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Announcements

Assignment 3 due Wednesday, November 18 at 11 AM.

Note question 2 and the relevance of this question to the issue of the
influecne of social media (Facebook, Twiter, UTUBE, INSTAGRAM
etc) and the spread of information and misinformation in the recent
US election.

How good are you at spotting trolls and bots on social media? You
may want to take the following test https://spotthetroll.org/

On November 18 we had our final guest presentation by Professor
Aleksandar Nikolov who discussed differential privacy. In this field of
study, we care concerned with how to extract useful aggregate
information from a large data base without compromising individual
information.

The final quiz was scheduled for Monday, November 30. | proposed
that we move the quiz to Friday, December 4. We took a decided on
Wednesday, December 2. This will allow for a tutorial on Monday,
November 30.
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Agenda and the road ahead

@ Our next topic is complexity theory.

@ In particular, we will be discussing the concept of NP and
NP-complete decision problems.

@ Complexity theory will then lead us to the topic of complexity based
cryptography

@ | have posted the first two questions for our final assignment on the
web page. These questions deal with NP-completeness. Please look
at these questions as soon as possible as a similar question may be on
the final quiz.
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The extended Church-Turing thesis

We recall the Church-Turing thesis, namely that every computable
function f is Turing computable. More precisely, there is a Turing machine
M such that on every input x, M halts and outputs f(x). That is, the
Church-Turing thesis equates the informal concept of "computable” with
the matehmatically precise concept of " Turing machine computable”.

The extended Chirch-Turing thesis equates the informal concept of
"efficiently computable” with the mathematical precise concept of
“computable by a Turing machine in polynomial time". More precisely, the
extended Church-Turing thesis states that a function is efficiently
computable if there is a Turing machine M and a polynomial p(n) such
that on every input x, M halts in at most p(|x|) steps and outputs f(x).
Here we are assumming x € £* for some finite alphabet ¥ and |x|
represents the length of the string x.
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The extended Church-Turing thesis continued

In what follows, | will use n to be the length of an input; n = |x]|.
Do we believe the extended Church-Turing thesis?

Why should we accept the extended Church-Turing thesis?

@ We can simulate in polynomial time a random access von Neumann
random access machine (if we say, as we should, that the time for
basic operations on ¢ bit operands is O(¢). This is a robust definition.

@ That is, if a function f is computable in time p;(n) on a von
Neumann random access machine, then there is some polynomial
p2(n) such that f is computable in polynomial time p(n) = p2(p1(n))
on a Turing machine. For example, if py(n) = n® and pa(n) = n? then
p(n) = n®.

@ What are some typical asymptotic time bounds for natural problems?
| am omitting the big O.
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@ For problems involving say enormous graphs, we need sublinear time;
for other problems we may need linear or near linear times. But as an

abstraction, we are saying that polynomial time is the most time wes



Why should we be less accepting of the extended

Church-Turing thesis?

While we are very confidant about the Church-Turing thesis (for defining
“computable™), there are various reasons to be a little more skeptical
about the extended Chruch-Turing thesis.

@ An algorithm running in a polynomial time bound like n'% is not an
efficient algorithm.

@ An algorithm running in an exponential time bound like (1 + 1g55)" is
an efficient algorithm for reasonably (but not too) large input lengths.
Note: (1+ )k ~e.

@ While we can simulate classical computers (i.e. von Neumann
machines) in polynomial time, we do not know how to simulate non
classical computers (e.g., quantum computers) in polynomial time.
Factoring is an example of a problem that can be computed in
polynomial time by a quantum computer whereas we do not believe
factoring is polynomial time computable on a classical computer. So
it is possible that we will have to change our definition of “efficiently
computable”.
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So should we accept the extended Church-Turing

thesis?
We can accept the extended Church-Turing thesis, arguing as follows:

@ Polynomial time computable functions usually have reasonably small
asymptotic polynomial time bounds; that is, n, nlog n, n?>, n3. There
are some exceptions (like n®, but generally speaking we don't

encounter asymptotic bounds bigger than n3.

@ The robustness of polynomial time (in terms of being closed under
composition and hence not sensitive to the precise model of
computing and definition of a time step. This enables us to define our
concepts in terms of Turing machines (once we restrict outselves to
classical computer models). Linear functions are also closed under
composition but linear time computation is very model dependent.

@ While non-classical models may contradict the thesis, so far we do
not have non-classical computers (e.g., quantum computers that go
beyond a small number of quantum bits) that are practical in any
commercial sense.
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But what if quantum computers become practical?

Lets assume the quantum computers or any other non-classical computers
become practical. We are about to discuss the NP vs P issue and the
NP # P conjecture, the central question in complexity theory.

This conjecture is formulated with respect to the extended Turing thesis.
That is, we are accepting the definition that “efficiently computable”
means polynomial time computable by a Turing machine. Will everything
about this question and conjecture become useless if we someday have
available more powerful non-classical computers?
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But what if quantum computers become practical?

Lets assume the quantum computers or any other non-classical computers
become practical. We are about to discuss the NP vs P issue and the
NP # P conjecture, the central question in complexity theory.

This conjecture is formulated with respect to the extended Turing thesis.
That is, we are accepting the definition that “efficiently computable”
means polynomial time computable by a Turing machine. Will everything
about this question and conjecture become useless if we someday have
available more powerful non-classical computers?

No, the theory we will be developing can be reformulated in terms of a
new computational model. We will have new functions (like factoring
integers) which will now become efficiently computable (assuming they
were not efficiently computable classically). But still there will be an
analogous complexity theory based on the (for now hypothetical) new
computational model.
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Polynomial time computable decision problems

We will now restrict attention to decision problems; that is
f:X* — {NO, YES} As used before, ¥ is a finite alphabet and X* is the
set of all strings over . We can also identify NO,YES with say {0,1}

Equivalently, we are considering languages L C ¥*.

The class of languages (decision problems) P is defined as the set of
languages L that are decideable in polynomial time on a Turing machine;
that is the languages that are “efficiently decideable”.

In what follows, | will assume we have some agreed upon way that we
represent graphs G = (V/, E) as strings over some finite alphabet X.
Without refering to the representation, let Leopnected = {G = (V, E)|G is
connected }

It is not difficult to show that Leopnected is in P. (For example, we can use
breadth first search.)
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A language “probably not” in the class P

Consider the following language:

Luc = {G = (V, E)|G has a simple cycle including all nodes in V}.

It is strongly believed (but not proven) that Lyc is not polynomial time
computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(TSP) is to find an HC of least cost in an edge weighted graph. Have you
heard of this problem?.)
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Luc = {G = (V, E)|G has a simple cycle including all nodes in V}.

It is strongly believed (but not proven) that Lyc is not polynomial time
computable.

A simple cycle containing all the nodes in the graph is called a
Hamiltonian cycle (HC). (The “well-known” traveling salesman problem
(TSP) is to find an HC of least cost in an edge weighted graph. Have you
heard of this problem?.)

But suppose | know that a given graph G has Hamiltonian cycle.
How can | convince you that G has such a cycle?

| can simply show you a Hamiltonian cycle C and you can easily and
efficiently verify that C is indeed a HC. That is, | can prove to you that G
has a HC.

But can | prove to you the G does not have a HC?

“Probably not”
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NP: the class of languages which are “efficiently

verifiable”
Using the HC problem as an example, lets define what it means to be

efficiently verifiable.

Let L be a language (like HC) that saitisfies the following conditions:
There is a polynomial time decdeable relation R(x,y) and a polynomial p
such that for every x, x € L if and only if there exists a y with |y| < p(|x|)
and R(x,y) = TRUE.

R(x,y) is a verification relation (or predicate) and y is called a certificate
that verifies x being in L.

The class NP is the class of languages (decision problems) that have such
a verification relation and certificate.

For example Lyc is in NP. Namely, given a representation x of a graph
G = (V,E), a certificate y is an encoding of a sequence of vertices
specifying a Hamiltonian cycle C. R(x, y) checks the conditions for C
being a simple cycle containing all the nodes in V.
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Many many decision problems are in the class NP

First we will note that the class P (decision problems decideable in
polynomial time) is a subset of NP; that is, P C NP. Is this obvious?
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Then in the definition of NP, we can let let R(x,y) be the relation that is
TRUE iff x € L ignoring y and R(x,y) is polynomial time since we can
decide if x € L in polynomial by the assumption that L € P.
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Many many decision problems are in the class NP

First we will note that the class P (decision problems decideable in
polynomial time) is a subset of NP; that is, P C NP. Is this obvious?

Suppose a language L (like Leopnected is decideable in polynomial time.
Then in the definition of NP, we can let let R(x,y) be the relation that is
TRUE iff x € L ignoring y and R(x,y) is polynomial time since we can
decide if x € L in polynomial by the assumption that L € P.

In saying P C NP, we have left open the possibility that P = NP.
However, the widely believed assumption (conjecture) is that P # NP.
This question (conjecture) was implicitly asked by (for example) Gauss
(early 1800's), von Neumann, Godel (1950's) , Cobham, and Edmonds
(1960s). The conjecture was formalized by Cook in 1971 (indpendently by
Levin in the FSU but not known until about 1973).

More specifically Cook defined the concept of NP-completeness and gave
a couple of examples of such problems, namely SAT and CLIQUE,
problems in NP that are believed to not be in P. We wil define
NP-completeness and the evidence for the conjecture that P # NP.
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Some other examples of decision problems in NP
and believed to not be in P

In all of the examples below we always assume some natural way to
represent the inputs as strings over some finite alphabet. In particular,
integers are represented in say binary or decimal. Polynomial time means
time bounded a polynomial p(n) where n is the length of the input string.
(I will explain each of the following decision problems as we introduce
them. Some problems are naturally decision problems. Others are decision
variants of optimization problems and other relations or functions)

SAT = {F|F is a propositional formula that is satisfiable}
PARTITION = {(a1,a2,...,a,)[3S : >, csai =3 21—y ai}
VERTEX-COLOUR = {(G, k)| G can be vertex coloured with k
colours}

FACTOR = {(N, k)|N is an integer that has a proper factor m < k}

While the theory of NP completeness is formulated in terms of
decision problems, we will be able to find certificates for the above

problems with respect to natural verification predicates.
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Blank page for explaining decision problems on last
page
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End of Week 9

We ended the Friday, November 20 class on slide 13 (without draqwing
too much on slide 14.

Week 10 will continue with the discussion of NP and NP-complete
problems.
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