
Great Ideas in Computing

University of Toronto CSC196
Fall 2020

Week 2: September 16 - September 23 (2020)

1 / 23

Week 2: Agenda and Annoucements

We will start with the last slide we looked at on Monday; namely, Is
Wikipedia a Great Idea?

We will then discuss the Dictionary Data Type and ways to
implement a Dictionary

Our TA for CSC 196 is Marta Skreta. Marta is a PHD student in
Machine Learning and Computational Healthcare. Marta is only able
to do the tutorials on Mondays so going forward we will do tutorials
on Mondays and I will conduct the class on Wednesdays and Fridays.
I do have some conflicts on Fridays so we will have to do some
juggling. Marta’s interests are a great match for this course.

The first tutorial will be Monday, September 21. No class this Friday.

2 / 23

Wikipedia

Is Wikipedia a great idea?

In the Netflix documentary that I mentioned, the following
question/comment was made: What if everyone was given their own
Wikipedia page when they made a query using Wikipedia?
The commentary notes that when we are on social media we are often
getting personalized news-feeds.

Confession: I didn’t think Wikipedia would work. More specifically, I
didn’t think that enough knowledgeable people would be willing to spend
their time to help create reasonably authoratative articles without getting
any credit.

What is your experience with Wikipedia? Do you always believe what you
read is accurate? How does it compare with other sources of information?

3 / 23

Wikipedia

Is Wikipedia a great idea?

In the Netflix documentary that I mentioned, the following
question/comment was made: What if everyone was given their own
Wikipedia page when they made a query using Wikipedia?
The commentary notes that when we are on social media we are often
getting personalized news-feeds.

Confession: I didn’t think Wikipedia would work. More specifically, I
didn’t think that enough knowledgeable people would be willing to spend
their time to help create reasonably authoratative articles without getting
any credit.

What is your experience with Wikipedia? Do you always believe what you
read is accurate? How does it compare with other sources of information?

3 / 23

Wikipedia

Is Wikipedia a great idea?

In the Netflix documentary that I mentioned, the following
question/comment was made: What if everyone was given their own
Wikipedia page when they made a query using Wikipedia?
The commentary notes that when we are on social media we are often
getting personalized news-feeds.

Confession: I didn’t think Wikipedia would work. More specifically, I
didn’t think that enough knowledgeable people would be willing to spend
their time to help create reasonably authoratative articles without getting
any credit.

What is your experience with Wikipedia? Do you always believe what you
read is accurate? How does it compare with other sources of information?

3 / 23

Data Types

Last meeting we discussed floating point numbers and it was noted (by a
student) that floating point numbers are an example of a data type.

This led me to give an informal definition of what we mean by a data type.
Namely, I said it was a collection of items (data) and the alllowable
operations (and relations) involving those items. So as an example we can
have a data type called Float where the data is numbers represented in
floating point representation, the operations are the standard arithmetic
operations +,-,*, division, exponentiation and perhaps logarithms. We also
have the relations <,=, >.

You can check how Wikipedia states what is a data type.

We will nest introduce the Dictionary data type.

4 / 23

Looking up a record

Suppose with every person in an organization we have information stored
in some “devise”. It could be an old printed telephone directory, a folder in
a physical cabinet, or a file in a cell phone or computer.

Lets think about how it could be stored in a von Neuman archiecture type
computer in analogy to a file cabinet. Namely, think about one folder
placed after the other. And for simplicity, say we have the same amount of
information on each person.

In a computer one way to do this is to think of each person taking up
some p consecutive words in memory (i.e., an array), one word for the
name of the person, and p − 1 words for the information. If there are n
people in the organization then we would be taking up n · p words of
memory if we stored this information in an array.

Instead of the name of the person we could have some other indentifier.

5 / 23

Dictionaries
What are the most basic operations we want to associate with such a
collection of information?

Search: Look up if someone is in the organization and if so retrieve
the information for this person.
Update content: Change the information regarding am item
Insert: Add a new person to the organization
Delete: Remove a person from the organzation.

Sets of objects with these opeartions are refered to as a Dictionary data
type. It is a static dictionary if we only want to look up records and a
dynamic dictionary if we also want to add and delete. We can use different
data structures to implement such a data type.

There can be many more operations that we want to perform on
collections of data. More generally how one maintains and operates on
data is known as the subfield of data bases. Analyzing data and Extracting
new (often statistical) information from collections of data is now called
data science or data analytics. More ambitious learning of new information
from data can be called machine learning. Note: terminology changes all
the time.

6 / 23

Dictionaries
What are the most basic operations we want to associate with such a
collection of information?

Search: Look up if someone is in the organization and if so retrieve
the information for this person.
Update content: Change the information regarding am item
Insert: Add a new person to the organization
Delete: Remove a person from the organzation.

Sets of objects with these opeartions are refered to as a Dictionary data
type. It is a static dictionary if we only want to look up records and a
dynamic dictionary if we also want to add and delete. We can use different
data structures to implement such a data type.

There can be many more operations that we want to perform on
collections of data. More generally how one maintains and operates on
data is known as the subfield of data bases. Analyzing data and Extracting
new (often statistical) information from collections of data is now called
data science or data analytics. More ambitious learning of new information
from data can be called machine learning. Note: terminology changes all
the time.

6 / 23

Dictionaries lead to interesting concepts and ideas

Many ways to implement a dictionary. What is important to note is
that there are almost always TRADEOFFS in whatever we do in
computing (and in life). How do you compare alternatives when there
are multiple criteria for any given choice?. When can we say that
choice 1 is better than choice 2 according to the given criteria.

Here are some well known ways data structures to implement a
dictionary.

1 An unordered list in an array
2 An ordered list in an array
3 A linked list
4 A (balanced) search tree.
5 A hash table.

We will briefly talk about each of these possibilities. I do not want to
get into details. Instead I just want to give a very high level idea of
these different ways to implement a dynamic dictionary mentioning
some tradeoffs and introducing some related concepts.

7 / 23

Dictionaries lead to interesting concepts and ideas

Many ways to implement a dictionary. What is important to note is
that there are almost always TRADEOFFS in whatever we do in
computing (and in life). How do you compare alternatives when there
are multiple criteria for any given choice?. When can we say that
choice 1 is better than choice 2 according to the given criteria.

Here are some well known ways data structures to implement a
dictionary.

1 An unordered list in an array
2 An ordered list in an array
3 A linked list
4 A (balanced) search tree.
5 A hash table.

We will briefly talk about each of these possibilities. I do not want to
get into details. Instead I just want to give a very high level idea of
these different ways to implement a dynamic dictionary mentioning
some tradeoffs and introducing some related concepts.

7 / 23

End of Meeting on Wednesday, September 16

We ended on slide 7. We spent quite a bit of time discussing Wikipedia
(but that is fine) so didn’t get as far as I had expected. After some
announcements, we will resume discussing data structures for Dictionaries
next Wednesday and also in the Monday, September 21 tutorial.

8 / 23

Annoucements

Welcome to three new students who were on the wait list.

Reminder: When you are not speaking best to keep your audio off. If
you have a camera then I like seeing who everyone is especially when
you are speaking. Good to use the chat feature if you wish to speak
and then I can recognize individals in the order of the chats.

I posted assignment A1 on the web page. I want to grade
assignments on Markus and have requested to get that operational. I
will soon post A1 on Markus and maybe also on Quercus.

Another reminder: For general questions, good to ask in class. But
between classes, I prefer that you ask general question on piazza as
that will be the fastest way to get a response since students often
provide a response (which I greatly welcome). For more personal
questions, you can email me at 196instr@cs.toronto.edu or Marta at
196ta@cs.toronto.edu.

9 / 23

Brief discussion on these different methods

Let n be the current number of items in dictionary.

Each item has a unique name or identifier.

After I describe each method (on the blank sheets), lets discuss some pros
and cons of each method.

10 / 23

An unordered list in an array

11 / 23

Some pros and cons of an unordered list in array

Unordered lists and ordered lists were discussed in the tutorial but we casn
quickly go over them again.

Easy to add or delete an item (assuming we don’t exceed the size of the
array)

Requires “average” n/2 comparison to find a current item and n
comparison to determine if requested item is not in the current array. This
is a hint of an important issue: namely, what does average mean?

Need some memory management system if array is too small.

12 / 23

Some pros and cons of an unordered list in array

Unordered lists and ordered lists were discussed in the tutorial but we casn
quickly go over them again.

Easy to add or delete an item (assuming we don’t exceed the size of the
array)

Requires “average” n/2 comparison to find a current item and n
comparison to determine if requested item is not in the current array. This
is a hint of an important issue: namely, what does average mean?

Need some memory management system if array is too small.

12 / 23

Some pros and cons of an unordered list in array

Unordered lists and ordered lists were discussed in the tutorial but we casn
quickly go over them again.

Easy to add or delete an item (assuming we don’t exceed the size of the
array)

Requires “average” n/2 comparison to find a current item and n
comparison to determine if requested item is not in the current array. This
is a hint of an important issue: namely, what does average mean?

Need some memory management system if array is too small.

12 / 23

An ordered list in an array

13 / 23

An ordered list in an array
Note: This is only applicable if the items or the identifiers can be ordered
which is usually the case. As we know the set of complex numbers are not
ordered (in a total order).

Can search for an item in at most log2 n comparisons. Doing an
asymptotic analysis of the time (and memory) for an algorithm is one of
the main aspects of part of the analysis of an algorithm. Of course,
correctness of the algorithm is paramount.

logb n = x : bx = n. Note that x will not be an integer unless n = 2k for
some k .

To be precise the worst case number of comparions is blog2 nc+ 1 where
the floor function is defined as b xc = the largest integer k ≤ x . You can
verify that for n = 2k − 1, the worst case number of comparison is k .

The differences between log n and n, can be dramatic (say if a search is
within a loop of instructions. Even more dramatic is the difference
between n and 2n. We will be discussing further the importance of
complexity issues.

More difficult to do insertions and deletions even for a fixed size of the
array although updating the content is easy once the item is accessed. .

Can easily identify the i th largest or smallest element.

14 / 23

An ordered list in an array
Note: This is only applicable if the items or the identifiers can be ordered
which is usually the case. As we know the set of complex numbers are not
ordered (in a total order).

Can search for an item in at most log2 n comparisons. Doing an
asymptotic analysis of the time (and memory) for an algorithm is one of
the main aspects of part of the analysis of an algorithm. Of course,
correctness of the algorithm is paramount.

logb n = x : bx = n. Note that x will not be an integer unless n = 2k for
some k .

To be precise the worst case number of comparions is blog2 nc+ 1 where
the floor function is defined as b xc = the largest integer k ≤ x . You can
verify that for n = 2k − 1, the worst case number of comparison is k .

The differences between log n and n, can be dramatic (say if a search is
within a loop of instructions. Even more dramatic is the difference
between n and 2n. We will be discussing further the importance of
complexity issues.

More difficult to do insertions and deletions even for a fixed size of the
array although updating the content is easy once the item is accessed. .

Can easily identify the i th largest or smallest element.

14 / 23

An ordered list in an array
Note: This is only applicable if the items or the identifiers can be ordered
which is usually the case. As we know the set of complex numbers are not
ordered (in a total order).

Can search for an item in at most log2 n comparisons. Doing an
asymptotic analysis of the time (and memory) for an algorithm is one of
the main aspects of part of the analysis of an algorithm. Of course,
correctness of the algorithm is paramount.

logb n = x : bx = n. Note that x will not be an integer unless n = 2k for
some k .

To be precise the worst case number of comparions is blog2 nc+ 1 where
the floor function is defined as b xc = the largest integer k ≤ x . You can
verify that for n = 2k − 1, the worst case number of comparison is k .

The differences between log n and n, can be dramatic (say if a search is
within a loop of instructions. Even more dramatic is the difference
between n and 2n. We will be discussing further the importance of
complexity issues.

More difficult to do insertions and deletions even for a fixed size of the
array although updating the content is easy once the item is accessed. .

Can easily identify the i th largest or smallest element.

14 / 23

An ordered list in an array
Note: This is only applicable if the items or the identifiers can be ordered
which is usually the case. As we know the set of complex numbers are not
ordered (in a total order).

Can search for an item in at most log2 n comparisons. Doing an
asymptotic analysis of the time (and memory) for an algorithm is one of
the main aspects of part of the analysis of an algorithm. Of course,
correctness of the algorithm is paramount.

logb n = x : bx = n. Note that x will not be an integer unless n = 2k for
some k .

To be precise the worst case number of comparions is blog2 nc+ 1 where
the floor function is defined as b xc = the largest integer k ≤ x . You can
verify that for n = 2k − 1, the worst case number of comparison is k .

The differences between log n and n, can be dramatic (say if a search is
within a loop of instructions. Even more dramatic is the difference
between n and 2n. We will be discussing further the importance of
complexity issues.

More difficult to do insertions and deletions even for a fixed size of the
array although updating the content is easy once the item is accessed. .

Can easily identify the i th largest or smallest element.

14 / 23

Tables of some complexity bounding functions

Tables of some complexity bounding functions

5

Let us for a moment contemplate why polynomial algorithms are usually considered as

efficient and exponential algorithms are not. The first, elementary point we want to make by

Table 1 (taken from Papadimitriou, Steiglitz 1982, p. 164), namely that the rate of growth of

polynomial functions is substantially higher than that of exponential ones.

Table 1

The Growth of Polynomial and Exponential Functions

Function Approximate Values

n 10 100 1000

nlogn 33 664 9966

n3 1000 1,000,000 109

106 n8 1014 1022 1030

2n 1024 1.27 xlO30 1.05 x 10301

nlogn 2099 1.93 x 1013 7.89 x 1029

n! 3,628,800 10158 4 x102567

Table 2

Polynomial­Time Algorithms Take Better Advantage of Computation Time

Time n = 10 n = 20 n = 30 n = 40 a II o

n = 60
Complexity

n 0.00001 0.00002 0.00003 0.0000 0.00005 0.00006
second second second second second second

n2 0.0001 0.0004 0.0009 0.0016 0.0025 0.0036
second second second second second second

n3 0.001 0.008 0.027 0.064 0.125 0.216
second second second second second second

n5 0.1 3.2 24.3 1.7 5.2 13.0
second seconds seconds minutes minutes minutes

2n 0.001 1.0 17.9 12.7 35.7 366
second second minutes days years centuries

3n 0.059 58 6.5 3855 2xl08 1.3 x 1013
second minutes years centuries centuries centuries

Figure: Figure taken from Garey and Johnson “Computers and intractability : a
guide to the theory of NP-completeness

15 / 22

Figure: Figure taken from Garey and Johnson “Computers and intractability : a
guide to the theory of NP-completeness. Note that the number of seconds was
based on an estimate of current computers in the late 1970s. What if today
computers are 100 times faster. Does this change the “message” in this figure.

15 / 23

End of Wednesday, September 23 Class

We ended at slide 15 on Wednesday.

My plan is to finish the discussion of the data structures for the dynamic
dictionary data type.

I will say that Friday, September 25 is the end of “week 2”.

Next week we will move on to one or two new topics.

1 A discussion of Alan Turing’s seminal work on computability and his
precise definiton for a model of computation.

2 Search engines: a killer application

16 / 23

Announcements

We now have four guest lectures schedule:

September 30 Henry Yuen quantum computing

October 14 Eyal deLara virtualization

October 28 Roger Grosse ML and deep learning

November 18 Alexandar Nikolov differential privacy

17 / 23

A linked list

18 / 23

A linked list

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

19 / 23

A linked list

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

19 / 23

A linked list

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

19 / 23

A linked list

Introduces the idea of a pointer

I have shown a singly linked list. Can have a doubly linked list.

Easy to add items if the list is unordered. If list is ordered then have to
follow pointers to see where to insert a new item.

May have to traverse the entire list to find an item or determine it is not
there.

19 / 23

A balanced search tree

20 / 23

A balanced binary search tree

A balanced binary tree with n “nodes” will have depth log2 n and hence
can search a balanced binary search tree in at most log2 n “edge”
traversals and comparisons.

I use the terminology of nodes and edges as a tree (in the sense of a search
tree) is a special case of a graph. Graphs are also referred to as networks
in many contexts (i.e. a social network, a transportation network, etc.).

21 / 23

A hash table

We have a hash function h : I → M where I = {ID1, . . . IDN} is the set of
all possible identifiers and M = {A[0], . . . ,A[m − 1]} is a small set of
memory locations That is, we are going to hash each of the N = |I |
possible items to a small set of m = |M| memory locations. Here we can
have N >> n where n is the actual number of items we are storing. What
is a suitable hash function h?

One possiblility is h(ID) = (a · ID + b)(modp)(modm)

22 / 23

A hash table

We have a hash function h : I → M where I = {ID1, . . . IDN} is the set of
all possible identifiers and M = {A[0], . . . ,A[m − 1]} is a small set of
memory locations That is, we are going to hash each of the N = |I |
possible items to a small set of m = |M| memory locations. Here we can
have N >> n where n is the actual number of items we are storing. What
is a suitable hash function h?
One possiblility is h(ID) = (a · ID + b)(modp)(modm)

22 / 23

A hash table
Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

Introduces the use of probability, pseudo random numbers and functions.

The birthday paradox: In probability theory, the birthday problem or
birthday paradox concerns the probability that, in a set of n randomly
chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of
people reaches 367 (since there are only 366 possible birthdays, including
February 29). However, 99.9% probability is reached with just 70 people,
and 50% probability with 23 people. These conclusions are based on the
assumption that each day of the year (excluding February 29) is equally
probable for a birthday.

23 / 23

A hash table
Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

Introduces the use of probability, pseudo random numbers and functions.

The birthday paradox: In probability theory, the birthday problem or
birthday paradox concerns the probability that, in a set of n randomly
chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of
people reaches 367 (since there are only 366 possible birthdays, including
February 29). However, 99.9% probability is reached with just 70 people,
and 50% probability with 23 people. These conclusions are based on the
assumption that each day of the year (excluding February 29) is equally
probable for a birthday.

23 / 23

A hash table
Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

Introduces the use of probability, pseudo random numbers and functions.

The birthday paradox: In probability theory, the birthday problem or
birthday paradox concerns the probability that, in a set of n randomly
chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of
people reaches 367 (since there are only 366 possible birthdays, including
February 29). However, 99.9% probability is reached with just 70 people,
and 50% probability with 23 people. These conclusions are based on the
assumption that each day of the year (excluding February 29) is equally
probable for a birthday.

23 / 23

A hash table
Ignoring conflicts in the hash table, can search in constant time for a
particular item

Need to deal with conflicts; i,.e multiple items hashing to the same place
in the hash table. When there is a conflict, one possibility is to use a
pointer to a linked list containing the IDs that have been matched to the
same place in the hash table.

Introduces the use of probability, pseudo random numbers and functions.

The birthday paradox: In probability theory, the birthday problem or
birthday paradox concerns the probability that, in a set of n randomly
chosen people, some pair of them will have the same birthday. By the
pigeonhole principle, the probability reaches 100% when the number of
people reaches 367 (since there are only 366 possible birthdays, including
February 29). However, 99.9% probability is reached with just 70 people,
and 50% probability with 23 people. These conclusions are based on the
assumption that each day of the year (excluding February 29) is equally
probable for a birthday.

23 / 23

