
Great Ideas in Computing

University of Toronto CSC196
Winter/Spring 2019

Week 11: November 30-December 4 (2020)

1 / 18

Announcements
Today and next week will be our last meetings. There will be a
tutorial on Monday. Good place to ask questions on Assignment 4 as
well as any of the previous assignments or quizzes.

I moved the Assignment due date to Wednesday, December 9 (11
AM). Of course you can submit before the due date. However, we will
only accept late assignments (with 5% penalty per 24 hours) for up to
48 hours. Regrade requestss must be made by Monday, December 14.

We have the opportunity to have an additional class (for “make-up
Monday”) on Thursday, the 10th. I suspect most students are busy
submitting end of term work so we will not take that opportunity.

Marta and I will be busy grading and submitting grades. We will try
to get the grading done as fast as we can. Feel free to email me if
you would like to talk about anything to do with the course or even
about future CS courses.

I hope everyone did well on the quiz. I apologize that a couple of
people had trouble submitting.
Quick poll: Was the test appropriate?

2 / 18

A slight detour

ASIDE: I came across a 2014 Nw York Times artice (and then followed by
a book) “To Siri with Love”. I recommend reading the artcle:
https://www.nytimes.com/2014/10/19/fashion/how-apples-siri-became-
one-autistic-boys-bff.html

This is also related to the movie “Her” .

The article discusses the role of Siri with regard to her then 13 year old
son with autism. One can read this article and ask about the role of such
electronic personal assistants. The article gathered lots of acclaim and also
criticism.
Is Siri a great idea?

3 / 18

Where have we been and where are we going

We ended last Friday, November 27 on slide 23 of the Week 10 slides.
Following our discussion of the P vs NP issue, the P 6= NP conjecture
led us to our current discussion of complexity based cryptography.

Today, we will finish up our discussion of complexity based
cryptography. I think everyone should be aware that complexity based
cryptography is essential for internet commerce.

In our remaining time, I would like to very briefly mention some of the
many other great ideas that have made computing so pervasive. As I
have mentioned, when I previously taught a variant of CSC196, it was
called SCI199 and it was a full year course. So we had much more
time to discuss a variety of ideas.

I will mainly be mentioning “older” great ideas that like so many great
ideas we can’t imagine any other way things could have been done.

4 / 18

Quick review of slides on secure shared secret key
session
In this setting, two people called A and B (sometimes referred to as Alice
and Bob) have been able to share secret key (e.g., a secret string of bits)
and will use that secret key to communicate over an insecure channel.
This insecure channel can be observed or perhaps even modified by an
adversary.

Computer Science 2426F Fall, 2020
St. George Campus University of Toronto

Notes #0

Introduction

We begin by describing – very informally – what the typical “man in the street” thinks of as the
quintessential application of cryptography: secure sessions (using a shared secret key). Two people
A and B have gotten together and chosen a random n bit key K. They then separate, and can only
communicate over a very insecure internet. We have the following picture:

A now, from time to time, wishes to send stu↵ – we call it “plain text” – to B. We refer to
the entirety of what A will ever want to send to B as the “message”, although A will only be
sending the message a “piece” at a time. For now, we can think of each piece as being a single bit.
Unfortunately, there is an adversary ADV who has complete control of the internet. ADV not only
listens to everything that A says, but also completely controls what is sent to B. To defend against
ADV , A will be in some sense “encrypting” each piece using the shared key K.

We will always assume that the adversary knows the algorithms that the good guys (A and B
in this case) are using; the only thing the adversary doesn’t know are the randomly chosen keys.
In this case we hope that ADV will not be able to learn anything “significant” about the message
– we will call this privacy – and that ADV will not have a significant chance of making B output
something wrong – we will call this integrity. We will define this all very carefully later in the
course. For now, to be a bit less vague, the first condition roughly means that even if ADV is able
to choose part of the message himself, he should be no good at figuring out any other part of it;
the second condition roughly means that even if ADV is able to choose the whole message himself,
he shouldn’t be able to cause B to output an incorrect piece. Of course, ADV can choose to stop
sending stu↵ to B causing B to output nothing, and A can send garbage to B causing B to “fail”.

Note that this session may go on for many years, and that our security conditions are with
respect to the entire message, not the individual pieces. It is not su�cient that each piece be
somehow sent securely. We will see later that it easy to come up with a system where each piece is
sent securely but the message (that is, all the pieces) is completely insecure.

1

Figure: One-way communication. Figure taken from Rackoff notes
5 / 18

Shared-secret key session continued
An important consideration is how powerful is the adversary.
To do things reasonably carefully, we would probably need a full graduate
course on cryptography. It is difficult enough to develop the main ideas
even assuming that the adversary can only eavesdrop so lets make that
assumption.

In a one-way session, A has an m bit message
M = M1M2 . . .Mm ∈ {0, 1}m. (For simplicity, we are assuming that the
message and the secret key have been reresented as a binary strings but
this is not essential.) The message is called the plain text.

In the shared secret key setting we are assuming the A and B have agreed
upon a secret key n bit key K = K1K2 . . .Kn ∈ {0, 1}n.

A will encode his message by a function
ENC : {0, 1}m × {0, 1}n → {0, 1}∗. Here we are using the ∗ to suggest
that the encoded message length can depend on the plain text message.
Why not a fixed length independent of the message?

The encoded
message is called the cypher text.

6 / 18

Shared-secret key session continued
An important consideration is how powerful is the adversary.
To do things reasonably carefully, we would probably need a full graduate
course on cryptography. It is difficult enough to develop the main ideas
even assuming that the adversary can only eavesdrop so lets make that
assumption.

In a one-way session, A has an m bit message
M = M1M2 . . .Mm ∈ {0, 1}m. (For simplicity, we are assuming that the
message and the secret key have been reresented as a binary strings but
this is not essential.) The message is called the plain text.

In the shared secret key setting we are assuming the A and B have agreed
upon a secret key n bit key K = K1K2 . . .Kn ∈ {0, 1}n.

A will encode his message by a function
ENC : {0, 1}m × {0, 1}n → {0, 1}∗. Here we are using the ∗ to suggest
that the encoded message length can depend on the plain text message.
Why not a fixed length independent of the message? The encoded
message is called the cypher text.

6 / 18

Shared-secret key session continued

B will decode the cypher text by a function
DEC : {0, 1}∗ × {0, 1}n → {0, 1}m.

What properties do we want from the exchange?

Privacy: The adversary should not learn anyything “signifiicant”
about the plain text. What does the adversary know in advance about
the plain text?

Correctness: B should be able to correctly decode the message.
That is DEC (ENC (M,K),K) = M for all M and K .

We might ask what is perfectly secure session? In the Rackoff notes #0,
there are three equivalent definitions. Let’s just use the first one. For a
given plain text message M, a uniformly random key K induces a
distribution DM on the cypher texts. The session is perfectly private if the
distribution DM does not depend on M.

Is a perfectly secure session attainable?

7 / 18

Shared-secret key session continued

B will decode the cypher text by a function
DEC : {0, 1}∗ × {0, 1}n → {0, 1}m.

What properties do we want from the exchange?

Privacy: The adversary should not learn anyything “signifiicant”
about the plain text. What does the adversary know in advance about
the plain text?

Correctness: B should be able to correctly decode the message.
That is DEC (ENC (M,K),K) = M for all M and K .

We might ask what is perfectly secure session? In the Rackoff notes #0,
there are three equivalent definitions. Let’s just use the first one. For a
given plain text message M, a uniformly random key K induces a
distribution DM on the cypher texts. The session is perfectly private if the
distribution DM does not depend on M.

Is a perfectly secure session attainable?

7 / 18

When is a perfectly secure session attainable?

Fact: A Perfectly secure session is attainable if and only if |M| ≤ |K |.

When |M| ≤ |K |, a one-time pad provides a single perfect secure session.
A one-time pad is defined as follows:

ENC (M,K) = E1E2 . . .Em where Ei = Mi ⊕ Ki for 1 ≤ i ≤ m and
DEC (E ,K) = E1 ⊕ K1, . . . ,Em ⊕ Km.

Note that ⊕, the exclusive OR, flips a bit.

Warning: Never use an old key for a new purpose. For example, we
cannot securely send two m bit messsages with the same m bit key.

So how are we going to continually generate random private keys (or long
keys that can be partitioned into session keys) for different people to
communicate? We cannot assume people can get together physically and
even so how can they generate truly random strings of bits?

8 / 18

Complexity based assumptions; public key
cryptography

The one-time pad does not need any assumptions and an adversary can
have unlimited computational power and still cannot gain any information
from a one-time pad. But as we noted, a one-time pad is not a very
practical solution especially for frequent transactions in e-commerce.

The major application of public key cryptography is to enable key
exchange. For public key cryptography (and almost all cryprographic
applications) we will need complexity assumptions stronger than (but still
widely accepted) P 6= NP. To make public key systems practical we will
also need some sort of trusted public key infrastructre.

We will just discuss one well known public key system, RSA, which is
based on the assumption that factoring large integers is hard even in some
average sense (rather than worse case sense). This is a much stronger
assumption than P = NP since P = NP would allow us to factor integers
in polynomial time.

9 / 18

The basic idea of public key encryption
Public key encryption was introduced by Diffie and Hellman, and a
particular method (RSA) was created by Rivest, Shamir and Adelman.

The basic idea is that in order for Alice (or anyone) to send Bob a
message, Bob is going to create two related keys, a public key allowing
Alice to send an encrypted mesasage to Bob, and a private key that allows
Bob to decrypt Alice’s message.

Public key encryption is different, because it splits the key up into a public key for encryption and a secret key for
decryption. It's not possible to determine the secret key from the public key. In the diagram, Bob generates a pair of
keys and tells everybody (including Eve) his public key, while only he knows his secret key. Anyone can use Bob's
public key to send him an encrypted message, but only Bob knows the secret key to decrypt it. This scheme allows
Alice and Bob to communicate in secret without having to meet.

However, if Eve can tamper with Alice and Bob's communication as well as passively listening, she could
substitute her public key for Bob's, and then decrypt Alice's messages using her own private key. The practicalities
section explains how problems like this are avoided.

© 1998 - 2012 Paul Johnston, distributed under the BSD License Updated:13 Jul 2009

Paj's Home: Cryptography: RSA: Introduction http://pajhome.org.uk/crypt/rsa/intro.html

2 of 2 2020-11-16, 10:15 a.m.

Figure: Diagram of public key encryption. Figure taken from Paul Johnston notes

10 / 18

The RSA method
Bob wants to generate two keys, a public key e,N and a private key d .
The claim is that it is hard on average to find d given e and N. Bob
chooses N = p · q for two large primes p, q (which for defining “on
average” may satisfy some constraint).

Bob will choose the public e such that gcd(e, φ(N)) = 1 where
φ(N) = φ(pq) = (p − 1)(q − 1). φ(N) is called the Euler totient function
which is equal to the number integers less than N that are relatively prime
to N. gcd(a, b) = 1 means that a and b are relatively prime (i.e. have no
common proper factors).

Alice encodes a message M by computing Me mod N.

Hiding some mathematics, BOB can compute a d such that de = 1 mod
(p − 1)(q − 1) since Bob knows p and q. But without knowing p, q,
finding d becomes computationally difficult.

Hiding some more mathematics, it will follow that Mde = M (mod N) for
any message M. That is, Bob decrypts a cypher text C by the function
Cd mod N. 11 / 18

What mathematical facts do we need to know.

The main mathematical facts are :

1 There are sufficiently many prime numbers in any range so one can
just randomly try to diffent numbers and test if they are prime.

2 aφ(N) = 1 mod N for any a such that gcd(a,N) = 1 As a special
case, ap−1 = 1 mod p for any prime p and a not a multiple of p. So
we have M(p−1)(q−1) = 1 mod N.

3 If gcd(a, b) = 1 then there exists s and t such that sa + tb = 1. In
the RSA algorithm, we can let a = e and b = (p − 1)(q − 1). Then s
will become the d we need for decryption. That is
de + t(p − 1)(q − 1) = 1.

4 It follows then that
Mde = M1−t(p−1)(q−1) = M ·M−t(p−1)(q=1) = M mod (p− 1)(q− 1).

12 / 18

What computational facts do we need to know?
1 The extended Euclidean algorithm can efficiently compute an s and t

such that sa + tb = gcd(a, b)
2 ak mod N can be computed efficiently for any a, k,N.
3 We can efficiently determine if a number p is prime.

In practice, public keys e are chosen to be reasonably small so that
encryption can be made more efficient.

Note that we have been assuming that an adversary EVE (i.e., is just
eavesdropping) and not changing messages. That is, EVE just wants to
learn the message or something about the message. If EVE could change
messages then EVE could pretend to be BOB. So one needs some sort of a
public key infrastructure.

Note that if EVE knows that the message M was one a few possibilities,
then EVE can try each of the possibilities; that is compute MemodN for
each possible M to see what message was being sent. So here is where
randomness can be used. We can pad or interspers random bits in the
plain text M so that the message being sent becomes some one of many
random messages M ′. 13 / 18

WARNING: Real world cryptography is sophisticated
Complexity based cryptography requires careful consideration of the
definitions and what precise assumptions are being made.

Complexity based cryptography has led to many important practical
protocols and there are a number of theorems. Fortunatley, many
complexity assumptions turn out to be equivalent.
In the Rackoff notes, the following theorem is stated as the fundamental
theorem of cryptography. (To make this result precise, one needs precise
definitions which we are omitting.)
Theorem: The following are equivalent:

It is possible to do “computationally secure sdssions”

There exists pseudo-random generators; that is, create strings that
computationally look random)

There exist one way functions f ; that is functions such that f (x) is
easy to compute but given f (x) it is hard to find a z such that
f (z) = f (x)

There exist computationally secure digital signature schemes.
14 / 18

The discrete log function

RSA is based on the assume difficulty of factoring. Another assump;tion
that is widely used in cryptography is the discrete log function. Again, we
need some facts from number theory.

Let p be a large prime.

Z∗p denotes the set of integers {1, 2, . . . , p − 1} under the operations
of +,−, · mod p is a field. In particular, for every a ∈ Z∗p, there
exists a b ∈ Z∗p such that a · b = 1; i.e., b = a−1 mod p.

Moroever, Z∗p is cyclic. That is, there exists a g ∈ Z∗p such that
{1, g , g2, g3, . . . gp−2} mod p = Z∗p . Recall, as a special case of the
Euler totient function, ap−1 = 1 mod p.

The assumption is that given (g , p, g x mod p), it is computationally
difficult to find x . This is another example (factoring can also be an
example) of a one-way function.

15 / 18

A pseudo random generator

We started off our discussion of complexity based cryptpgraphy by noting
that randomness is essential. We have also noted that it is not clear (or at
what cost) one can obtain strings that “look like” truly random strings.

A pseudo random generator G is a deterministic function
G : {0, 1}k → {0, 1}` for ` > k . When ` is exponential in k, G is called a
pseudo random function generator. For now, lets even see how to be able
to have ` = k + 1.

The random input string s ∈ {0, 1}k is called the seed and the goal is that
r = G (s) should be “computationally indistinguishable” from a truly
random string in t = {0, 1}`. This means that no polynomial time
algorithm can distinguish between r and t with probability better than
1
2 + ε for any ε > 0. (Here I am being sloppy about the quantification but
hopefully the idea is clear.)

16 / 18

A pseudo random generator continued

On the previous slide there was a claim that having a pseudo random
generator is equivalent to having a one-way function.

How can we use (for example, the assumption that the discrete log
function is a one-way function) to construct a pseudo random generator
with ` = k + 1.

The Blum-Micali generator. Assumming the discrete log function is a
one-way function then the following is a pseudo random generator:

Let x0 be a random seed in Z∗p by interpeting (s1, . . . , sk)2 as a binary

number mod p. Let xk+1 = g xk mod p. Define sk+1 = 1 if xk ≤ p−1
2 .

Manual Blum won the Turing award for his contributions to cryptography
and Silvio Micali (along with Shafira Goldwasser) won the Turing award
for interactive zero knowledge proofs.

17 / 18

Next week: Some great ideas we did not discuss

There are many great ideas that we have not had time to discuss. In our
remaining time, I want to at least mention some great ideas. Namely, I
want to briefly mention the following great ideas.

Programming languages in contrast to machine code and assembly
languages.

Operating systems in contrast to submitting jobs individually

Graphical user interfaces (GUIs) (and the mouse) in contrast to a
command line interface

Packet routing in contrast to virtual circuit routing and the internet

Personal computers in contrast to main frames

If all of these seem like “duh, what else would you do”, that is perhaps the
best evidence of a great idea; that is when it becomes so common place,
that it is hard to imagine anything else. But these great ideas often came
with resistance.

18 / 18

	Week 11

