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Announcements
Assignment 3 (A3) is now available on the course web page. It is due
Wednesday, November 18 at 11 AM. I clarified the second part of
question 2. Please submit on Markus pdf files for the assignment. We
need pdf to annotate comments about your assignment.

The third and last question on this assignment concerns neural nets.
This will motivate us to briefly comment on the general topic of
machine learning (ML) and how deep learning fits into this field. We
will discuss this at the start of today.

Roger Grosse’s slides are available on Quercus. I also posted a link to
the recording of that class.

Next week is reading week. No classes.

On November 18 we will have our final guest presentation by
Professor Aleksandar Nikolov who will be discussing differential
privacy. In this field of study, we are concerned with how to extract
useful aggregate information from a large data base without
compromising individual information.
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Agenda and the road ahead
Some quick comnments on ML.

We will continue with some graph theory concepts and social networks

With regard to social networks, we will discuss influence spread in a
social network and also how the network stucture by itself can yield
infomation about people and activity in a social network.

We will then discuss complexity theory and the great idea of NP
completeness. As in deep learning, our department has been and
continues to be leaders in this field. Steve Cook won the Turing
award (in 1982) for his seminal work in complexity theory and proof
complexity.

This will naturally lead us to the topic of cryptography and in
particular complexity based cryptography. Here again, our department
has played a seminal role led by the work of Charles Rackoff.

Of course, no one is an island in the world of research. Results take place
in a context but still we can try to identify seminal ideas and papers and
we are entitled to be a little parochial in identifying work that has been
and continues to be done in our department and the Univeristy of Toronto.
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Brief Comments on ML and deep learning
Of course, a one hour discussion on ML/deep learning can hardly do
justice to the activity in ML and its impact. The topic of machine learning
generally considers the following problem:

We are given a labelled set of training data (e.g. images that we want
to classify and the label for each image is a correct label).

We train a learning algorithm on this training data and in general our
learned algorithm may not even correctly label all the data in the
training set. The hope is that any training error is small.

Note: In question 3 of the assignment A3, we don’t really have to
train the neural net and can obtain an correct answer for all inputs.
But this question was just meant to be an introduction to the topic.

Neural nets now have available known methods (i.e., back
propagation) to train the net, that is, to learn weights and biases in
the network for a given network architecture.

Once an algorithm has been developed on the training data, it is
tested on a new set of data, called the test data.
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Comments on ML and deep learning continued
In terms of ML theory, one tries to obtain generalization bounds,
namely bounding the test error in terms of the training error and
quantifiable properties about the problem under consideration.

It may be that one has to change the architecture and/or add new
features so as to better describe the data and thereby improve upon
the results.

Beyond being able to classify data (eg images) we may want to
reproduce similar images (with the possible abuse of deep fake).

There are other ML methods (e,g, decision trees, logistic regression,
support vector machines) are other methods. However, deep learning
(meaning neural nets with many hidden layers) is currently what
works significantly better than other methods for most applications
involving lots of data.

Indeed, along with the algorithmic ideas in deep learning, it is the
availability iof large amounts of training data, and improved hardware
(e.g., GPUs initially designed for computer games) that has led to the
current success. However, there is much to still be understood.
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Brief discussion on question 3 in Assignment A3

CSC321 Winter 2018 Homework 3

Homework 3

Deadline: Wednesday, Jan. 31, at 11:59pm.

Submission: You must submit your solutions as a PDF file through MarkUs1. You can produce
the file however you like (e.g. LaTeX, Microsoft Word, scanner), as long as it is readable.

Late Submission: MarkUs will remain open until 2 days after the deadline; until that time, you
should submit through MarkUs. If you want to submit the assignment more than 2 days late,
please e-mail it to csc321staff@cs.toronto.edu. The reason for this is that MarkUs won’t let us
collect the homeworks until the late period has ended, and we want to be able to return them to
you in a timely manner.

Weekly homeworks are individual work. See the Course Information handout2 for detailed policies.

1. Hard-Coding a Network. [2pts] In this problem, you need to find a set of weights and
biases for a multilayer perceptron which determines if a list of length 4 is in sorted order.
More specifically, you receive four inputs x1, . . . , x4, where xi 2 R, and the network must
output 1 if x1 < x2 < x3 < x4, and 0 otherwise. You will use the following architecture:

All of the hidden units and the output unit use a hard threshold activation function:

�(z) =

⇢
1 if z � 0
0 if z < 0

Please give a set of weights and biases for the network which correctly implements this function
(including cases where some of the inputs are equal). Your answer should include:

• A 3 ⇥ 4 weight matrix W(1) for the hidden layer

• A 3-dimensional vector of biases b(1) for the hidden layer

• A 3-dimensional weight vector w(2) for the output layer

• A scalar bias b(2) for the output layer

You do not need to show your work.

1https://markus.teach.cs.toronto.edu/csc321-2018-01
2http://www.cs.toronto.edu/~rgrosse/courses/csc321_2018/syllabus.pdf

1

You need to find the weights and biases for each of the three “neurons”
h1, h2, h3 in the hidden layer and the one output neuron y . For example,
we want h1 = φ[w1

1 x1 + w1
2 x2 + w1

3 x3 + w1
4 x4 + b1] and you have to

determine the weights w1
1 ,w

1
2 ,w

1
3 , x

1
4 and the bias b1 for h1).

As just explained, with a number of positive and negative instance of
inputs, the neural net could be learned so as to achieve the desired
function f . But you do not have to emulate a learning algorithm but
rather think about how you would want to set each of the hi so that there
would be any easy way to set y .
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Back to graph theory concepts

Recall: undirected graphs vs. directed graphs
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More definitions and terminology

In order to refer to the nodes and edges of a graph, we define graph
G = (V ,E ), where

I V is the set of nodes (often called vertices)
I E is the set of edges (sometimes called links or arcs)

Undirected graph: an edge (u, v) is an unordered pair of nodes.

Directed graph: a directed edge (u, v) is an ordered pair of nodes
〈u, v〉.

I However, we usually know when we have a directed graph and just
write (u, v).
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Basic definitions continued

First start with undirected graphs G = (V,E).

A path between two nodes, say u and v is a sequence of nodes, say
u1, u2, . . . , uk , where for every 1 ≤ i ≤ k − 1,

I the pair (ui , ui+1) is an edge in E,
I u = u1 and v = uk

The length of a path is the number of edges on that path.

A graph is a connected if there is a path between every pair of nodes.
For example, the following graph is connected.
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Romantic Relationships [Bearman et al, 2004]

Figure: Dating network in US high school over 18 months.

Illustrates common “structural” properties of many networks

What predictions could you use this for?
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More basic definitions

Observation

Many connected components including one “giant component”

We will use this same graph to illustrate some other basic concepts.

A cycle is path u1, u2, . . . , uk such that u1 = uk ; that is, the path
starts and ends at the same node.
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Simple paths and simple cycles
Usually only consider simple paths and simple cycles: no repeated
nodes (other than the start and end nodes in a simple cycle.)

Observation

There is one big simple cycle and (as far as I can see) three small
simple cycles in the “giant component”.

Only one other connected component has a cycle: a triangle having
three nodes. Note: this graph is “almost” bipartite and “almost”
acyclic.
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Example of an acyclic bipartite graph94 CHAPTER 4. NETWORKS IN THEIR SURROUNDING CONTEXTS
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Jung
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Jobs

Figure 4.4: One type of affiliation network that has been widely studied is the memberships
of people on corporate boards of directors [301]. A very small portion of this network (as of
mid-2009) is shown here. The structural pattern of memberships can reveal subtleties in the
interactions among both the board members and the companies.

A very simple example of such a graph is depicted in Figure 4.3, showing two people (Anna

and Daniel) and two foci (working for a literacy tutoring organization, and belonging to a

karate club). The graph indicates that Anna participates in both of the foci, while Daniel

participates in only one.

We will refer to such a graph as an affiliation network, since it represents the affiliation of

people (drawn on the left) with foci (drawn on the right) [78, 323]. More generally, affiliation

networks are examples of a class of graphs called bipartite graphs. We say that a graph is

bipartite if its nodes can be divided into two sets in such a way that every edge connects a

node in one set to a node in the other set. (In other words, there are no edges joining a pair

of nodes that belong to the same set; all edges go between the two sets.) Bipartite graphs

are very useful for representing data in which the items under study come in two categories,

and we want to understand how the items in one category are associated with the items

in the other. In the case of affiliation networks, the two categories are the people and the

foci, with each edge connecting a person to a focus that he or she participates in. Bipartite

Figure: [E&K, Fig 4.4] One type of affiliation network that has been widely
studied is the memberships of people on corporate boards of directors. A very
small portion of this network (as of mid-2009) is shown here.
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Florentine marriages and “centrality”
Medici connected to more families, but not by much
More importantly: lie between most pairs of families

I shortest paths between two families: coordination, communication
I Medici lie on 52% of all shortest paths; Guadagni 25%; Strozzi 10%

Figure: see [Jackson, Ch 1]
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Breadth first search and path lengths [E&K, Fig 2.8]
2.3. DISTANCE AND BREADTH-FIRST SEARCH 33

you

distance 1

distance 2

distance 3

your friends

friends of friends

friends of friends

of friends

all nodes, not already discovered, that have an 

edge to some node in the previous layer

Figure 2.8: Breadth-first search discovers distances to nodes one “layer” at a time; each layer
is built of nodes that have an edge to at least one node in the previous layer.

a path’s length, we can talk about whether two nodes are close together or far apart in a

graph: we define the distance between two nodes in a graph to be the length of the shortest

path between them. For example, the distance between linc and sri is three, though to

believe this you have to first convince yourself that there is no length-1 or length-2 path

between them.

Breadth-First Search. For a graph like the one in Figure 2.3, we can generally figure

out the distance between two nodes by eyeballing the picture; but for graphs that are even

a bit more complicated, we need some kind of a systematic method to determine distances.

The most natural way to do this — and also the most efficient way to calculate distances

for a large network dataset using a computer — is the way you would probably do it if you

Figure: Breadth-first search discovers distances to nodes one “layer” at a time.
Each layer is built of nodes adjacent to at least one node in the previous layer.
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The Small World Phenomena

The small world phenomena suggests that in a connected social network
any two individuals are likely to be connected (i.e. know each other
indirectly) by a short path; that is, short in the graph theory sense of the
number of edges.

In Milgram’s [1967] small world experiment, he asked 296 randomly chosen
people in Omaha to forward a letter to a target person (a stockbroker)
living in a Boston suburb. Of the 64 chains that succeeded the median
length of the letter chain was 6, the motivation for the play and movie that
came to popularize the phenomena known as six degrees of separation.

The interesting phenomena is not so much that there are short paths
between people, but more that the successful letters made their way
without any centralized algorithm but rather were guided by geographic
distance (and perhaps occupation). There are interesting provable results
and some recent computational studies helping to explain this phenomena.
Distance need not be geographic distance but rather can be some concept
of “social distance”.
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Small Collaboration Worlds

For now let us just consider collaboration networks like that of
mathematicians or actors. For mathematicians (or more generally say
scientists) we co-authorhsip on a published paper. For actors, we can form
a collaboration network where an edge represents actors perfoming in the
same movie. For mathematicians one considers their Erdos number which
is the length of the shortest path ito Paul Erdos. For actors, a popular
notion is ones Bacon number, the shortest path to Kevin Bacon.
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Erdos collaboration graph drawn by Ron Graham
[http:/www.oakland.edu/enp/cgraph.jpg]

18 / 32



Announcements and agenda

We ended at slide 18 on Wednesday. I do want to go over slide 16
and the Small Worlds Phenomena.

Assignment 3 is due Wednesday, November 18. Also on November
18, we will have our last guest presentation by Aleksander Nikolov.

Next week is reading week so no classes. We resume the week of
November 16. Marta will do the tutorial on Monday, November 16. .

After quickly going over the small worlds phenomena, we will return
to graph concepts starting with directed graphs and then move on to
discuss some properties of social networks. For those interested in the
samll worlds phenomema, you can look at Chapter 20 of the Easley
and Kleinberg (2010) textbook. The text is an excellent text for the
study of social networks and more generally social the importance of
networks. (You can also look at my CSC303 slides on my web page.)
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Analogous concepts for directed graphs

We use the same notation for directed graphs, i.e. denoting a
di-graph as G = (V ,E ), where now the edges in E are directed.

Formally, an edge 〈u, v〉 ∈ E is now an ordered pair in contrast to an
undirected edge (u, v) which is unordered pair.

I However, it is usually clear from context if we are discussing undirected
or directed graphs and in both cases most people just write (u, v).

We now have directed paths and directed cycles. Instead of
connected components, we have strongly connected components.
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b c
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The graph above is not strongly connectd (for example, node a is a sink
and cannot reach any other node).
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Weighted graphs

We will often consider weighted graphs. Lets consider a (directed or
undirected) graph G = (V ,E ). Example:
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I red numbers: edge weights

I blue numbers: vertex weights

We can have a weight w(v) for each node v ∈ V and/or a weight
w(e) for each edge e ∈ E .

For example, in a social network whose nodes represent people, the
weight w(v) of node v might indicate the importance of this person.

The weight w(e) of edge e might reflect the strength of a friendship.
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Edge weighted graphs

When considering edge weighted graphs, we often have edge weights
w(e) = w(u, v) which are non negative (with w(e) = 0 or w(e) =∞
meaning no edge depending on the context).

In some cases, weights can be either positive or negative. A positive
(resp. negative) weight reflects the intensity of connection (resp.
repulsion) between two nodes (with w(e) = 0 being a neutral
relation).

Sometimes we will only have a qualitative (rather than quantitative)
weight, say to reflect a strong or weak relation.

Analogous to shortest paths in an unweighted graph, we often wish to
compute least cost paths, where the cost of a path is the sum of
weights of edges in the path.
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Social networks
A social network is a network G = (V ,E ) where the nodes in V are people
or organizations. Social networks can be undirected or directed networks.

The edges can be relations between people (e.g. friendship) or
membership of an individual in an organization.

Social networks can be of any size (e.g., a small network like the Karate
Club on slide 14 in the week 7 slides) or enormous networks like Facebook
and Twitter. We usually think of Facebook as an undirected graph (where
friendship is an undirected edge) and Twitter as a directed graph (i.e.,
where follows is a directed edge).

Understanding how networks evolve, the resulting structure of social
networks, and computational aspects for dealing with large networks is an
active field of study in CS as well as in sociology, political science,
economics, epidemiology, and any field that studies human behaviour. J.
Kleinberg’s 2000 analysis with regard to the six degrees of separation
phenomena is an early result that sparked interest in algorithmic aspects of
social networks.
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The computational challenge presented by super
large networks

The size of some modern networks such as the web and social networks
such as Facebook are at an unprecedented scale.

As of October 10, 2020, Facebook has roughly 2.7 billion monthly active
users worldwide. The average facebook user has 155 friends which then
implies about 2.7·155

2 billion edges. It is interesting to note that 90% of
daily active users are outside USA and Canada. See
https://www.omnicoreagency.com/facebook-statistics/ // for lots of
interesting demographic and other facts about Facebook.

What does this imply for the complexity of algorithms involving such super
large networks?
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Linear is the new exponential

In complexity theory (e.g. in the P vs NP issue that we will be discussing)
we say (as an abstraction) that polynomial time algorithms are “efficient”
and “exponential time” is infeasible. There are, of course, exceptions but
as an abstraction this has led to invaluable fundamental insights.

As problem instances have grown, there was a common saying that
“quadratic (time) is the new exponential”.

But with the emergence of networks such as the web graph and the
Facebook network, we might now say that “linear is the new exponential”
when it comes to extracting even the most basic facts about these
networks. For example, how do we even estimate the average node degree
in a giant network?

There are many facts about large networks that we would like to extract
from the network. For example, how do we find “influential” or
“interesting nodes” in a social network?
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Sublinear time algorithms

What is sublinear time?
In general when we measure complexity, we do so as a funtion of the
input/output size. For graphs G = (V ,E ), the size of the input is usually
the number of edges E . (An exception is that when the graph is presented
say as an adjacency matrix, the size is n2 where n = |V |.)
Since our interest is in massive information and social networks, we
consider sparse graphs (e.g. average constant degree) so that
|E | = O(|V |) and hence we will mean sublinear time as a function of n.
The desired goal will be time bounds of the form O(nα) with α < 1 and in
some cases maybe even O(log n) or polylog(n).

Given that optimal algorithms for almost any graph property will depend
on the entire graph, we will have to settle for approximations to an
optimum solution. Furthermore, we will need to sample the graph so as to
avoid having to consider all nodes and edges. And we will need a way to
efficiently access these massive graphs,
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Coping with massive social graphs continued

One way to help coping with massive networks is to hope to utilize some
substantial amount of parallelism. There is an area of corrent research
concerning massive parallel computation (MPC) models where (in
principle) we can achieve sublinear time by distributing computation
amongst a large (i.e., non constant) number of processors.

But even if we could muster and organize thousands of machines, we will
still need random samplng, approximation, and have highly efficient “local
information algorithms”.

Finally, in addition to random sampling and parallelism, we will have to
hope that social networks have some nice structural properties that can be
exploited to as to avoid complexity barriers that exist for arbitrary (sparse)
graphs. These complexity barriers will be made clear when we discuss
complexity theory, NP completeness and NP hardness.
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Preferential attachment models
Preferential attachnment models (also called “rich get richer” models) are
probabilistic generative models explaining how various networks can be
generated. Namely, after starting with some small graph, when we add a
new node u, we create a number of links between u to some number m of
randomly chosen nodes v1, v2, . . . , vm. The probability of choosing a vi is
proportional to the current degree of vi . More generally, the probability of
choosing a node vi can be an increasing function of the degree,

These models have been used to help explain the structure of the web as
well as social networks. Furthermore, networks generated by such a
process have some nice structural properties allowing for substantially
more efficient algorithms than one can obtain for arbitrary graphs.

For such models, there are both provable analytic results as well as
experimental evidence on synthetic and real networks that support
provable results that follow from the model. (Remember, a model is just a
model and is not “reality”; as models are implifications of real networks,
they may not account for many aspects in a real network. For example, in
this basic model, all the edges for a new node are set upon arrival. 28 / 32



Consequences for networks generated by a
preferential attachment process

There are many properties, believed and sometimees proven. about
preferential attachment network models that do not hold for uniformly
generated random graphs (e.g., create sparse graphs with consstant
average degree by choosing each possible edge with say probability
proportional to 1

n ).

One of the most interesting and consequential proerties is that vertex
degrees satisfy a power law distribution in expectation. Specifically, the
expectation fraction P(d) of nodes whose degree is d is proportional to
d−γ for some γ ≥ 1. Such a distribution is said to have a fat tail.

In a uniformaly random sparse graph (with average degree davg ), with high
probability , the fraction of nodes having a large degree d > davg is
proportional to c−d for some c > 1.
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The Barabasi and Albert preferential model
Barabasi and Albert [1999] specified a particular preferential attachment
model and conjectured that the vertex degrees satisfy a power law in
which the fraction of nodes having degree d is proportional to d−3.

They obtained γ ≈ 2.9 by experiments and gave a simple heuristic
argument suggesting that γ = 3. That is, P(d) is proportional to d−3

Bollobas et al [2001] prove a result corresponding to this conjectured
power law. Namely, they show for all d ≤ n1/15 that the expected degree
distribution is a power law distribution with γ = 3 asymptotically (with n)
where n is the number of vertices.

Note: It is known that an actual realized distribution may be far from its
expectation, However, for small degree values, the degree distribution is
close to expectation.

When we say that a distribution P(d) is a power law distribtion this is
often meant to be a ”with high probaility” whereas results for networks
generated by a preferential attachment process the power law is usually
only in expectation. 30 / 32



Proven or observed properties of nodes in a social
network generated by preferential attachment
models

In addition to the power law phenomena suggesting many nodes with high
degree, , other properies of social networks have been obseerved such as a
relatively large number of nodes u having some or all of the following
properties.

high clustering coefficient defined as : (u,v),(u,w),(v ,w)∈E
(u,v),(u,w)∈E . That is,

mutual friend of u are likely to be friends.

high centrality ; e,g, nodes on many pairs of shortest paths.

Brautbar and Kearns refer to such nodes as “interesting indiviudals” and
these individuals might be candidates for being “highly influential
individuals”. Bonato et al [2015] refers to such nodes as the elites of a
social network.
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Other proven or observed properties of networks
generated by preferentical attachment models

correlation between the degree of a node u and the degrees of the
neighboring nodes.

graph has small diameter; suggesting “6 degrees of separation
phenomena”

relatively large dense subgraph communities.

rapid mixing (for random walks to approach stationary distribution)

relatively small (almost) dominating sets .

On my 303s20 web page, I posted a paper by Avin et al (2018) that shows
that preferential attachment is the only “rational choice” for players
(people) playing a simple natural network formation game. It is the
rational choice in the sense that the strategy of the players will lead to a
unique equilibrium (i.e. no player will want to deviate assumming other
players do not deviate). For those intersted, I have posted (in my CSC303
webpage) a number of other papers on elites in a social network and
preferential attachment.
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