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Abstract

Random-walk based algorithms are good choices for solving

many classification problems with limited labeled data and

a large amount of unlabeled data. However, it is difficult

to choose the optimal number of random steps, and the

results are very sensitive to the parameter chosen. In

this paper, we will discuss how to better identify protein

remote homology than any other algorithm using a learned

random-walk kernel based on a positive linear combination

of random-walk kernels with different random steps, which

leads to a convex combination of kernels. The resulting

kernel has much better prediction performance than the

state-of-the-art profile kernel for protein remote homology

identification. On the SCOP benchmark dataset, the overall

mean ROC50 score on 54 protein families we obtained

using the new kernel is above 0.90, which has almost

perfect prediction performance on most of the 54 families

and has significant improvement over the best published

result; moreover, our approach based on learned random-

walk kernels can effectively identify meaningful protein

sequence motifs that are responsible for discriminating the

memberships of protein sequences’ remote homology in

SCOP.

1 Introduction

Machine learning researchers are often faced with classi-
fication problems with limited labeled data and a large
amount of unlabeled data. In biological problems, this
is almost always the case. It takes long-time tedious
human work or expensive biological experiments to la-
bel data. Like the protein remote homology problem we
will describe here, we often have several positive train-
ing cases, many negative training cases, and a lot of
unlabeled data for many protein families. Therefore,
we need good algorithms that can best take advantage
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of the unlabeled data. Moreover, classifying biologi-
cal sequences is an important and challenging problem
both in computational biology and machine learning.
On the biological side, it helps to identify interesting
sequence regions and protein domains that are related
to a particular biological function; on the computational
side, it motivates many novel and effective new classifi-
cation approaches specifically for sequence data. Gen-
erative models (e.g., profile HMMs [11], [3]), discrim-
inative models (e.g., kernel SVMs [9], [14], [15]), and
graph-based approach [22] have been applied to solve
this problem.

In [9], [14], [23], [15] and [12], it has been shown
that kernel SVMs have better prediction performance on
biological sequence data than other methods. Moreover,
it was shown in [23] that random-walk kernels ([19]
and [6]) produced promising results on protein remote
homology detection. However, the process of deciding
the optimal number of random steps in a random-walk
kernel remains as a challenging problem [23]. In this
paper, we propose using label information of training
data and a positive linear combination of random-
walk kernels to approximate the random-walk kernel
with the optimum steps of a random walk, thereby
obtaining a convex combination of random-walk kernels
with different random-walk steps which achieves the
best classification confidence on the labeled training set.

As is described in [12], kernel SVMs can not only
be applied to classify biological sequences, but also they
can be used to extract discriminative sequence motifs
that explain the classification results. In this paper, we
will use SVMs based on learned random-walk kernels to
extract protein sequence motifs contributing to discrim-
inating protein sequences’ remote homology. Experi-
mental results on the SCOP benchmark dataset show
that learned random-walk kernel achieves significant im-
provement over the best published result and the result
given by the random-walk kernel with a fixed number
of random steps, and it effectively extracts meaningful
protein sequence motifs.

This paper is organized as follows: section 2
gives a brief introduction to SVM classification based
on mismatch-string kernels. Section 3 describes our



method of learning random-walk kernels, a positive lin-
ear combination of random-walk kernels. Section 4 de-
scribes protein sequence motif discovery using SVMs
based on learned random-walk kernels. Section 5
present experimental results of protein homology detec-
tion and motif discovery on the SCOP dataset. Section
6 concludes the paper with a discussion on our proposed
method and provides some ideas for future research.

2 SVM for biological sequence classification
using mismatch string kernels

A SVM ([21] and [24]) is a discriminative model pro-
posed especially for classification. Consider a two-class
training set, {X, y} and a test set U , where X is a ma-
trix whose i-th column, Xi, is the feature vector of data
point i in the training set, U is a matrix whose j-th col-
umn, Uj , is the feature vector of data point j in the test
set, and y, a column vector whose i-th component yi is
the label of data point i in the labeled set, yi ∈ {−1, 1},
Xi, Uj ∈ Rd, i = 1, · · · , N, j = 1, · · · ,M . A linear SVM
gives a separating hyper-plane that maximizes the mar-
gin between the sample data points of the two classes.
The dual problem of a soft-margin SVM can be formu-
lated as follows:

maxα 2αT 1−αT (Ktr⊗yyT )α, s.t.αT y = 0,0 ≤ α ≤ C1,

(2.1)
where 1 and 0 are column vectors containing all ones
and zeros respectively, ⊗ is the component-wise matrix
multiplication operator, K = [X|U ]T [X|U ], is the dot
product between feature vectors of pairwise data points,
Ktr is the training part of K where Ktr = XT X, and, C

is the penalty coefficient penalizing margin violations.
As the above dual problem is only dependent on dot-
products between feature vectors, we can discard the
original feature vectors of data points and calculate a
kernel matrix K directly to represent the relationship
between the original data points. As is discussed in [21],
any symmetric positive semi-definite matrix can be used
as a valid kernel matrix K. Therefore by constructing a
kernel, K, we can map every data point, Xi, to a high-
dimensional feature space, in which a SVM can be used
to generate a separating hyper-plane.

For biological sequences, a kernel function can be
used to map these sequences consisting of characters
representing amino acids to a higher dimensional feature
space on which a max-margin classifier is trained. All
the computations of a SVM are performed on the dot
products of the pairwise feature vectors stored in the
kernel matrix. For example, suppose A is an alphabet
of ℓ symbols (ℓ = 20 for protein sequences), then
k-mer string kernel maps every sequence in A to a
ℓk-dimensional feature space in which coordinates are

indexed by all possible sub-sequences of length k (k-
mers). Specifically, the feature map of a k-mer string
kernel is given by

Φk (x) =
(

Φα1
(x) ,Φα2

(x) , · · · ,Φα
lk

(x)
)T

,(2.2)

where α1, α2, . . . , αℓk is an ordering of all the ℓk possible
k-mers, and Φα (x) is the number of occurrences of k-
mer α in sequence x. The corresponding kernel matrix
is

Kk (x, y) = Φk (x)
T

Φk (y) .(2.3)

The mismatch string kernel extends this idea by accom-
modating mismatches when counting the number of oc-
currences of a k-mer in an input sequence. In particu-
lar, for any k-mer, α, let N(α,m) be the set of all k-mers
that differ from α by at most m mismatches. The kernel
mapping and kernel matrix are then defined as follows:

Φ(k,m) (x) = (Φ(k,m),α1
(x) ,(2.4)

· · · ,Φ(k,m),α
ℓk

(x))T ,

Φ(k,m),α (x) =
∑

β∈N(α,m)(x)

Φβ (x) ,(2.5)

K(k,m) (x, y) = Φ(k,m) (x)
T

Φ(k,m) (y) .(2.6)

A profile of a protein sequence is a sequence of
multinomial distributions. Each position of a protein
sequence’s profile is a multinomial distribution on 20
amino acids, representing the emission probabilities of
the 20 amino acids at each position in that sequence.
A Profile Kernel [12] extends the mismatch-string ker-
nel by using additional profile information of each se-
quence. Instead of treating all k-mers with less than m

mismatches similarly as the mismatch-string kernel de-
scribed above, the profile-kernel examines these k-mers
further by looking at the emission probabilities (profiles)
at the mismatched positions and only accepts those mis-
matches that pass a certain threshold. The work-flow
for constructing a profile kernel as described in [12] is
shown in Fig. 1. Each sequence has a profile, which is
obtained by iteratively aligning each sequence to the se-
quences in an unlabeled set using PSI-BLAST [1]. Sup-
pose we have a sequence x = x1x2...xN of amino acids of
length N , then P (x) = {px

i (a), a ∈ Σ}N
i=1 is the profile

of sequence x, where Σ is the set of 20 amino acids and
px

i (·) is the multinomial distribution on the 20 amino
acids at the i-th position of the profile of sequence x.
For e.g., px

i (a), is the emission probability of amino acid
a at position i, such that

∑

a∈Σ pi(a) = 1 at each po-
sition i. In the Profile Kernel, the neighborhood of a
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Figure 1: The work-flow of constructing a profile kernel
in [12].

k-mer x[j + 1 : j + k]=xj+1xj+2...xj+k in sequence x is
defined as:

M(k,σ)(P (x[j + 1 : j + k])) =(2.7)

{β = b1...bk : −
k

∑

i=1

logpx
j+i(bi) < σ},

where the free parameter σ controls the size of the
neighborhood, and px

j+i(b) for i = 1, ..., k is obtained
from the profile of sequence x, 0 ≤ j ≤ |x| − k.
Further, px

j+i(b) can be smoothed using the background
frequency of amino acid b. The feature vector of
sequence x in the Profile Kernel is defined as the
following:

Φ(k,σ)(x) =

|x|−k
∑

j=0

(φβ1
(P (x[j + 1 : j + k])),(2.8)

. . . , φβ
ℓk

(P (x[j + 1 : j + k])))T ,

where β1, . . . , βℓk is an ordering of all possible k-mers,
and, the coordinate φβ(P (x[j + 1 : j + k])) is 1 if
β ∈ M(k,σ)(P (x[j + 1 : j + k])), and 0 otherwise. The
profile kernel uses the profile to measure the mismatch
information between different letters at each position of
each sequence. Therefore, it’s more accurate than the

mismatch string kernel. In this paper, we will use the
profile kernel discussed above as the base kernel in the
derivation of the random-walk kernel.

3 Random-walk kernel for biological sequence
classification

In this section, we will describe learned random-walk
kernels. As is discussed in section 1, we are often
faced with classification problems with limited labeled
data and a large amount of unlabeled data. These
problems are often solved using similarity-propagation-
based methods such as the method discussed in [25].
Random-walk based approaches are also examples of
similarity-propagation based methods. Our motivation
for using a random-walk kernel is its ability to coerce
data points in the same cluster to stay closer while
making data points in different clusters to stay farther
apart by propagating similarity on both labeled data
and unlabeled data (see [19] and [23]). If we view a set
of data points as a complete (or sparse) graph, in which
the weights between data points are viewed as similarity
scores, then we can make use of unlabeled data to
help propagate similarity information through the whole
graph. For e.g., we have a graph containing two labeled
data points, i and j, and two unlabeled data points, s

and t, i is highly similar to s, s is highly similar to t, and
t is highly similar to j, but i and j are not very similar
to each other in the given graph. After two steps of
similarity propagation, i and j will become similar in a
new similarity graph. When the similarity-propagation
process is over, we hope that data points in the same
class (having the same label) will stay relatively closer
while data points in different classes (having different
labels) will stay relatively farther apart (see [19], [6]
and [23]). However, when the weight matrix connecting
data points is not completely consistent with the labels
of data points, excessive similarity propagation through
the graph will harm the classification, therefore, we use
label information to guide the similarity-propagation
process on the graph. This motivated us to use the label
information of training data to optimize the parameter
in a random-walk kernel.

A t-step random-walk kernel is generally derived
from a transition matrix with a t-step random walk
by normalization and symmetrization. Given a base
kernel K with positive entries (in this paper, we use
profile kernels), the transition matrix P of a one-step
random walk is defined as follows: let Pij be the
probability P (xi → xj), then after t steps of a random
walk, the transition probability can be calculated as
P t = (D−1K)t, where D is a diagonal matrix with
Dii =

∑

k Kik. Ideally, we want to use P t as the kernel
matrix for SVM classification. However, a kernel matrix



must be a symmetric positive semi-definite matrix,
therefore, we do the following manipulations to derive
a kernel matrix from P t. As is described in [23], let

L = D− 1
2 KD− 1

2 , with its eigen-decomposition, L =
UΛUT , and L̃ = UΛtUT , where, t denotes the exponent,
and, T , denotes the transpose. Then, the new kernel
corresponding to a t-step random walk is calculated as
K̃ = D̃− 1

2 L̃D̃− 1
2 , where D̃ is a diagonal matrix with

D̃ii = L̃ii. We can see that the derived kernel K̃ relates
to the transition matrix after t-steps of a random walk
P t as follows: K̃ = D̃− 1

2 D
1
2 P tD− 1

2 D̃− 1
2 .

A random-walk kernel based on PSI-BLAST E-
values has been tried in [23] for protein remote homology
detection. The challenge in random-walk kernels is
how to decide the optimal number of random steps.
Since random walks exploit both labeled data and
unlabeled data to estimate the manifold structure of
data, performing too many steps of a random walk
can lead to the possibility of nearby clusters joining
together, resulting in data points in different classes
come closer. On the other hand, if the number of steps
is too small, it can lead to a separation of data points
in the same class. Our goal is to find the optimum
number of steps that is most consistent with the class
memberships of the data points. Using the label
information of training data to learn the parameters
of kernel functions has been successfully adopted by
researchers. Related research can be found in [25],
[13] and [16]. Here, we need to learn the parameters
of the random-walk kernel that achieves the goal of
max-margin classification using the label information
of training data. A brute-force solution to this problem
results in a non-convex optimization problem, therefore,
we propose using a positive linear combination of the
base kernel and random-walk kernels from one step to
m steps to calculate a new kernel to approximate the
kernel with the optimum number of random steps by
optimizing the dual objective function of the resulting
SVM. We call the resulting kernel “learned random-walk
kernel”. Since every t-step random-walk kernel has trace
n, if the base kernel also has trace n, by restricting
the learned kernel to have trace n too, a positive linear
combination of the base kernel and the random-walk
kernels leads to a convex combination of these kernels,
where n is the total number of training data and test
data points. The result is the following optimization
problem:

minµmaxα 2αT 1 − αT (Ktr ⊗ yyT )α,

s.t. αT y = 0

0 ≤ α ≤ C1,

K = µ0K̃
0 +

∑m
k=1 µkK̃k,

∑m
k=0 µk = 1,

µk ≥ 0, k = 0, . . . ,m,(3.9)

where K̃0 is the base kernel for deriving the learned
random-walk kernel, K̃k is the random-walk kernel with
a k-step random walk, and, m, is the maximal number
of random steps performed. The above optimization
problem is a special case of the optimization problem
discussed in [13]. We follow the framework as is
shown in [13], and show that the above problem is
equivalent to the following quadratically constrained
convex optimization problem:

minα,t t,

s.t. t ≥ αT (K̃k
tr ⊗ yyT )α − 2αT 1, k = 0, . . . ,m,

αT y = 0

0 ≤ α ≤ C1,(3.10)

where tr denotes the training part of the correspond-
ing kernel. The optimal values of parameters µk, k =
0, . . . ,m are exactly the dual solution to the above
quadratic constrained convex optimization problem.
They can be found using the standard optimization
software SeDuMi [18] or MOSEK [2] which solve the
primal and dual of an optimization problem simultane-
ously. For huge datasets, we can use SMO-like gradient-
based algorithms [20] to solve the above problem. In this
work, all the optimization problems were solved using
MOSEK.

Theorem 3.1. The optimization problem in equation

3.9 is equivalent to the optimization problem in equation

3.10.

Proof. It’s easy to see that all the constraints in equa-
tion 3.9 are linear thus convex with respect to α and
µ. Let ℓ = 2αT 1− αT (Ktr ⊗ yyT )α, since only Ktr ap-
pears in ℓ in equation 3.9, Ktr is the only part we need
from K to solve equation 3.9. ℓ is linear thus convex
with respect to µ. The Hessian of ℓ with respect to α is
−(Ktr ⊗ yyT ), which is negative semi-definite, hence, ℓ

is concave with respect to α. And ℓ is continuous with
respect to α and µ. Therefore, we have the following
equations:

min
µ: µ≥0,

∑

m

k=0
µk=1 maxα: αT y=0, 0≤α≤C1

2αT 1 − αT [(
m

∑

k=0

µkK̃k
tr) ⊗ yyT ]α

= maxα: αT y=0, 0≤α≤C1 min
µ: µ≥0,

∑

m

k=0
µk=1

2αT 1 − αT [(
m

∑

k=0

µkK̃k
tr) ⊗ yyT ]α



= maxα: αT y=0, 0≤α≤C1 min
µ: µ≥0,

∑

m

k=0
µk=1

m
∑

k=0

µk[2αT 1 − αT (K̃k
tr ⊗ yyT )α]

= maxα:αT y=0,0≤α≤C1mink[2αT 1 − αT (K̃k
tr ⊗ yyT )α]

= maxα,t: αT y=0, 0≤α≤C1,t≤2αT 1−αT (K̃k
tr⊗yyT )α t

= minα,t:αT y=0,0≤α≤C1, t≥αT (K̃k
tr⊗yyT )α−2αT 1

t

(3.11)

The first equality holds due to the special property
of ℓ described above according to [5]. The second and
third equalities hold due to the properties of the simplex
defined by µ. The last two equalities hold due to
the rewriting of the optimization problems in different
formats. The last equality shows that the optimization
problem in equation 3.9 is equivalent to the optimization
problem in equation 3.10.

As is described in [10], the ideas of random walks
and diffusion are closely related. Given a kernel matrix
K, we can view it as a similarity matrix and compute
the graph laplacian as Q = D−K, where D is a diagonal
matrix described in this section. Instead of taking the
form of the t-th power of the transition matrix P as in
random-walk kernels, a diffusion kernel Kdiffuse takes
a form of the matrix exponential of Q:

Kdiffuse = eβQ = limn−>∞;n∈N (I +
βQ

n
)n

= I + βQ +
β2

2
Q2 + . . . +

βt

t!
Qt + . . .

=
∑

i

vie
βλivT

i ,(3.12)

where β is a real parameter to control the diffusion,
which is analogous to the minus inverse squared variance
parameter in Gaussian kernels, I is an identity matrix,
N is the integer set, and, vi and λi are the i-th
eigenvalue and eigenvector of K respectively. The first
line in the above equation can be interpreted as a
random walk with an infinite number of infinitesimally
small steps. In this paper, we compute diffusion kernels
based on profile kernels, and compare their performance
to that of learned random-walk kernels shown in the
experimental results section.

The computation of both a random-walk kernel and
a diffusion kernel requires the eigen-decomposition of
a base kernel, which has a worst-case time complex-
ity O(n3). Computing the learned random-walk ker-
nel described above requires solving in addition, the
quadratically constrained convex optimization problem
in equation 3.10, which has a worst-case time complex-
ity O(mn3

tr) using an interior-point method, where ntr

is the number of training data points.

4 Protein sequence motif discovery using
learned random-walk kernels

To identify sequence motifs making important contri-
butions to discriminating the remote homology mem-
bership of a protein sequence x, we calculate the j-th
positional contribution to the positive classification of
sequence x using the following equation:

σ(x[j]) = max(

ntr
∑

i=1

αiK(i, x[j − k + 1 : j + k − 1]), 0),

(4.13)

where i indexes training sequences, x[j−r+1 : j+r−1])
represents a subsequence window with radius r centered
at position j, K(i, x[j − r + 1 : j + r − 1]) represents
the contribution to the kernel entry K(i, x) made by
x[j − r + 1 : j + r − 1]), K is the learned random-
walk kernel, and α is the dual parameter of the SVM
based on K. However, the mapping from the base
kernel which is a profile kernel to the learned random-
walk kernel is not linear, so there is no closed-form
solution to calculate K(i, x[j − r + 1 : j + r − 1]).
Instead, we resort to the following algorithm to calculate
K̂(i, x[j − r + 1 : j + r − 1]), which is an approximation
to K(i, x[j − r + 1 : j + r − 1]).

Algorithm 4.1. The algorithm for computing posi-
tional contribution to positive classification σ(x[j])
Input: sequence profiles P , sequence x, position j,
radius r, µ, α, profile kernel matrix Kprof , and learned
random-walk kernel matrix K.
Output: K̂(·, x[j − r + 1 : j + r − 1]) and σ(x[j])
1. Use P to compute the contribution to the profile-
kernel matrix made by x[j−r+1 : j+r−1], denoted by
M , which is symmetric and has non-zero entries only
in the row and the column corresponding to sequence x.

2. Cosinely normalize Kprof and M using di-

agonal entries in Kprof . K̃0
ij =

K
prof

ij
√

K
prof

ii
K

prof

jj

, and

M̃ij =
Mij

√

K
prof

ii
K

prof

jj

.

3. Compute new learned random-walk kernel
matrix K ′ based on new base kernel matrix (K̃0 − M̃)
and input combination coefficient µ.

4. K̂(·, x[j − r + 1 : j + r − 1]) = K(·, x)−K ′(·, x).

5. Replace K with K̂ in equation 4.13 to compute
σ(x[j]).

We can use the above algorithm to compute the
positional contribution score to positive classification for



Kernels Overall Mean ROC50

the best profile kernel 0.87
diffusion kernel 0.79
2-step random-walk profile kernel 0.86
learned random-walk kernel 0.90

Table 1: Overall Mean ROC50 scores over the 54 families
corresponding to different kernels.

both positive training and test sequences. Then we can
rank the positions by the positional contribution score
σ, and the top ranked positions, which occupy above
90% of the total positional contribution score mass,
can be regarded as essential regions discriminating
the remote homology membership of the considered
sequences.

5 Experiments

5.1 Experimental results on protein remote
homology detection We determine the classification
performance of learned random-walk kernel against the
best profile kernel and the random-walk kernel with
a fixed number of random steps by comparing their
ability to detect protein remote homology. We used
the benchmark dataset, derived by Jaakkola from the
SCOP database for this purpose (see [17] and [9]). In
SCOP, protein sequences are classified into a three-level
hierarchy: Fold, Super-family, and Family, starting from
the top. Remote homology is simulated by choosing all
the members of a family as positive test data, some
families in the same super-family of the test data as
positive training data, all sequences outside the fold
of the test data as either negative training data or
negative test data, and sequences that are neither in
the training set nor in the test set as unlabeled data.
This data splitting scheme has been used in several
previous papers (see [9], [15], and [23]). We used
the same training and test data split as that used
in [15] and [23]. We used version 1.59 of the SCOP
dataset (http://astral.berkeley.edu), in which no pair of
sequences share more than 95% identity.

In the data splits, of most experiments, there are
only a few positive test cases but, hundreds, or even
thousands of negative test cases. The maximum number
of positive test cases is usually below 30, but the
maximum number of negative test cases is above 2600.
The minimum number of positive test cases is 1, but the
minimum number of negative test cases is still above
250. In the experiments with a very limited number of
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Figure 2: The left figure shows the scatter plot of the
ROC50 scores produced by the leanred random-walk
kernel vs. the ROC50 scores produced by the best profile
kernel; and the right figure shows the scatter plot of
the ROC50 scores produced by the leanred random-
walk kernel vs. the ROC50 scores produced by the
best random-walk kernel with a fixed number of random
steps.
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the state−of−the−art profile kernel
the random−walk kernel with 2 random steps
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Figure 3: The number of protein families with ROC50

scores above a particular value for different kernels using
the best profile kernels.



Kernels ROC50 score
the best profile kernel 0.12
2-step random-walk profile kernel 0.00
learned random-walk kernel 0.46

Table 2: The ROC50 scores on the most difficult protein
family Glutathione S-transferases, N-terminal
domain corresponding to different kernels.

positive test cases and a large number of negative test
cases, we can almost ignore the ranking of positive cases
below 50 negative cases. In such situations, we consider
the ROC50 score much more informative of prediction
performance of different methods than the ROC score.
Here, a ROC curve plots the rate of true positives as a
function of the rate of false positives at different decision
thresholds. The ROC score is the area under the curve.
The ROC50 score is the ROC score computed up to
the first 50 false positives. Thus, in our experiments,
we only compare the ROC50 scores corresponding to
different kernels (for possible comparison to old results,
we also give ROC scores).

Since the optimization procedure for calculating the
linear combination coefficients for combining random-
walk kernels is highly dependent on labels, we adopted
the following approach: prior to training SVM, close
homologs of the positive training data in the unlabeled
set found by PSI-BLAST with E-value less than 0.05
are added to the positive training set, and are labelled
as positive. When training SVM based on random-
walk kernels with a fixed number of random steps, we
also used unlabeled data as discussed above. In the
experiments, the maximum number of steps of random
walks m for the learned random-walk kernel is set to
be 6 (when it is set to be a number from 7 to 10, the
computational time is longer but the results produced
are similar to that by m = 6.). And we used hard-
margin SVM to identify protein remote homology (the
free parameter C in SVM is set to be infinity, which has
been shown very effective for protein classification [23]).

Table 1 gives the overall mean ROC50 scores over
54 protein families for different kernels. From Table
1, we see that the diffusion kernel produces much
worse performance than the base kernel. The poor
performance of the diffusion kernel is probably due to
that the free parameter β chosen by cross validation
is not optimal. Table 2 shows the ROC50 scores
on the most difficult protein family Glutathione S-
transferases, N-terminal domain on which all the
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Figure 4: The top 10 largest improvement of ROC50

scores given by the learned random-walk kernel over
the best profile kernel. The blue bars correspond to the
learned random-walk kernel and the red bars correspond
to the best profile kernel.

previous approaches produce very poor performance
while our approach gives very good performance. Figure
2 shows the scatter plot of the ROC50 scores produced
by the leanred random-walk kernel vs. the ROC50 scores
produced by the best profile kernel and the ROC50

scores produced by the best random-walk kernel with
a fixed number of random steps (2 steps). Figure 3
shows the number of protein families out of 54 families
above each possible ROC50 threshold for the learned
random-walk kernel and the other two kernels (note that
they are not ROC50 curves but the summaries of all
the ROC50 scores). Figure 4 shows the top 10 largest
improvement of ROC50 scores produced by the learned
random-walk kernel over the best profile kernel. Figure
5 shows the top 10 largest improvement of ROC50 scores
produced by the learned random-walk kernel over the
best random-walk kernel with a fixed number of random
steps. If we use a fixed number of steps of random walks
for all the protein families, the random-walk kernel with
2 steps gives the best average ROC50 score. Figure
6 shows how the performance of learned random-walk
kernel and the m-step random-walk kernel varies with
m. It clearly shows that the performance of random-
walk kernel with a fixed number of random steps is
very sensitive to the step parameter while the learned
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Figure 5: The top 10 largest improvement of ROC50

scores given by the learned random-walk kernel over the
best random-walk kernel with a fixed number of steps.
The blue bars correspond to the learned random-walk
kernel and the red bars correspond to the best random-
walk kernel with a fixed number of steps.

2 3 4 5 6 7 8 9 10
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

step m

m
ea

n 
R

O
C

50
 s

co
re

 o
ve

r 
54

 p
ro

te
in

 fa
m

ili
es

 

 

learned random−walk kernel with different parameter m
random−walk kernel with different random steps

Figure 6: The mean ROC50 score over 54 protein
families for learned random-walk kernel and k-step
random-walk kernel with different choices of m.

random-walk kernel is much more robust. From Table
1 and Figure 2-6, we see that the learned random-walk
kernel has much better performance than other kernels
(all the methods produce high mean ROC scores over
the 54 families; the ROC scores produced by the learned
random-walk kernel, 2-step random-walk kernel and the
best profile kernel are, respectively, 0.99, 0.97, 0.98).

To determine whether the improvement given by
the learned random-walk kernel is statistically signif-
icant, we performed Wilcoxon Matched-Pairs Signed-
Ranks Tests on the differences between paired kernels.
The resulting p-value for the ROC50 score difference
between the learned random-walk kernel and the best
profile kernel is 3.30×10−3, and the p-value for the pair
between the learned random-walk kernel and the best
profile kernel with 2 steps of random walks is 1.27×10−2.
However, the p-value for the ROC50 score difference be-
tween the best profile kernel with 2 steps of random
walks and the best profile kernel is 0.62. Therefore, we
can conclude that the improvement given by the learned
random-walk kernel is statistically significant.

5.2 Experimental results on protein sequence
motif discovery In this subsection, we present the re-
sults of motif discovery using the SVMs based on the
learned random-walk kernels. We set the radius param-
eter r in section 4 to 5. Our experimental results show
that the important discriminative motifs for a protein
sequence often lie in the regions connecting or border-
ing at common structure motifs such as α-helixes and
β-sheets. This completely makes sense in biology. Com-
mon structure motifs occur frequently in all kinds of
protein sequences, while the regions connecting or bor-
dering at these common motifs represent different ways
of assembling these common structures, which should
be more important identifiers of remote homology than
other regions.

In the following, we will perform a case study
for the identification of super-family ConA-like
lectins/glucanases. On this super-family, the ROC50

scores produced by the state-of-the-art profile kernel
and the random-walk kernel with 2 random steps are,
respectively, 0.63 and 0.74, while the the ROC50 score
produced by the learned random-walk kernel is 0.93.

Figure 7 shows the distributions of positional contri-
bution scores to the positive classification of 4 positive
training sequences with PDB id 1a8d-1, 3btaa1, 1epwa1,
and 1kit-2. This figure shows that a small fraction of
positions, which are peaky positions in the figure, have
much higher scores, meaning that they are much more
important than other positions for the identification of
remote homology. Figure 8 shows the distribution of
the positional contribution scores to positive classifica-
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Figure 7: The distributions of positional contribution
scores to positive classification for 4 positive training
sequences.

tion of another positive training sequence with PDB id
2nlra. The blue positions are local peak positions, and
the red positions correspond to the top 10 highest posi-
tions. Figure 9 shows the motif of sequence 2nlra anno-
tated by PDB, and Figure 10 shows the motif predicted
by the SVM based on the learned random-walk kernel,
in which the blue and red positions in Figure 8 are also
marked blue and red respectively here. From this figure,
we can see that the blue and red regions lie either in the
center of a standard structure motif, which may repre-
sent a standard motif, or lie in the regions connecting or
bordering at standard motifs, which may act as bridge
motifs.

Figures 11, 12, 13 and 14 show the results for a pos-
itive test sequence with PDB id 1c1l. In details, Figure
11 shows the distribution of the positional contribution
scores to positive classification of sequence 1c1l, and
the red positions correspond to the top 15 highest posi-
tions. Figure 12 shows the ROC50 scores of predicting
the super-family of sequence 1c1l by training SVMs on
learned random-walk kernels by respectively removing
the subsequence window with radius 5 centered at each
position. We can see that the results in Figure 12 are
consistent with the positional contribution scores in Fig-
ure 11. Figure 13 shows the motif of this sequence anno-
tated by PDB, and Figure 14 shows the motif predicted
by the learned random-walk kernel. The red regions
correspond to the red positions in Figure 11. Again, we
see that the red regions represent standard motifs or act
as bridge motifs.

6 Conclusions and discussions

In this paper, we proposed a new approach to approx-
imate the optimal number of steps of random walks
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protein sequence with PDB id 2nlra

Figure 8: The positional contribution scores to positive
classification of a positive training sequence with PDB
id 2nlra. The blue positions are local peak positions,
and the red positions correspond to the top 10 highest
positions.

Figure 9: The structure motif annotated by PDB for
protein sequence with PDB id 2nlra.



Figure 10: The sequence motif discovered by the SVM
based on the learned random-walk kernel for protein
sequence with PDB id 2nlra. The sum of the positional
contribution scores of the green regions are above 80%
of the sum of all the positional scores in 2nlra. The
red regions correspond to the top 10 ranked positions,
which correspond to the red positions in Figure 8. The
blue regions correspond to the blue positions in Figure
8.
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Figure 11: The positional contribution scores to positive
classification of a positive test sequence with PDB id
1c1l. The red positions correspond to the top 15 highest
positions.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position index

R
O

C
50

 s
co

re
 u

si
ng

 a
 k

er
ne

l S
V

M
 b

as
ed

 o
n 

K
′

protein sequence with PDB id 1c1l

Figure 12: The ROC50 score obtained using a kernel
SVM based on K ′ after removing the subsequence
window with radius 5 centered at each position for the
positive classification of the sequence with PDB id 1c1l.

Figure 13: The structure motif annotated by PDB for
protein sequence with PDB id 1c1l.



Figure 14: The sequence motif discovered by the SVM
based on the learned random-walk kernel for protein
sequence with PDB id 1c1l. The sum of the positional
contribution scores of the green regions are above 90%
of the sum of all the positional scores in 1c1l. And the
red regions correspond to the top 15 ranked positions,
which are also marked red in Figure 11.

in random-walk kernel by calculating a convex combi-
nation of random-walk kernels with different numbers
of random steps. The experimental results on pro-
tein remote homology detection show that the learned
random-walk kernel produces strikingly better perfor-
mance than previous methods including the best ap-
proaches to solving this problem. Out of 54 protein
families, the best profile kernel produces ROC50 scores
above 0.90 on 30 families. This means that the base
kernel (the best profile kernel) has already given good
results on more than half of the protein families. In con-
trast, Figure 2 and 3 show that the learned random-walk
kernel gives almost 100% correctness on most of the 54
protein families. Moreover, we applied this approach
to identify protein sequence motifs that are responsi-
ble for discriminating the remote homology of protein
sequences. Our results show that the discriminative se-
quence motifs often represent an important standard
structure motif or act as bridge motifs connecting stan-
dard structure motifs.

The proposed approach admits a convex optimiza-
tion problem so there is no concern of local minima.
And it makes the performance of random-walk kernels
no longer sensitive to the step parameter. Moreover, it
is scalable to large datasets.

The proposed approach can successfully solve the

discussed biological problem with limited labeled data
because it makes use of a large number of pairwise
sequence similarities, unlabeled data, and limited la-
beled data to derive a new kernel. The new kernel
corresponds to new similarity metric for pairwise se-
quences. In the approach, pairwise sequence similar-
ities contribute to defining the transition probability
matrix for the random walks, and the convex optimiza-
tion procedure make the obtained new kernel well reflect
the manifold structure of sequences consistent with the
labels of training sequences. That is, in the learned
random-walk kernel, the kernel entries for pairwise se-
quences in the same super-family become large and the
kernel entries for pairwise sequences in different super-
families become small.

Our approach here is general and is readily ap-
plied to other biological classification problems such
as Protein-Protein interaction prediction, Transcription
Factor Binding Site prediction and gene function pre-
diction etc. And the learned random-walk kernel here
can also be applied to non-biological problems such as
document classification, handwritten digit classification
and face recognition etc, where we can construct k-step
random-walk kernels on texts and images instead of on
biological data.
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