Due: Wednesday, November 18, 11AM

This assignment is worth 15% of your final grade

1. Let $A(G)$ be the adjacency matrix of a simple (i.e,, no self loops and no parallel edges) directed graph $G=(V, E)$ and let $B(G)=A(G)+I$ where I is the identity matrix. That is, $B(G)$ represent the graph G with the addition of a self loop for each node. Consider the matrices A^{k} and B^{k} where $A^{1}=A, B^{1}=B, A^{k}=A * A^{k-1}$, and $B^{k}=B * B^{k-1}$ where $*$ denotes matrix multiplication. Let $A^{k}[i, j]$ and $B^{k}[i, j]$ (respectively) denote the i, j entry in the matrices A^{k} and B^{k}. For each of the questions below, try to use graph theory terminology.

- In words, what is the meaning of each of the following:

1) $\left.\left.A^{k}[i, j]=0,2\right) A^{k}[i, j]>0,3\right) B^{k}[i, j]=0$ and 4) $B^{k}[i, j]>0$?

Hint: There is a path from node i to node j of length exactly (respectively, at most) k if and only if there some node node ℓ such that there is an edge (ℓ, j) and there is a path of length exactly (respectively, at most) length $k-1$.

- Let $|V|=n$; that is, $G=(V, E)$ has n vertices. Looking at all the entries $B^{n-1}[i . j]$ what can you say about G if $B^{[i, j]}>0$ for all i, j ?

2. Consider a large social network of friends. That is, we have an undirected network $G=$ (V, E) where the nodes in V are people and an edge (u, v) means that u and v are friends. The nodes $v \in V$ have weights w_{v} reflecting the importance of node v and the edges (u, v) have weights $\eta_{(u, v)}$ reflecting the strength of that friendship.

The following are thought questions.

- Using terminology from graph theory, how would you define a "community" of friends?
- If you had a small amount of money (or other incentives) to influence a small number of people in the network (and hope that those people would in turn influecne a targetted community), how would you decide on which people to initially influence?

3. In this question, you need to find a set of weights and biases for a neural net (with one hidden layer as below) for computing the following function f : $y=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is

$$
\left.f x_{1}, x_{2}, x_{3}, x_{4}\right)= \begin{cases}1 & \text { if } x_{1}<x_{2}<x_{3}<x_{4} \\ 0 & \text { otherwise }\end{cases}
$$

You may assume that the x_{i} are distinct rational numbers; i.e., $x_{i} \neq x_{j}$ for $i \neq j$. You will use the following architecture.

All of the hidden units and the output unit use a hard threshold activation function:

$$
\phi(z)= \begin{cases}1 & \text { if } z \geq 0 \\ 0 & \text { if } z<0\end{cases}
$$

Provide a set of weights and biases for h_{1}, h_{2}, h_{3} and y so that the network implements the function f.

