 0.210
married (fem) 0.296 0.551 0.391 0.202
married (male) 0.347 0.667 0.511 0.220
engaged 0.179 0.446 0.442 0.391
engaged (fem) 0.171 0.399 0.386 0.401
engaged (male) 0.185 0.490 0.495 0.381
relationship 0.132 0.344 0.347 0.441
relationship (fem) 0.139 0.316 0.290 0.467
relationship (male) 0.125 0.369 0.399 0.418

Figure 4. The performance of different measures for identifying spouses
and romantic partners: the numbers in the table give the precision at the
first position — the fraction of instances in which the user ranked first by
the measure is in fact the true partner. Averaged over all instances, re-
cursive dispersion performs approximately twice as well as the standard
notion of embeddedness, and also better overall than measures based on
profile viewing and presence in the same photo.

of non-neighboring nodes in Cub that have no neighbors in
common in Gu � {u, b}.

Strengthenings of Dispersion.
We can learn a function that predicts whether or not v is
the partner of u in terms of the two variables disp(u, v)
and emb(u, v), where the latter denotes the embeddedness
of the u-v link. We find that performance is highest for
functions that are monotonically increasing in disp(u, v) and
monotonically decreasing in emb(u, v): for a fixed value of
disp(u, v), increased embeddedness is in fact a negative pre-
dictor of whether v is the partner of u. A simple combina-
tion of these two quantities that comes within a few percent
of more complicated functional forms can be obtained by the
expression disp(u, v)/emb(u, v), which we term the normal-
ized dispersion norm(u, v) since it normalizes the absolute
dispersion by the embeddedness. Predicting u’s partner to
be the individual v maximizing norm(u, v) gives the correct
answer in 48.0% of all instances.

There are two strengthenings of the normalized dispersion
that lead to increased performance. The first is to rank nodes
by a function of the form (disp(u, v) + b)↵/(emb(u, v) + c).
Searching over choices of ↵, b, and c leads to maximum per-
formance of 50.5% at ↵ = 0.61, b = 0, and c = 5; see
Figure 3. Alternately, one can strengthen performance by ap-

type embed rec.disp. photo prof.view.
all 0.391 0.688 0.528 0.389
married 0.462 0.758 0.561 0.319
married (fem) 0.488 0.764 0.538 0.350
married (male) 0.435 0.751 0.586 0.287
engaged 0.335 0.652 0.553 0.457
engaged (fem) 0.375 0.674 0.536 0.492
engaged (male) 0.296 0.630 0.568 0.424
relationship 0.277 0.572 0.460 0.498
relationship (fem) 0.318 0.600 0.440 0.545
relationship (male) 0.239 0.546 0.479 0.455

Figure 5. The performance of the four measures from Figure 4 when
the goal is to identify the partner or a family member in the first position
of the ranked list. The difference in performance between the genders
has largely vanished, and in some cases is inverted relative to Figure 4.

plying the idea of dispersion recursively — identifying nodes
v for which the u-v link achieves a high normalized disper-
sion based on a set of common neighbors Cuv who, in turn,
also have high normalized dispersion in their links with u. To
carry out this recursive idea, we assign values to the nodes
reflecting the dispersion of their links with u, and then update
these values in terms of the dispersion values associated with
other nodes. Specifically, we initially define xv = 1 for all
neighbors v of u, and then iteratively update each xv to be

P
w2Cuv

x2
w + 2

P
s,t2Cuv

dv(s, t)xsxt

emb(u, v)
.

Note that after the first iteration, xv is 1+2 ·norm(u, v), and
hence ranking nodes by xv after the first iteration is equiv-
alent to ranking nodes by norm(u, v). We find the highest
performance when we rank nodes by the values of xv after
the third iteration. For purposes of later discussion, we will
call this value xv in the third iteration the recursive disper-
sion rec(u, v), and will focus on this as the main examplar
from our family of related dispersion-based measures. (See
the Appendix for further mathematical properties of the re-
cursive dispersion.)

PERFORMANCE OF STRUCTURAL AND INTERACTION
MEASURES
We summarize the performance of our methods in Figure 4.
Looking initially at just the first two columns in the top row of
numbers (‘all’), we have the overall performance of embed-
dedness and recursive dispersion — the fraction of instances
on which the highest-ranked node under these measures is
in fact the partner. As we will see below in the discussion
around Figure 6, recursive dispersion also has higher perfor-
mance than a wide range of other basic structural measures.

We can also compare these structural measures to features de-
rived from a variety of different forms of real-time interaction
between users — including the viewing of profiles, sending of
messages, and co-presence at events. The use of such ‘inter-
action features’ as a comparison baseline is motivated by the
way in which tie strength can be estimated from the volume of
interaction between two people [8, 17]. Within this category
of interaction features, the two that consistently display the
best performance are to rank neighbors of u by the number of

type max. max. all. all. comb.
struct. inter. struct. inter.

all 0.506 0.415 0.531 0.560 0.705
married 0.607 0.449 0.624 0.526 0.716
engaged 0.446 0.442 0.472 0.615 0.708
relationship 0.344 0.441 0.377 0.605 0.682

Figure 10. The performance of methods based on machine learning
that combine sets of features. The first two columns show the highest
performing individual structural and interaction features; the third and
fourth columns show the highest performance of machine learning clas-
sifiers that combine structural and interaction features respectively; and
the fifth column shows the performance of a classifier that combines all
structural and interaction features together.

links over their time on Facebook, and it is also correlated
with the time since the relationship was first reported. (As we
will see later in Figure 11, performance varies as a function
of this latter quantity as well.) To understand whether there
is any effect of a user’s time on site beyond its relation to
these other parameters, we consider a subset of users where
we restrict the neighborhood size to lie between 100 and 150,
and the time since the relationship was reported to lie between
100 and 200 days. Figure 9 shows that for this subset, there is
a weak increase in performance as a function of time on site;
while the effect is not strong, it points to a further source of
enhanced performance for users with mature neighborhoods.

COMBINING FEATURES USING MACHINE LEARNING
Different features may capture different aspects of the user’s
neighborhood, and so it is natural to ask how well we can pre-
dict partners when combining information from many struc-
tural or interaction features via machine learning.

Machine Learning Techniques.
For our machine learning experiments, we compute 48 struc-
tural features and 72 interaction features for all of the nodes
in the neighborhoods from our primary dataset. This gives us
a total of approximately 18.7 million labeled instances with
120 features each — each instance consists of a node v in
a neighborhood Gu, with a positive label indicating v is the
partner of u, or a negative label indicating v is not.

The 48 structural features are the absolute and normalized
dispersion based on six distinct distance functions defined for
Figure 6, as well as the recursive versions using iterations 2
through 7 (recall that the recursive dispersion corresponds to
the third iteration, and is hence included). The 72 interac-
tion features represent a broad range of properties including
the number of photos in which u and v are jointly tagged,
the number of times u has viewed v’s profile over the last 30,
60, and 90 days, the number of messages sent from u to v,
the number of times that u has ‘liked’ v’s content and vice
versa, and measures based on a number of forms of interac-
tion closely related to these.

To improve the performance of the learning algorithms, we
transformed each of the 120 features into 4 different versions:
(a) the raw feature, (b) a normalized version of the feature
with mean 0 and standard deviation 1, (c) a rank version of
the feature (where the individual with highest score on this
feature has rank 1, and other individuals are sorted in ascend-
ing rank order from there), and (d) a rank-normalized version

where we divide (c) by total number of friends a user has.
Thus, the input to our machine learning algorithms has 480
features derived from 120 values per instance. In addition to
the full set of features, we also compute performance using
only the structural features, and only the interaction features.

We performed initial experiments with different machine
learning algorithms and found that gradient tree boosting [13]
out-performed logistic regression, as well as other tree-based
methods. Thus, all of our in-depth analysis is conducted with
this algorithm. In our experiments, we divide the data so that
50% of the users go into a training set and 50% go into a test
set. We perform 12 such divisions into sets A and B; for each
division we train on set A and test on B, and then train on B
and test on A. For each user u, we average over the 12 runs in
which u was a test user to get a final prediction.

Performance of Machine Learning Methods.
We find (Figure 10) that by using boosted decision trees to
combine all of the 48 structural features we analyzed, we can
increase performance from 50.8% to 53.1%. We can use the
same technique to predict relationships based on interaction
features. We find that, overall, interaction features perform
slightly better than structural features (56.0% vs. 53.1%),
though for married users, structural features do much better
(62.4% vs. 52.6%). In addition, on all categories we find that
the combination of interaction features and structural features
significantly outperforms either on its own. When combining
all features with boosted trees, the top predicted friend is the
user’s partner 70.5% of the time.

Machine Learning to Predict Relationship Status.
Earlier we noted that our focus is on the problem of identify-
ing relationship partners for users where we know that they
are in a relationship. It is natural to ask about the connec-
tion to a related but distinct question — estimating whether
an arbitrary user is in a relationship or not.

This latter question is quite a different issue, and it seems
likely to be more challenging and to require a different set of
techniques. To see why, consider a user u who has a link of
high dispersion to a user v. If we know that u is in a rela-
tionship, then v is a good candidate to be the partner. But our
point from the outset has been that methods based on disper-
sion are useful more generally to identify individuals v with
interesting connections to u, in the sense that they have been
introduced into multiple foci that u belongs to. A user u can
and generally will have such friends even when u is not in
a romantic relationship. For example, Figure 5 suggests that
family members often have this property, and this can apply
to users who are not in romantic relationships as well as to
users in such relationships. Thus, simply knowing that u has
links of high dispersion should not necessarily give us much
leverage in estimating whether u is in a relationship.

We now describe some basic machine-learning results that
bear out this intuition. We took approximately 129,000 Face-
book users, sampled uniformly over all users of age at least
20 with between 50 and 2000 friends. 40% of these users
were single, while the remaining were either in a relation-
ship, engaged, or married. We attempt two different predic-
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Triadic closure (undirected graphs)48 CHAPTER 3. STRONG AND WEAK TIES
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(a) Before B-C edge forms.
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(b) After B-C edge forms.

Figure 3.1: The formation of the edge between B and C illustrates the effects of triadic
closure, since they have a common neighbor A.

seeking, and offers a way of thinking about the architecture of social networks more generally.

To get at this broader view, we first develop some general principles about social networks

and their evolution, and then return to Granovetter’s question.

3.1 Triadic Closure

In Chapter 2, our discussions of networks treated them largely as static structures — we take

a snapshot of the nodes and edges at a particular moment in time, and then ask about paths,

components, distances, and so forth. While this style of analysis forms the basic foundation

for thinking about networks — and indeed, many datasets are inherently static, offering us

only a single snapshot of a network — it is also useful to think about how a network evolves

over time. In particular, what are the mechanisms by which nodes arrive and depart, and

by which edges form and vanish?

The precise answer will of course vary depending on the type of network we’re considering,

but one of the most basic principles is the following:

If two people in a social network have a friend in common, then there is an

increased likelihood that they will become friends themselves at some point in the

future [347].

We refer to this principle as triadic closure, and it is illustrated in Figure 3.1: if nodes B and

C have a friend A in common, then the formation of an edge between B and C produces

a situation in which all three nodes A, B, and C have edges connecting each other — a

structure we refer to as a triangle in the network. The term “triadic closure” comes from

Figure: The formation of the edge between B and C illustrates the effects of
triadic closure, since they have a common neighbor A. [E&K Figure 3.1]

Triadic closure: mutual “friends” of say A are more likely (than
“normally”) to become friends over time.

How do we measure the extent to which triadic closure is occurring?

How can we know why a new friendship tie is formed? (Friendship
ties can range from “just knowing someone” to “a true friendship” .)
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Measuring the extent of triadic closure

The clustering coefficient of a node A is a way to measure (over time)
the extent of triadic closure (perhaps without understanding why it is
occurring).

Let E be the set of an undirected edges of a network graph. (Forgive
the abuse of notation where in the previous and next slide E is a node
name.) For a node A, the clustering coefficient is the following ratio:

∣∣{(B,C ) ∈ E : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

∣∣{{B,C} : (B,A) ∈ E and (C ,A) ∈ E
}∣∣

The numerator is the number of all edges (B,C ) in the network such
that B and C are adjacent to (i.e. mutual friends of) A.

The denominator is the total number of all unordered pairs {B,C}
such that B and C are adjacent to A.
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Example of clustering coefficient
3.1. TRIADIC CLOSURE 49
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(a) Before new edges form.
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(b) After new edges form.

Figure 3.2: If we watch a network for a longer span of time, we can see multiple edges forming
— some form through triadic closure while others (such as the D-G edge) form even though
the two endpoints have no neighbors in common.

the fact that the B-C edge has the effect of “closing” the third side of this triangle. If

we observe snapshots of a social network at two distinct points in time, then in the later

snapshot, we generally find a significant number of new edges that have formed through this

triangle-closing operation, between two people who had a common neighbor in the earlier

snapshot. Figure 3.2, for example, shows the new edges we might see from watching the

network in Figure 3.1 over a longer time span.

The Clustering Coefficient. The basic role of triadic closure in social networks has

motivated the formulation of simple social network measures to capture its prevalence. One

of these is the clustering coefficient [320, 411]. The clustering coefficient of a node A is

defined as the probability that two randomly selected friends of A are friends with each

other. In other words, it is the fraction of pairs of A’s friends that are connected to each

other by edges. For example, the clustering coefficient of node A in Figure 3.2(a) is 1/6

(because there is only the single C-D edge among the six pairs of friends B-C, B-D, B-E,

C-D, C-E, and D-E), and it has increased to 1/2 in the second snapshot of the network in

Figure 3.2(b) (because there are now the three edges B-C, C-D, and D-E among the same

six pairs). In general, the clustering coefficient of a node ranges from 0 (when none of the

node’s friends are friends with each other) to 1 (when all of the node’s friends are friends

with each other), and the more strongly triadic closure is operating in the neighborhood of

the node, the higher the clustering coefficient will tend to be.

The clustering coefficient of node A in Fig. (a) is 1/6 (since there is
only the single edge (C ,D) among the six pairs of friends:
{B,C}, {B,D}, {B,E}, {C ,D}, {C ,E}, and {D,E}). We
sometimes refer to a pair of adjacent edges like (A,B), (A,C ) as an
“open triangle” if (B,C ) does not exist.
The clustering coefficient of node A in Fig. (b) increased to 1/2
(because there are three edges (B,C ), (C ,D), and (D,E )).
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Interpreting triadic closure

Does a low clustering coefficient suggest anything?

Bearman and Moody [2004] reported finding that a low clustering
coefficient amongst teenage girls implies a higher probability of
contemplating suicide (compared to those with high clustering
coeficient). Note:The value of the clustering coefficient is also
referred to as the intransitivity coefficient.

They report that “ Social network effects for girls overwhelmed other
variables in the model and appeared to play an unusually significant
role in adolescent female suicidality. These variables did not have a
significant impact on the odds of suicidal ideation among boys. ”

How can we understand these findings?
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Bearman and Moody study continued

Triadic closure (or lack thereof) can provide some plausible
explanation.

Increased opportunity, trust, incentive ; it can be awkward to have
friends (especially good friends with strong ties) who are not
themselves friends.
As far as I can tell, no conclusions are being made about why there is
such a difference in gender results.

The study by Bearman and Moody is quite careful in terms of identifying
many possible factors relating to suicidal thoughts. Clearly there are many
factors involved but the fact that network structure is identified as such an
important factor is striking.
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Bearman and Moody factors relating to suicidal
thoughts

January 2004, Vol 94, No. 1 | American Journal of Public Health Bearman and Moody | Peer Reviewed | Research and Practice | 93

⏐ RESEARCH AND PRACTICE ⏐

TABLE 3—Logistic Regression of Suicide Attempts, Among Adolescents With Suicidal
Ideation, on Individual, School, Family and Network Characteristics

Suicide Attempts, OR (95% CI)

Males Females

Demographic
Age 0.956 (0.808, 1.131) 0.920 (0.810, 1.046)
Race/ethnicity

Black 0.872 (0.414, 1.839) 1.086 (0.680, 1.736)
Other 1.069 (0.662, 1.728) 1.134 (0.810, 1.586)

Socioeconomic status 0.948 (0.872, 1.031) 1.008 (0.951, 1.069)
School and community

Junior high school 1.588 (0.793, 3.180) 1.271 (0.811, 1.993)
Relative density 0.049 (0.005, 0.521) 0.415 (0.086, 1.996)
Plays team sport 0.985 (0.633, 1.532) 1.020 (0.763, 1.364)
Attachment to school 1.079 (0.823, 1.414) 1.066 (0.920, 1.235)

Religion
Church attendance 0.975 (0.635, 1.496) 0.818 (0.618, 1.082)

Family and household
Parental distance 0.925 (0.681, 1.256) 0.955 (0.801, 1.139)
Social closure 1.004 (0.775, 1.299) 0.933 (0.781, 1.115)
Stepfamily 1.058 (0.617, 1.814) 1.368 (0.967, 1.935)
Single-parent household 1.142 (0.698, 1.866) 1.117 (0.800, 1.560)
Gun in household 1.599 (1.042, 2.455) 1.094 (0.800, 1.494)
Family member attempted suicide 1.712 (0.930, 3.150) 1.067 (0.689, 1.651)

Network
Isolation 0.767 (0.159, 3.707) 1.187 (0.380, 3.708)
Intransitivity index 0.444 (0.095, 2.085) 1.076 (0.373, 3.103)
Friend attempted suicide 1.710 (1.095, 2.671) 1.663 (1.253, 2.207)
Trouble with people 1.107 (0.902, 1.357) 1.119 (0.976, 1.284)

Personal characteristics
Depression 1.160 (0.960, 1.402) 1.130 (0.997, 1.281)
Self-esteem 1.056 (0.777, 1.434) 0.798 (0.677, 0.942)
Drunkenness frequency 1.124 (0.962, 1.312) 1.235 (1.115, 1.368)
Grade point average 0.913 (0.715, 1.166) 0.926 (0.781, 1.097)
Sexually experienced 1.323 (0.796, 2.198) 1.393 (0.990, 1.961)
Homosexual attraction 1.709 (0.921, 3.169) 1.248 (0.796, 1.956)
Forced sexual relations 1.081 (0.725, 1.613)
No. of fights 0.966 (0.770, 1.213) 1.135 (0.983, 1.310)
Body mass index 0.981 (0.933, 1.032) 1.014 (0.982, 1.047)

Response profile (n = 1/n = 0) 139/493 353/761
F statistic 1.84 (P = .0170) 2.88 (P < .0001)

Note. OR = odds ratio; CI = confidence interval. Logistic regressions; standard errors corrected for sample clustering and
stratification on the basis of region, ethnic mix, and school type and size.

alent to running a global interaction with gen-
der in a pooled model.

Suicidal Thoughts
Table 2 shows the odds ratios and 95%

confidence intervals for models that regressed

suicidal ideation on the full set of explanatory
variables. The overall model fits were quite
good (F=17.08 for males, F=16.28 for fe-
males; P<.0001 for both males and females).
Close examination of the odds ratios reveals
that although some general similarities exist

in the pattern of risk factors by gender, strik-
ing differences are also evident.

Both boys and girls were more likely to
have suicidal thoughts if they engaged in
fewer activities with their parents (male odds
ratio [OR]=1.57, female OR=1.74), if there
was a gun in the household (male OR=1.33,
female OR=1.54), and if a family member
had attempted suicide in the past year (male
OR=2.14, female OR=1.48). Similarly, the
odds of having suicidal thoughts increased for
both boys and girls when a friend has at-
tempted suicide in the past year (male OR=
2.73, female OR=2.37). The effect of a
friend’s suicide attempt on the respondent’s
suicidal ideation was extremely strong for
both boys and girls. Finally, being depressed
(male OR=1.63, female OR=1.45), experi-
encing homosexual romantic attraction (male
OR=1.39, female OR=1.54), or getting
drunk or high frequently (male OR=1.11, fe-
male OR=1.11) increased the odds of think-
ing about suicide for all adolescents. For both
boys and girls, having high self-esteem low-
ered the likelihood of suicidal ideation (male
OR=0.81, female OR=0.81). (Although
other studies have identified an interaction
between depression and alcohol abuse as a
significant covariate of suicidality, this interac-
tion was not significant for our study popula-
tion [analyses not shown].) These findings are
consistent with those of previous studies.

In addition to revealing these general risk
factors, the models of suicidal ideation
showed marked differences by gender. Specif-
ically, although we found no age effect for
boys, younger girls were more likely than
older girls to think about suicide (OR=0.89).
Beyond the age effect, however, we found im-
portant gender differences in the effect of so-
cial network and relational variables. For girls,
being socially isolated from peers (OR=2.01)
or having intransitive friendships (OR=2.19)
substantially increased the odds of thinking
about suicide. Additionally, being in a school
with dense social networks lowered the risk
of suicidal ideation for girls (OR=0.333). So-
cial network effects for girls overwhelmed
other variables in the model and appeared to
play an unusually significant role in adoles-
cent female suicidality. These variables did
not have a significant impact on the odds of
suicidal ideation among boys.
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The Sintos and Tsaparas Study

In their study of the strong triadic closure (STC) property, Sintos and
Tsaparas study 5 small networks. They give evidence as to how the STC
assumption can help determine weak vs strong ties, and how weak ties act
as bridges to different communities.

More specifically, for a social network where the edges are not labelled
they define the following two computational problems: Label the graph
edges (by strong and weak) so as to satisfy the strong triadic closure
property and

1 Either maximize the number of strong edges, or equivalently

2 Minimize the number of weak edges
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The computational problem in identifying strong vs
weak ties

For computational reasons (i.e., assuming P 6= NP and showing NP
hardness by reducing the max clique problem to the above
maximization problem), it is not possible to efficiently optimize and
hence they settle for approximations.

Note that even for the small Karate Club network having only m = 78
edges, a brute force search would require trying 278 solutions. Of
course, there may be better methods for any specific network.

The reduction preserves the approximation ratio, so it is also NP-hard
to approximate the maximization problem with a factor of n1−ε.
However, the minimization problem can be reduced (preserving
approximations) to the vertex cover problem which can be
approximated within a factor of 2.

Their computational results are validated against the 5 networks
where the strength of ties is known from the given data. Notably
their worst case approximation algorithm (via the reduction) lead to
reasonably good results achieved for the 5 real data networks.
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The vertex cover algorithms and the 5 data sets
While there are uncovered edges, the (vertex) greedy algorithm selects a
vertex for the vertex cover with maximum current degree. It has worst
case O(log n) approximation ratio. The maximal matching algorithm is a
2-approximation online algorithm that finds an uncovered edge and takes
both endpoints of that edge.

implies that if there was an algorithm with bounded ap-
proximation ratio, then for an input instance for which the
optimal algorithm has cost zero, the algorithm would be able
to produce a solution with zero cost as well; otherwise the
approximation ratio is infinite. However, for k � 3, finding
a k-coloring of a k-colorable graph is NP-hard. Therefore,
it is hard to decide if there is a solution to the minMulti-
STC problem that has cost greater than zero. Therefore,
the problem is hard to approximate, unless P = NP .

We note that for k = 2, the O(log n)-approximation al-
gorithm makes use of linear programming for deriving the
solution. We propose a simpler heuristic in Section 7.

7. EXPERIMENTS
The goal of the experiments is to study if the labeling

we obtain by enforcing the STC property correlates with an
intuitive measure of tie strength in practice. We perform a
variety of experiments towards this end. Our experiments
are on real data, and demonstrate the practical utility of our
formulation and of the proposed algorithms.

7.1 Datasets
We use five di↵erent datsets in our experiments: Actors,

Authors, Les Miserables, Karate Club and Amazon Books.
Table 1 shows some statistics about our datasets. The col-
umn “Weights” indicates whether we can compute weights
for the edges of the graph. The weight of an edge corre-
sponds to the empirical strength of the connection. The col-
umn “Community Structure” indicates whether there exists
a known community structure in the graph.

Table 1: Datasets Statistics.

Dataset Nodes Edges Weights
Community
structure

Actors 1,986 103,121 Yes No
Authors 3,418 9,908 Yes No

Les Miserables 77 254 Yes No
Karate Club 34 78 No Yes

Amazon Books 105 441 No Yes

We now describe the datasets in detail.
The Actors dataset: We create a graph from a movie

dataset collected from IMDB1, consisting of 3,125 movies
made from 1945 to 2010, and 2,171 actors that participate
in these movies. The actor graph contains a node for each
actor in the data, and there is an edge between two actors
if they have collaborated in at least one movie. For each
node of the graph we also have information about the set of
movies in which the actor has played. We prune actors who
participated in less than 5 movies since we do not consider
them to be significant members of the network.

The Authors dataset: This dataset was obtained from
data downloaded from the DBLP site2. It consists of a col-
lection of authors that have published papers in one of the
major Data Mining, Databases or Theory conferences dur-
ing the period between 1994 and 2013. The author graph
contains a node for each author in the data, and there is
an edge between two authors if they have collaborated in at
least one paper. For each node in the graph we also have

1http:www.imdb.com
2http://dblp.uni-trier.de/xml/

information about the set of papers the author has written.
We prune authors who wrote less than 3 papers since we do
not consider them to be significant members of the network.

The Les Miserables dataset: This dataset contains the
network of co-appearances of characters in Victor Hugo’s
novel ”Les Miserables” [13]. Nodes represent characters of
the novel, and there is an edge between two nodes if the
pair of characters appear in the same chapter of the book.
For each edge we have the number of such co-appearances
between the two characters.

The Karate Club dataset: Zachary’s Karate Club
dataset [23] is a social network of friendships between 34
members of a karate club at a US university in the 1970s.
The information about the friendship was derived by ques-
tionnaires filled out by the members of the club.

The Amazon Books dataset: This dataset contains a
set of books about US politics published around the time of
the 2004 presidential election which are sold by the online
bookseller Amazon.com3. Edges between books represent
frequent co-purchasing of the books. In addition, each node
(book) is labeled as “liberal”, “neutral”, or “conservative”,
depending on its political viewpoint. There are 43 liberal,
13 neutral and 49 conservative books in this dataset.

7.2 Algorithms
In Section 5, we proved that minSTC problem on the

graph G can be mapped to the minVertexCover problem
on the dual graph GT . Given the graph G, the dual graph
GT is constructed by creating a node for every edge of G,
and connecting two nodes if the corresponding edges form
an open triangle. The algorithms we consider work by con-
structing an approximate solution to the minVertexCover
problem. We now describe them in detail.

The Greedy Algorithm: The input to the algorithm is
the graph G and its dual GT , and the output is a labeling of
the edges of the graph G as strong or weak. The algorithm
works by constructing a vertex cover of graph GT in a greedy
fashion. Recall that a vertex cover of a graph is a set of
vertices such that every edge of the graph has at least one
endpoint in the set. Let C denotes the set of nodes which are
selected by our algorithm. Initially C = ;. At every step the
algorithm selects the node v with the maximum degree in
GT , and adds it to the set C. It then deletes node v and all
edges incident on v from graph GT . The process is repeated
until there are no more edges in the graph GT . Given the set
of nodes in C, we label the corresponding edges of graph G as
weak. The remain edges are labeled strong. This algorithm
is known to be a O(log n)-approximation algorithm [21].

If at any step of the algorithm more than one nodes have
the same degree, we break ties by choosing the node that
corresponds to the edge in G that participates in the fewest
closed triangles in the graph G. This way, our algorithm
tends to label as weak edges that participate in many open
triangles and few closed triangles, a principle that agrees
with our intuition of what a weak edge should be.

The MaximalMatching Algorithm: The MaximalMatch-
ing algorithm also produces a vertex cover of the graph GT ,
by constructing a maximal matching for the dual graph GT .
A matching of a graph is a collection of non-adjacent edges
of the graph, while a maximal matching is one where no
additional edges can be added. The algorithm constructs
the matching one edge at the time. Let M denote the set

3Available by V. Krebs at http://www.orgnet.com/.

Figure: Weights (respectively, community structure) indicates when explicit edge
weights (resp. a community structure) are known.
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Tie strength results in detecting strong and weak
ties

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: The number of labelled links.

Although the Greedy algorithm has an inferior (worst case) approximation
ratio, here the greedy algorithm has better performance than Maximal
Matching. (Recall, the goal is to maximize the number of strong ties, or
equivalently minimize the number of weak ties.) 17 / 23



Results for detecting strong and weak ties

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: The avergae link weight.
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Tie strength results in detecting strong and weak
ties normalized by amount of activity

of edges selected by our algorithm. Initially M = ;. The
algorithm selects the next edge to add to the set M by first
selecting the node u with the highest degree in GT and then
the neighbor v of u with the highest degree. If more than
one nodes have the same degree then we break ties in the
same way as in the Greedy Algorithm. We add edge (u, v) to
M , and delete u, v and all edges incident on u or v from GT .
The algorithm terminates when there are no more edges in
the graph GT . Let C denote the set of vertices that are
endpoints of the edges in M . Similar to before, we label
as weak the corresponding edges of G, while the remaining
edges are labeled as strong. This algorithm is known to be
a 2-approximation algorithm [21].

Note that for both algorithms if there are vertices in the
graph GT that have no incident edges, then the correspond-
ing edges in the graph G will be labeled strong. These cor-
respond to edges that participate only in closed triangles, or
that are isolated in the graph G.

Table 2 shows the number of edges labeled weak and
strong for the two algorithms on the five datasets we con-
sider in this paper. Despite the better approximation ra-
tio the MaximalMatching algorithm always produces a larger
number of weak edges.

Table 2: Number of strong and weak edges for Greedy
and MaximalMatching algorithms.

Greedy MaximalMatching
Strong Weak Strong Weak

Actors 11,184 91,937 8,581 94,540
Authors 3,608 6,300 2,676 7,232

Les Miserables 128 126 106 148
Karate Club 25 53 14 64

Amazon Books 114 327 71 370

7.3 Measuring Tie Strength
In this section we study the relationship between the as-

signed labels and a notion of tie strength measured in prac-
tice. Our experiments follow the line of experimentation in
prior work [16, 10] where they study how structural features
of an edge correlate with empirical tie strength.

For this experiment, we use the three datasets for which
we can compute weights for the edges: the Actors dataset,
the Les Miserables dataset and the Authors dataset. The
weights on the edges correspond to the strength of the re-
lationships: a strong and enduring collaboration between
two nodes in the case of the Actors and Authors datasets,
and high a�nity in the storyline of the novel in the case
of the Les Miserables dataset. Specifically, for the Actors
dataset, the weight of an edge is the number of times that
the two actors have collaborated; for the Authors dataset
it represents the number of papers that they have written
together; for the Les Miserables dataset, it is the number of
co-appearances between two characters in the same chapter.
The goal of this experiment is to test the validity of the edge
labeling, by examining if there is a correlation between the
assigned label and the weight of the edge. Mathematically,
we will show that there is a statistically significant di↵erence
between the mean weight of strong and weak edges.

Table 3 shows the mean weight for the strong and weak
edges for all the three datasets, using the Greedy and Maxi-
malMatching algorithms. Clearly, for all of the datasets the

strong edges have higher weight than the weak ones. The
t-test reveals that the di↵erence is statistically significant at
a 5% confidence level. We can thus conclude that the label-
ing of our algorithm agrees with the “true” strength of the
network ties.

Table 3: Mean count weight for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy MaximalMatching
S W S W

Actors 1.4 1.1 1.3 1.1
Authors 1.341 1.150 1.362 1.167

Les Miserables 3.83 2.61 3.87 2.76

The frequency of common activity (e.g. collaboration) be-
tween two users is obviously a strong indicator of tie strength.
However it may also be an artifact of the general frequent
activity of the two users. For example, two highly prolific
researchers may collaborate on higher-than-average number
of papers, but this may be simply due to the fact that they
produce a lot of publications in general. An alternative mea-
sure of tie strength is the fraction of the activity of the two
users that is devoted to their relationship. We use Jaccard
similarity to capture this idea. Recall that Jaccard similarity
between two sets is defined as the ratio of their intersection
over their union. In our case the sets correspond to the
sets of activities in which the two users engage (e.g., movies,
publications, etc), and the Jaccard similarity measures the
fraction of their activities that are common.

For this experiment we use the Actors and the Authors
datasets. For the Actors dataset the weight of an edge be-
tween two actors is the number of movies in which they have
played together, over the total number of movies in which
at least one of the two actors has participated. Similarly,
the weight of an edge between two authors is defined as the
number of papers that they have written together over the
total number of their papers. We cannot compute Jaccard
similarity for the Les Miserables dataset, since we do not
have the exact chapter appearances for each character.

Table 4 shows the mean Jaccard similarity for the strong
and weak edges using Greedy and MaximalMatching algo-
rithms. Again, for all of the datasets the strong edges have
higher weight than the weak ones and the t-test reveals that
this di↵erence is statistically significant at a 5% confidence
level. We note that in the case of Jaccard similarity, the
gap between strong and weak edges is larger than before.
It seems that our labeling is more adept at capturing this
focused measure of tie strength.

Table 4: Mean Jaccard similarity for strong and
weak edges for Greedy and MaximalMatching algo-
rithms.

Greedy MaximalMatching
S W S W

Actors 0.06 0.04 0.06 0.04
Authors 0.145 0.084 0.155 0.088

Comparing the MaximalMatching and the Greedy algorithm
we observe that they behave very similarly in terms of the
mean weights of strong and weak edges. However, the Greedy
algorithm produces consistently a larger number of strong
edges, and it is intuitively more appealing.

Figure: Normalizing the number of interactions by the amount of activity.
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Results for strong and weak ties with respect to
known communities

7.4 Weak edges as bridges
Granovetter, in his seminal paper [8], demonstrated the

importance of weak social ties in connecting individuals with
information that is not readily available in their close social
circle, such as new work opportunities. A possible expla-
nation to this observation is nicely articulated in the book
of David Easley and Jon Kleinberg [4], where they postu-
late that weak ties act as bridges between communities in
the graph. Communities hold di↵erent types of information,
and the only way for an individual to obtain access to infor-
mation from a community di↵erent than her own is through
weak ties.

In accordance to this interpretation, given a labeling of
the edges of a graph with known community structure, we
would like most of the inter-community edges to be labeled
weak, while most of the strong labels to be confined to intra-
community edges. That is, edges that bridge communities
should be labeled weak, while strong edges should serve as
a backbone of the communities.

Formally, let G = (V, E) denote the input graph, and let
C = {C1, ..., Ck} denote a partition of the nodes of the graph
into k communities, which is also given as part of the input.
Let Einter denote the set of edges (u, v) such that u 2 Ci and
v 2 Cj for some i 6= j, and let Eintra denote the set of edges
(u, v) such that u, v 2 Ci for some i. Also given the labeling
LG of the graph G let W denote the set of edges labeled
weak, and let S denote the set of edges labeled strong. We
define the precision PW and recall RW for the weak edges
as follows:

PW =
|W \ Einter|

|W | and RW =
|W \ Einter|

|Einter|
Similarly, we define precision PS and recall RS for strong
edges as follows:

PS =
|S \ Eintra|

|S| and RS =
|S \ Eintra|

|Eintra|
The numbers we are mostly interested in are RW and PS ,
that is, we want the bridging edges to be labeled weak, and
the strong edges to be confined within the communities.

To test our hypothesis we need graphs with known com-
munity structure. To this end, we use the Karate Club and
Amazon Books datasets. For the Karate Club dataset it
is well known [4] that there were two fractions within the
members of the club, centered around the two trainers, that
eventually led to the breakup of the club. For the Amazon
Books dataset the communities are given by the political
viewpoint of the books.

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy
PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching
PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Table 5 shows the results for the two datasets for the
Greedy and MaximalMatching algorithms. The two algo-

rithms behave similarly, but the Greedy algorithm performs
better overall in terms of both precision and recall. We now
study the labeling of the Greedy algorithm in more detail.

For the Karate Club dataset we observe that we have per-
fect precision for the strong edges, and perfect recall for the
weak edges. We visualize the results of the Greedy algorithm
in Figure 1. The nodes are colored white and gray depend-
ing on the community to which they belong. The thick red
edges correspond to the edges labeled strong, and the thin
blue edges to the edges labeled weak. We can see that strong
edges appear only between nodes of the same group, while
all edges that cross communities are labeled weak.

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

For the Amazon Books dataset the Greedy algorithm char-
acterizes 114 edges as strong, out of which 92 connect books
of the same type, thus yielding precision PS = 0.81. On
the other hand, there are 70 edges that connect nodes from
di↵erent groups, and 48 of those are labeled weak, yielding
recall RW = 0.69. Of the remaining 22 edges that cross
communities and are labeled strong, 20 are edges with one
of the two endpoints being a book labeled as neutral. It
is intuitive that people would co-purchase books of neutral
viewpoint with liberal or conservative books, thus leading to
strong connections. There are only two edges that connect
a liberal and a conservative pair of books, and are labeled
strong by our algorithm. These pairs are: (“America Un-
bound”, “Rise of the Vulcans”), and (“The Choice”, “Rise of
the Vulcans”). After some investigation, we found out that,
for the first pair, although the books “America Unbound”
and “Rise of the Vulcans” belong to di↵erent categories (lib-
eral and conservative respectively), they are both about the
exact same issue: George W. Bush’s foreign policy. There-
fore, there is a di↵erent latent dimension that groups them
together, which can explain the strong relationship between
them.

7.5 STC with added edges
In this section we conduct experiments for the minSTC+

problem, where except for labeling edges as strong or weak,
we can also add edges to the graph. To this end we use the
greedy algorithm we described in Section 6. The algorithm
works iteratively. At each step of the algorithm a pair of
nodes (u, v) is selected which covers the most remaining open
triangles. This pair is either an edge not currently in the
graph, which, when added, closes the most remaining open
triangles, or an existing edge, which, when labeled weak,

Figure: Precision and recall with respect to the known communities.
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The meaning of the precision-recall table

The precision and recall for the weak edges are defined as follows:

PW =
|W∩Einter|
|W | and RW =

|W∩Einter|
|Einter |

PS =
|S∩Eintra|
|S | and RS =

|S∩Eintra|
|Eintra|

Ideally, we want RW = 1 indicating that all edges between
communities are weak; and we want PS = 1 indicating that strong
edges are wll within a community.

For the Karate Club data set, all the strong links are within one of the
two known communities and hence all links between the communities
are all weak links.

For the Amazon Books data set, there are three communities
corresponding to liberal, neutral, conservative viewpoints. Of the 22
strong tie edges crossing communities, 20 have one node labeled as
neutral and the remaining two inter-community strong ties both deal
with the same issue.
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Strong and weak ties in the karate club network

7.4 Weak edges as bridges
Granovetter, in his seminal paper [8], demonstrated the

importance of weak social ties in connecting individuals with
information that is not readily available in their close social
circle, such as new work opportunities. A possible expla-
nation to this observation is nicely articulated in the book
of David Easley and Jon Kleinberg [4], where they postu-
late that weak ties act as bridges between communities in
the graph. Communities hold different types of information,
and the only way for an individual to obtain access to infor-
mation from a community different than her own is through
weak ties.

In accordance to this interpretation, given a labeling of
the edges of a graph with known community structure, we
would like most of the inter-community edges to be labeled
weak, while most of the strong labels to be confined to intra-
community edges. That is, edges that bridge communities
should be labeled weak, while strong edges should serve as
a backbone of the communities.

Formally, let G = (V, E) denote the input graph, and let
C = {C1, ..., Ck} denote a partition of the nodes of the graph
into k communities, which is also given as part of the input.
Let Einter denote the set of edges (u, v) such that u ∈ Ci and
v ∈ Cj for some i "= j, and let Eintra denote the set of edges
(u, v) such that u, v ∈ Ci for some i. Also given the labeling
LG of the graph G let W denote the set of edges labeled
weak, and let S denote the set of edges labeled strong. We
define the precision PW and recall RW for the weak edges
as follows:

PW =
|W ∩ Einter|

|W | and RW =
|W ∩ Einter|

|Einter|
Similarly, we define precision PS and recall RS for strong
edges as follows:

PS =
|S ∩ Eintra|

|S| and RS =
|S ∩ Eintra|

|Eintra|
The numbers we are mostly interested in are RW and PS ,
that is, we want the bridging edges to be labeled weak, and
the strong edges to be confined within the communities.

To test our hypothesis we need graphs with known com-
munity structure. To this end, we use the Karate Club and
Amazon Books datasets. For the Karate Club dataset it
is well known [4] that there were two fractions within the
members of the club, centered around the two trainers, that
eventually led to the breakup of the club. For the Amazon
Books dataset the communities are given by the political
viewpoint of the books.

Table 5: Precision and Recall for strong and weak
edges for Greedy and MaximalMatching algorithms.

Greedy
PS RS PW RW

Karate Club 1 0.37 0.19 1
Amazon Books 0.81 0.25 0.15 0.69

MaximalMatching
PS RS PW RW

Karate Club 1 0.2 0.16 1
Amazon Books 0.73 0.14 0.14 0.73

Table 5 shows the results for the two datasets for the
Greedy and MaximalMatching algorithms. The two algo-

rithms behave similarly, but the Greedy algorithm performs
better overall in terms of both precision and recall. We now
study the labeling of the Greedy algorithm in more detail.

For the Karate Club dataset we observe that we have per-
fect precision for the strong edges, and perfect recall for the
weak edges. We visualize the results of the Greedy algorithm
in Figure 1. The nodes are colored white and gray depend-
ing on the community to which they belong. The thick red
edges correspond to the edges labeled strong, and the thin
blue edges to the edges labeled weak. We can see that strong
edges appear only between nodes of the same group, while
all edges that cross communities are labeled weak.

Figure 1: Karate Club graph. Blue light edges rep-
resent the weak edges, while red thick edges repre-
sent the strong edges.

For the Amazon Books dataset the Greedy algorithm char-
acterizes 114 edges as strong, out of which 92 connect books
of the same type, thus yielding precision PS = 0.81. On
the other hand, there are 70 edges that connect nodes from
different groups, and 48 of those are labeled weak, yielding
recall RW = 0.69. Of the remaining 22 edges that cross
communities and are labeled strong, 20 are edges with one
of the two endpoints being a book labeled as neutral. It
is intuitive that people would co-purchase books of neutral
viewpoint with liberal or conservative books, thus leading to
strong connections. There are only two edges that connect
a liberal and a conservative pair of books, and are labeled
strong by our algorithm. These pairs are: (“America Un-
bound”, “Rise of the Vulcans”), and (“The Choice”, “Rise of
the Vulcans”). After some investigation, we found out that,
for the first pair, although the books “America Unbound”
and “Rise of the Vulcans” belong to different categories (lib-
eral and conservative respectively), they are both about the
exact same issue: George W. Bush’s foreign policy. There-
fore, there is a different latent dimension that groups them
together, which can explain the strong relationship between
them.

7.5 STC with added edges
In this section we conduct experiments for the minSTC+

problem, where except for labeling edges as strong or weak,
we can also add edges to the graph. To this end we use the
greedy algorithm we described in Section 6. The algorithm
works iteratively. At each step of the algorithm a pair of
nodes (u, v) is selected which covers the most remaining open
triangles. This pair is either an edge not currently in the
graph, which, when added, closes the most remaining open
triangles, or an existing edge, which, when labeled weak,

Note that all the strong links are within one of the two known
communities and hence all links between the communities are weak
links.
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