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Week 4: Announcements

Announcements

This week we have our regular classes on Wednesday
and Friday

Next Monday is Thanksgiving and there is no class.

Next Wed (October 14), Eyal de Lara will lead a
discussion on visualization. I am posting the zoom link
on Quercus.

Quiz 1 will be held Monday, October 19 during the
tutorial hour.

I plan to post Assignment A2 (or the start of A2) this
week. Assignment A2 is due October 28 (after the
Quiz) but will be helpful for the Quiz.
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Week 4 agenda

Agenda

We will conitnue with Alan Turing’s seminal work with
regard to what is and what is not computable, and the
Turing machine model. I believe this could arguably
be called the greatest of the great ideas in computer
science that we will discuss. I will elaborate further on
Turing’s contribution in this regard and provide a very
brief description of the Turing machine model.

I thought we would have time to switch to a more
familiar topic, namely search engines. But better to
take our time. So next week (week 5) we will strat
search engines on Friday.
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A pictorial representation of a Turing machine

Figure: Figure taken from Michael Dawson “Understanding Cognitive Science”
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Comments on Turing’s model
Formally, a Turing machine algorithm is described by the following
function δ : Q × Γ→ Q × Γ× {L,R}
Q is a finite set of states. Γ is a finite set of symbols
(e.g., Γ = {#, 0, 1, a, b, . . .} and perhaps Σ = {0, 1})
Note: Each δ function is the definition of a single Turing machine;
that is, each δ function is the statement of an algorithm.
We can assume there is a halting state qhalt such that the machine
halts if it enters state qhalt . There is also an initial state q0.
We view a Turing machine P as computing a function fP : Σ∗ → Σ∗

where Σ ⊆ Γ where y = f (x) is the string that remains if (and when)
the machine halts. There can be other conventions as to interpreting
the resulting output y .
Note that the model is precisely defined as is the concept of a
computation step. A configuration of a TM is specified by the
contents of the tape, the state, and the position of the tape head. A
computation of a TM is a sequence of configurations, starting with an
initial configuration.
For decision problems, we can have YES and NO halting states. 5 / 21



A more general Turing machine model

The Turing machine model has been extended to allow separate read (for
the input) and write (for the output when computing a function) tapes
and any finite number of work tapes. Here is a figure of a nmulti-tape TM
(but without separate input and outoput tapes).

Figure: Figure from the Bela Gyires Infiormatics Curriculum Repository
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Some of Turing’s seminal results

Turing showed that there is a Universal Turing machine (UTM) call it
U. That is, given an input p#x the machine interprets the string p as
a Turing machine description (i.e. as a state transition function δ)
and x ∈ Σ∗ is interpreted as the input to the machine P described by
p and fU(p#x) = fP(x).

In modern terms, a UTM is an interpreter.

Turing showed that the halting problem is undecideable. That is,
there does not exist a fixed TM (call it F ) such that for every input p
(interpreted as a TM P) will always halt and correctly decide if P
halts on some fixed input string (say the single character string 0).

The undecideability of the halting problem is by a diagonalization
argument for those familiar with how you show that the set of real
numbers is “larger” (i.e., an uncountable set) than the set of rationals
or integers (i.e., countable sets).
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The Entscheidungsproblem
In his seminal paper “On Computable Numbers With an Application to
the Entscheidungsproblem” (i.e. decision problem), Turing uses his model
and the undecideability of the halting problem, to prove the undecideabiliy
of the “Entscheidungsproblem” posed by Hilbert in 1928. (Church
provided an independent proof within his formalism.)

Sometimes this is informally stated as “can mathematics be decided ?”

The Entscheidungsproblem question refers to the decideability of validity
in prediciate logic which Church and Turing independently resolved in
1936-1937. It would take a little while to fomally define this
”Entscheidungsproblem” but here is an example of the kind of question
that one wants to answer:
Given a formula such as ∀x∃y : y < x
can we determine if such a formula is always true no matter what what
ordered domain x , y and < refer to?
For example, ∀x , y , z(x < y and y < z implies x 6= z) is always true.
But x < y implies ∀x , y∃z : x < z < y is not true of all ordered domains
(e.g., consider the integers) 8 / 21



The extended Church-Turing Thesis

While Church-Turing computability states a formal definition of what is in
principle computable, it allows for computable functions of arbitrary
complexity.

Indeed it is not difficult to show (again using diagonalization) that for any
time bound T (n) there are computable decision problems that require
more time (or more memory) than T (n) for sufficiently large values of n
where n is the length of the input string. (In complexity analysis we
measure complexity as a function of the length of the input and output
strings). But why then do we usually say that operations in the von
Neumann model take unit time?.

The extended Church-Turing thesis states that any function that is
“feasibly computable” must be computable by a Turing machine within
time p(n) where p() is a polynomial. This extended thesis is stated with
regard to classical computers and not necessarily quantum computers.
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Extended Church-Turing thesis continued
Informal theorem: Any “reasonable” classical computation model M can
be simulated by a one tape or multi-tape Turing machine so that if say f
is computable in time T (n) on M then f is computable on a Turing
machine in time pM(T (n)) for some fixed polynomial pM.

Using a mutli-tape TM, for most models, pM(m) is O(m2) or O(m3). For
example, if T (n) is n2 and pM(m) is m3 then pM(T (n) is n6.

What is “not reasonable”?

Consider having unit time operations +,−, ∗,÷ where ÷ means integer
division; that is, dividing a by b results in the remainder. Now consider
repeated squaring of 2, 22 = 4, 42 = 16, . . . , 2(2

n). That is, in n
multiplications, we can construct an integer whose binary representation
has 2n bits.

It turns out that with such a model we can factor integers in polynomial
time. BUT this is not reasonable as we are doing classical operations on
exponentially long strings in unit time which is not reasonable.
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