## Due: Monday, December 7, 11AM

This assignment is worth $15 \%$ of your final grade

1. The following is a "thought question" and like our previous thought questions there is not a desired unique answer. The question will be graded on your explanations.

In Professor Nikolov's discussion of differential privacy he mention the claim that $70 \%$ of people in the US can be uniquely identfied by the following information: zip code, gender, age.

- Do you think that a similar \% of Canadians can be uniquely identified by postal code, gender, age? If not, would the \% be higher or lower. In any case, provide a brief explanation for your answer.
- Suppose you want to increase the $\%$ in the US, say to $80 \%$ or more. What one additional piece of information would you add. Explain your answer. (You cannot just say, add the person's name, which would come close to achieving 100\%.). Again, give a brief explanation for your answer.

2. In class we showed how to "efficently" find a certificate for a satisfiable formula if we can "efficiently" decide $S A T$. (Recall, we are equating "efficient" with polynomial time.)
Show how to efficiently find a certificate for each of the following problems assuming that the decision problem is efficiently solvable.

- SUBSET-SUM $=\left\{\left(a_{1}, \ldots, a_{n}, t \mid \exists S: \sum_{a_{i} \in S} a_{i}=t\right\}\right.$
- VERTEX-COLOU $R$ as defined in the slides for Week 9.

Hint: If there is a $k$ colouring of a graph $G$ then any permutation of the colours is still a valid colouring. Now the goal is to colour verttices one by one. In order to have the effect of fixing a colour for a vertex we will need to add additional vertices and edges to the input graph so that these additional vertices require $k$ colours.

- $F A C T O R$ as defined in the slides for week 9 .

3. Assume the decision problem $F A C T O R$ can be solved in time $O\left(n^{2}\right)$ (by some algorithm in some von Neumann style computer). Estimate a time bound for finding a certificate as in the previous question.
4. Informally argue why $P=N P$ implies one-way functions cannot exist. We will assume that if $f(x)$ is a one-way function, then $|f(x)|=\ell(|x|) \geq|x|$ for some function $\ell$.
5. Perhaps one more question to follow
