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To understand biology at a system level, I presented novel machine learning algorithms

to reveal the underlying mechanisms of how genes and their products function in dif-

ferent biological levels in this thesis. Specifically, at sequence level, based on Kernel

Support Vector Machines (SVMs), I proposed learned random-walk kernel and learned

empirical-map kernel to identify protein remote homology solely based on sequence data,

and I proposed a discriminative motif discovery algorithm to identify sequence motifs that

characterize protein sequences’ remote homology membership. The proposed approaches

significantly outperform previous methods, especially on some challenging protein fam-

ilies. At expression and protein level, using hierarchical Bayesian graphical models, I

developed the first high-throughput computational predictive model to filter sequence-

based predictions of microRNA targets by incorporating the proteomic data of putative

microRNA target genes, and I proposed another probabilistic model to explore the un-

derlying mechanisms of microRNA regulation by combining the expression profile data

of messenger RNAs and microRNAs. At cellular level, I further investigated how yeast

genes manifest their functions in cell morphology by performing gene function prediction

from the morphology data of yeast temperature-sensitive alleles. The developed predic-

tion models enable biologists to choose some interesting yeast essential genes and study

their predicted novel functions.
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Chapter 1

Introduction

1.1 Motivation

During the last decade, machine learning methods have received wide applicability in the

computational biology and bioinformatics research field. On one hand, machine learning

methods help to extract important information from high-throughput datasets to explain

biological phenomena; on the other hand, some challenging biological problems motivate

machine learning researchers to propose novel algorithms. In this thesis, I will derive

new machine learning methods to analyze bio-sequence data such as protein sequence

data, and phenotype data such as gene expression data, protein abundance data and

quantitative morphology data, to reveal the underlying mechanisms of gene regulation

and gene function in different biological levels.

At sequence level, using kernel Support Vector Machines (SVMs), I will describe how

to identify proteins’ remote homology solely based on their sequence data, and I will

discuss how to identify discriminative motifs that characterize protein sequences’ remote

homology. SVMs have been applied to solve this problem, achieving reasonable success,

however, they perform poorly on some difficult protein families. I have developed two

approaches to solve this problem: the first uses a learned random-walk kernel based on

1
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sequence data, and the second constructs an empirical kernel map using a profile kernel.

The resulting kernels all have much better prediction performance than the profile kernel

directly derived from protein sequences. On a competitive SCOP benchmark dataset,

the overall mean ROC50 scores on 54 protein families I obtained using my approaches

are above 0.90, which significantly outperform previous published results. My methods

here were also used to discover biologically meaningful sequence motifs that characterize

the super-family membership of protein sequences. The methods above can be readily

applied to discover Transcription Factor Binding Sites (TFBSs) and microRNA binding

sites given some positive sequences containing binding sites for common regulators and

negative control sequences without containing any binding sites of interest.

At expression and protein level, by further investigating predicted binding sites of mi-

croRNAs, I propose hierarchical Bayesian graphical models to explore how microRNAs

regulate genes, which is insightful in understanding how proteins are effectively produced

from messenger RNAs (mRNAs). In details, microRNAs are involved in many crucial

biological processes such as development, differentiation, and tumorigenesis. It is esti-

mated that mammalian genomes contains hundreds of microRNA and over one-third of

the genes are under their regulation. A number of computational prediction tools are

currently available, which predict the target binding sites of microRNAs based on the

sequence complementarity between microRNA and the target sites, and the evolutionary

conservation of such sites. In collaboration with biologists, I propose a novel Bayesian

probabilistic approach, which is motivated by the intuition that a highly confident true

microRNA target gene should have lower protein abundance, associated with a high

expression level for the microRNA regulator. It is demonstrated that the proposed ap-

proach can improve the prediction accuracy by removing false-positives. In addition, the

approach can also be used to infer the regulatory mechanisms of miRNAs. This approach

offers the first attempt in incorporating proteomic data in prediction and characterization

of microRNA regulations, which will become very valuable when more high-throughput
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protein abundance data become available.

At cellular level, based on recent available yeast morphology data, I have further

investigated how yeast genes manifest their functions in observable cell phenotype. In this

project, my collaborators created temperature-sensitive, viable alleles of about 50% of the

essential genes of yeast and performed a large-scale microscopy screen of the resulting

phenotype. Based on these cellular morphology data, they study how essential genes

respond to environments at varying temperatures. For each marker of a given mutant,

they measure the values of a set of features, giving each feature a distribution of values.

I propose several novel feature representation methods to transform this complex dataset

into a standard feature matrix and then I use kernel SVMs to analyze the functions of

temperature-sensitive alleles of yeast mutants on this challenging dataset. The results

obtained provide new insight into understanding how genes manifest their functions in

morphology, and the prediction methods make it possible to accurately study the novel

functions of well characterized essential genes.

1.2 Thesis Organization

I will organize this thesis as follows:

In chapter 2, I will discuss how to identify proteins’ remote homology solely based

on sequence data and how to discover discriminative protein sequence motifs character-

izing their remote homology memberships using kernel machine learning methods. The

approaches to protein remote homology identification was published in [51], and the ap-

proach to discriminative motif discovery was published in [52]. In this project, I compiled

the data, conceived the ideas of learned random-walk kernel and learned empirical map

kernel, and proposed the discriminative motif discovery method, and Prof. Rui Kuang

helped construct the state-of-the-art profile kernel, and Jingjing Li helped interpret the

biological results, and Prof. Anthony Bonner and Prof. Zhaolei Zhang supervised the
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research.

In chapter 3, I will present probabilistic graphical models to predict microRNAs’

targets and their regulatory mechanisms by integrating sequence data, microRNA ex-

pression profile data, mRNA expression profile data, and proteomic data. A preliminary

version of this chapter was published in [45]. Jingjing Li conceived the project of using

proteomic data for microRNA regulation analysis, and I built the hierarchical Bayesian

graphical model for this project and did the technical writing, and Prof. Anthony Bonner

and Prof. Zhaolei Zhang supervised the research.

In chapter 4, I will describe how to generate effective feature representations from the

complex morphology data for yeast temperature-sensitive mutants, thereby to predict

gene functions using kernel SVMs. In this project, Dr. Franco Vizeacoumar provided the

extracted feature data of microscopy images, and Jingjing Li and Dr. Ke Jin constructed

a database and cleaned the data, and I did all the technical modeling and writing, and

Prof. Anthony Bonner and Prof. Zhaolei Zhang supervised the research. This chapter

will be submitted to a journal for publication.

In chapter 5, I will conclude this thesis with some discussions, and propose possible

extensions of the work described in this thesis and future research directions.



Chapter 2

Protein Sequence Classification and

Motif Discovery

The functions of genes are often mainly determined by the structures of their protein

products, and the protein structures are mainly determined by protein sequences. To

accurately predict gene functions from sequences, we need to predict protein structures

from sequences, which becomes a classical sequence classification problem. In this chap-

ter, I will present machine learning approaches to protein remote homology identification

on a benchmark dataset for protein structure classification from sequences.

2.1 Background

Machine learning researchers are often faced with classification problems with limited

labeled data and a large amount of unlabeled data. In biological problems, this is almost

always the case. It takes a lot of manual work or expensive biological experiments to

label data. Like the protein remote homology problem I will describe here, we often

have several positive training cases, many negative training cases, and a lot of unlabeled

data for many protein families. Therefore, we need good algorithms that can best take

advantage of the unlabeled data. Moreover, classifying biological sequences is an impor-

5
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tant and challenging problem both in computational biology and machine learning. On

the biological side, it helps to identify interesting sequence regions and protein domains

that are related to a particular biological function; on the computational side, it mo-

tivates many novel and effective new classification approaches specifically for sequence

data. Generative models (e.g., profile HMMs [39], [7]), discriminative models (e.g., ker-

nel SVMs [32], [42], [46]), and graph-based models [69] have been applied to solve this

problem.

In [32], [42], [74], [46] and [40], it has been shown that kernel SVMs have better pre-

diction performance on biological sequence data than other methods. Moreover, it was

shown in [74] that random-walk kernels [65] and empirical-map kernels [57] produced

promising results on protein remote homology detection. However, the process of de-

ciding the optimal number of random steps in a random-walk kernel and the process of

deciding the scaling parameter in an empirical-map kernel remain as challenging problems

[74]. In this chapter, I present two approaches to address these problems that improve

prediction accuracy. In the first approach, I use label information of training data and

a positive linear combination of random-walk kernels to approximate the random-walk

kernel with the optimum steps of a random walk, thereby obtaining a convex combina-

tion of random-walk kernels with different random-walk steps which achieves the best

classification confidence on the labeled training set. In the second approach, I construct

an empirical kernel map using profile kernels. The scaling parameter of the empirical

map is decided by minimizing the Leave-One-Out (LOO) nearest neighbor classification

error.

As is described in [40], kernel SVMs can not only be applied to classify biological

sequences, but also they can be used to extract discriminative sequence motifs that

explain the classification results. In this chapter, I will use SVMs based on learned

random-walk kernels to extract protein sequence motifs contributing to discriminating

protein sequences’ remote homology. Experimental results on the SCOP benchmark
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dataset show that learned random-walk kernel not only achieves significant improvement

over the best published result and the result given by the random-walk kernel with a fixed

number of random steps, but also effectively extracts meaningful protein sequence motifs

that are responsible for discriminating the memberships of protein sequences’ remote

homology in SCOP.

2.2 SVM for biological sequence classification using

mismatch string kernels

A SVM ([57] and [70]) is a discriminative model proposed especially for classification.

Consider a two-class training set, {X, y} and a test set U , where X is a matrix whose i-th

column, Xi, is the feature vector of data point i in the training set, U is a matrix whose

j-th column, Uj, is the feature vector of data point j in the test set, and y, a column

vector whose i-th component yi is the label of data point i in the labeled set, yi ∈ {−1, 1},

Xi, Uj ∈ Rd, i = 1, · · · , N, j = 1, · · · ,M . A linear SVM gives a separating hyper-plane

that maximizes the margin between the sample data points of the two classes. The primal

problem of a soft-margin SVM is as follows:

minw,b,ξ L(w) =
1

2
‖w‖2 + C (Σiξi) , (2.1)

wT Xi + b ≥ +1 − ξi for yi = +1,

wT Xi + b ≤ −1 + ξi for yi = −1,

ξi ≥ 0 ∀i ∈ {1, · · · , N},

where C is the penalty coefficient penalizing margin violations, and the ξi are non-

negative slack variables, which will be set to 0 when the dataset is separable. The dual
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problem of the soft-margin SVM can be formulated as follows:

maxα 2αT1 − αT (Ktr ⊗ yyT )α, (2.2)

s.t. αT y = 0,

0 ≤ α ≤ C1,

where 1 and 0 are column vectors containing all ones and zeros respectively, ⊗ is the

component-wise matrix multiplication operator, K = [X|U ]T [X|U ], is the dot product

between feature vectors of pairwise data points, and Ktr is the training part of K where

Ktr = XT X. As the above dual problem is only dependent on dot-products between

feature vectors, we can discard the original feature vectors of data points and calculate a

kernel matrix K directly to represent the relationship between the original data points.

As is discussed in [57], any symmetric positive semi-definite matrix can be used as a valid

kernel matrix K. Therefore by constructing a kernel, K, we can use the induced kernel

map to map every data point, Xi, to a high-dimensional feature space, in which a SVM

can be used to generate a separating hyper-plane.

For biological sequences, a kernel function can be used to map these sequences con-

sisting of characters representing amino acids to a higher dimensional feature space on

which a max-margin classifier is trained. All the computations of a SVM are performed

on the dot products of the pairwise feature vectors stored in the kernel matrix. For

example, suppose A is an alphabet of ℓ symbols (ℓ = 20 for protein sequences), then

k-mer string kernel maps every sequence in A to a ℓk-dimensional feature space in which

coordinates are indexed by all possible sub-sequences of length k (k-mers). Specifically,

the feature map of a k-mer string kernel is given by

Φk (x) =
(

Φα1 (x) , Φα2 (x) , · · · , Φα
lk

(x)
)T

, (2.3)

where α1, α2, . . . , αℓk is an ordering of all the ℓk possible k-mers, and Φα (x) is the number

of occurrences of k-mer α in sequence x. The corresponding kernel matrix is

Kk (x, y) = Φk (x)T Φk (y) . (2.4)
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Figure 2.1: The work-flow of constructing a profile kernel in [40].

The mismatch string kernel extends this idea by accommodating mismatches when count-

ing the number of occurrences of a k-mer in an input sequence. In particular, for any

k-mer, α, let N(α,m) be the set of all k-mers that differ from α by at most m mismatches.

The kernel mapping and kernel matrix are then defined as follows:

Φ(k,m) (x) = (Φ(k,m),α1 (x) , (2.5)

· · · , Φ(k,m),α
ℓk

(x))T ,

Φ(k,m),α (x) =
∑

β∈N(α,m)(x)

Φβ (x) , (2.6)

K(k,m) (x, y) = Φ(k,m) (x)T Φ(k,m) (y) . (2.7)

A profile of a protein sequence is a sequence of multinomial distributions. Each
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position of a protein sequence’s profile is a multinomial distribution on 20 amino acids,

representing the emission probabilities of the 20 amino acids at each position in that

sequence. A Profile Kernel [40] extends the mismatch-string kernel by using additional

profile information of each sequence. Instead of treating all k-mers with less than m

mismatches similarly as the mismatch-string kernel described above, the profile-kernel

examines these k-mers further by looking at the emission probabilities (profiles) at the

mismatched positions and only accepts those mismatches that pass a certain threshold.

The work-flow for constructing a profile kernel as described in [40] is shown in Fig. 2.1.

Each sequence has a profile, which is obtained by iteratively aligning each sequence to

the sequences in an unlabeled set using PSI-BLAST [2]. Suppose we have a sequence

x = x1x2...xN of amino acids of length N , then P (x) = {px
i (a), a ∈ Σ}N

i=1 is the profile of

sequence x, where Σ is the set of 20 amino acids and px
i (·) is the multinomial distribution

on the 20 amino acids at the i-th position of the profile of sequence x. For e.g., px
i (a),

is the emission probability of amino acid a at position i, such that
∑

a∈Σ pi(a) = 1

at each position i. In the Profile Kernel, the neighborhood of a k-mer x[j + 1 : j +

k]=xj+1xj+2...xj+k in sequence x is defined as:

M(k,σ)(P (x[j + 1 : j + k])) = (2.8)

{β = b1...bk : −
k

∑

i=1

logpx
j+i(bi) < σ},

where the free parameter σ controls the size of the neighborhood, and px
j+i(b) for i =

1, ..., k is obtained from the profile of sequence x, 0 ≤ j ≤ |x| − k. Further, px
j+i(b) can

be smoothed using the background frequency of amino acid b. The feature vector of

sequence x in the Profile Kernel is defined as the following:

Φ(k,σ)(x) =

|x|−k
∑

j=0

(φβ1(P (x[j + 1 : j + k])), (2.9)

. . . , φβ
ℓk

(P (x[j + 1 : j + k])))T ,

where β1, . . . , βℓk is an ordering of all possible k-mers, and, the coordinate φβ(P (x[j +1 :

j +k])) is 1 if β ∈ M(k,σ)(P (x[j +1 : j +k])), and 0 otherwise. The profile kernel uses the
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profile to measure the mismatch information between different letters at each position of

each sequence. Therefore, it’s more accurate than the mismatch string kernel. In this

chapter, I will use the profile kernel discussed above as the base kernel in the derivation

of the random-walk kernel.

2.3 SCOP dataset for protein remote homology de-

tection

To compare different methods for protein remote homology detection, I used the bench-

mark dataset, derived by Jaakkola from the SCOP database for this purpose (see [55] and

[32]). In SCOP, protein sequences are classified into a three-level hierarchy: Fold, Super-

family, and Family, starting from the top. Remote homology is simulated by choosing all

the members of a family as positive test data, some families in the same super-family of

the test data as positive training data, all sequences outside the fold of the test data as

either negative training data or negative test data, and sequences that are neither in the

training set nor in the test set as unlabeled data. This data splitting scheme has been

used in several previous papers (see [32], [46], and [74]). I used the same training and

test data split as that used in [46] and [74]. I used version 1.59 of the SCOP dataset

(http://astral.berkeley.edu), in which no pair of sequences share more than 95% identity.

In the data splits, of most experiments, there are only a few positive test cases but,

hundreds, or even thousands of negative test cases. The maximum number of positive

test cases is usually below 30, but the maximum number of negative test cases is above

2600. The minimum number of positive test cases is 1, but the minimum number of

negative test cases is still above 250. In the experiments with a very limited number

of positive test cases and a large number of negative test cases, we can almost ignore

the ranking of positive cases below 50 negative cases. In such situations, I consider the

ROC50 score much more informative of prediction performance of different methods than
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the ROC score. Here, a ROC curve plots the rate of true positives as a function of

the rate of false positives at different decision thresholds. The ROC score is the area

under the curve. The ROC50 score is the ROC score computed up to the first 50 false

positives. Thus, in my experiments, I only compare the ROC50 scores corresponding to

different kernels. We should note that Precision (the number of true positives divided

the total number of predicted positives)-Recall (true positive rate) curve is another way

to measure the performance of prediction programs. In biological experiments, we often

have much more negatives than positives as discussed above, and biologists would rather

have some reasonable number of false positives to get as many true positives as possible

than get a reasonably high precision but miss a lot of other positives. In another word,

biologists do not care precision as much as we evaluate the performance a search engine.

For example, there are 6 positives and 6,000 negatives in our test set, and 5 positives

are predicted to be ranked from 30th to 34th, and another positive is predicted to be

ranked at the 99th position, and it will have a reasonably high ROC50 score because

most of the positives are ranked among top 35 out of 6006. But if a search engine such

as Google or Microsoft Bing ranks the positives like this, we probably would never use it

again, because we would rather have 2 positives ranked among the top 2 positions and 3

positives ranked very very low than get all 5 positives ranked between 30 and 100.

2.4 Learned random-walk kernels and empirical-map

kernels for protein remote homology identifica-

tion

2.4.1 Learned random-walk kernels

In this section, I will describe learned random-walk kernels. As is discussed in section

1, we are often faced with classification problems with limited labeled data and a large
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amount of unlabeled data. These problems are often solved using similarity-propagation-

based methods such as the method discussed in [77]. Random-walk based approaches

are also examples of similarity-propagation based methods. My motivation for using

a random-walk kernel is its ability to coerce data points in the same cluster to stay

closer while making data points in different clusters to stay farther apart by propagating

similarity on both labeled data and unlabeled data (see [65] and [74]). If we view a set

of data points as a complete (or sparse) graph, in which the weights between data points

are viewed as similarity scores, then we can make use of unlabeled data to help propagate

similarity information through the whole graph. For e.g., we have a graph containing two

labeled data points, i and j, and two unlabeled data points, s and t, i is highly similar to s,

s is highly similar to t, and t is highly similar to j, but i and j are not very similar to each

other in the given graph. After two steps of similarity propagation, i and j will become

similar in a new similarity graph. When the similarity-propagation process is over, we

hope that data points in the same class (having the same label) will stay relatively closer

while data points in different classes (having different labels) will stay relatively farther

apart (see [65], [12] and [74]). However, when the weight matrix connecting data points is

not completely consistent with the labels of data points, excessive similarity propagation

through the graph will harm the classification, therefore, we can use label information

to guide the similarity-propagation process on the graph. This motivated me to use the

label information of training data to optimize the parameter in a random-walk kernel.

A t-step random-walk kernel is generally derived from a transition matrix with a t-step

random walk by normalization and symmetrization. Given a base kernel K with positive

entries (in this chapter, I use profile kernels), the transition matrix P of a one-step random

walk is defined as follows: let Pij be the probability P (xi → xj), then after t steps of a

random walk, the transition probability can be calculated as P t = (D−1K)t, where D is

a diagonal matrix with Dii =
∑

k Kik. Ideally, I want to use P t as the kernel matrix for

SVM classification. However, a kernel matrix must be a symmetric positive semi-definite
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matrix, therefore, I do the following manipulations to derive a kernel matrix from P t. As

is described in [74], let L = D− 1
2 KD− 1

2 , with its eigen-decomposition, L = UΛUT , and

L̃ = UΛtUT , where, t denotes the exponent, and, T , denotes the transpose. Then, the

new kernel corresponding to a t-step random walk is calculated as K̃ = D̃− 1
2 L̃D̃− 1

2 , where

D̃ is a diagonal matrix with D̃ii = L̃ii. We can see that the derived kernel K̃ relates to the

transition matrix after t-steps of a random walk P t as follows: K̃ = D̃− 1
2 D

1
2 P tD− 1

2 D̃− 1
2 .

A random-walk kernel based on PSI-BLAST E-values has been tried in [74] for protein

remote homology detection. The challenge in random-walk kernels is how to decide the

optimal number of random steps. Since random walks exploit both labeled data and

unlabeled data to estimate the manifold structure of data, performing too many steps of

a random walk can lead to the possibility of nearby clusters joining together, resulting

in data points in different classes come closer. On the other hand, if the number of steps

is too small, it can lead to a separation of data points in the same class. My goal is to

find the optimum number of steps that is most consistent with the class memberships of

the data points. Using the label information of training data to learn the parameters of

kernel functions has been successfully adopted by researchers. Related research can be

found in [77], [41] and [50]. Here, we need to learn the parameters of the random-walk

kernel that achieves the goal of max-margin classification using the label information of

training data. A brute-force solution to this problem results in a non-convex optimization

problem, therefore, I propose using a positive linear combination of the base kernel and

random-walk kernels from one step to m steps to calculate a new kernel to approximate

the kernel with the optimum number of random steps by optimizing the dual objective

function of the resulting SVM. I call the resulting kernel “learned random-walk kernel”.

Since every t-step random-walk kernel has trace n, if the base kernel also has trace n,

by restricting the learned kernel to have trace n too, a positive linear combination of the

base kernel and the random-walk kernels leads to a convex combination of these kernels,

where n is the total number of training data and test data points. The result is the
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following optimization problem:

minµmaxα 2αT1 − αT (Ktr ⊗ yyT )α,

s.t. αT y = 0

0 ≤ α ≤ C1,

K = µ0K̃
0 +

∑m

k=1 µkK̃
k,

∑m

k=0 µk = 1,

µk ≥ 0, k = 0, . . . ,m, (2.10)

where K̃0 is the base kernel for deriving the learned random-walk kernel, K̃k is the

random-walk kernel with a k-step random walk, and, m, is the maximal number of

random steps performed. The above optimization problem is a special case of the opti-

mization problem discussed in [41]. I follow the framework as is shown in [41], and show

that the above problem is equivalent to the following quadratically constrained convex

optimization problem:

minα,t t,

s.t. t ≥ αT (K̃k
tr ⊗ yyT )α − 2αT1, k = 0, . . . ,m,

αT y = 0

0 ≤ α ≤ C1, (2.11)

where tr denotes the training part of the corresponding kernel. The optimal values of pa-

rameters µk, k = 0, . . . ,m are exactly the dual solution to the above quadratic constrained

convex optimization problem. They can be found using the standard optimization soft-

ware SeDuMi [63] or MOSEK [4] which solve the primal and dual of an optimization

problem simultaneously. For huge datasets, we can use SMO-like gradient-based algo-

rithms [56] to solve the above problem. In this work, all the optimization problems were

solved using MOSEK.
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Theorem 1 The optimization problem in equation 2.10 is equivalent to the optimization

problem in equation 2.11.

Proof 1 It’s easy to see that all the constraints in equation 2.10 are linear thus convex

with respect to α and µ. Let ℓ = 2αT1 − αT (Ktr ⊗ yyT )α, since only Ktr appears in ℓ

in equation 2.10, Ktr is the only part we need from K to solve equation 2.10. ℓ is linear

thus convex with respect to µ. The Hessian of ℓ with respect to α is −(Ktr ⊗ yyT ), which

is negative semi-definite, hence, ℓ is concave with respect to α. And ℓ is continuous with

respect to α and µ. Therefore, we have the following equations:

minµ: µ≥0,
Pm

k=0 µk=1 maxα: αT y=0, 0≤α≤C1

2αT1 − αT [(
m

∑

k=0

µkK̃
k
tr) ⊗ yyT ]α

= maxα: αT y=0, 0≤α≤C1 minµ: µ≥0,
Pm

k=0 µk=1

2αT1 − αT [(
m

∑

k=0

µkK̃
k
tr) ⊗ yyT ]α

= maxα: αT y=0, 0≤α≤C1 minµ: µ≥0,
Pm

k=0 µk=1

m
∑

k=0

µk[2α
T1 − αT (K̃k

tr ⊗ yyT )α]

= maxα:αT y=0,0≤α≤C1mink[2α
T1 − αT (K̃k

tr ⊗ yyT )α]

= maxα,t: αT y=0, 0≤α≤C1,t≤2αT 1−αT (K̃k
tr⊗yyT )α t

= minα,t:αT y=0,0≤α≤C1, t≥αT (K̃k
tr⊗yyT )α−2αT 1

t

(2.12)

The first equality holds due to the special property of ℓ described above according to

[11]. The second and third equalities hold due to the properties of the simplex defined

by µ. The last two equalities hold due to the rewriting of the optimization problems in

different formats. The last equality shows that the optimization problem in equation 2.10

is equivalent to the optimization problem in equation 2.11.

As is described in [37], the ideas of random walks and diffusion are closely related.

Given a kernel matrix K, we can view it as a similarity matrix and compute the graph
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laplacian as Q = D−K, where D is a diagonal matrix described in this section. Instead

of taking the form of the t-th power of the transition matrix P as in random-walk kernels,

a diffusion kernel Kdiffuse takes a form of the matrix exponential of Q:

Kdiffuse = eβQ = limn−>∞;n∈N (I +
βQ

n
)n

= I + βQ +
β2

2
Q2 + . . . +

βt

t!
Qt + . . .

=
∑

i

vie
βλivT

i , (2.13)

where β is a real parameter to control the diffusion, which is analogous to the minus

inverse squared variance parameter in Gaussian kernels, I is an identity matrix, N is

the integer set, and, vi and λi are the i-th eigenvalue and eigenvector of K respectively.

The first line in the above equation can be interpreted as a random walk with an infinite

number of infinitesimally small steps. In this chapter, I compute diffusion kernels based

on profile kernels, and compare their performance to that of learned random-walk kernels

shown in the experimental results section.

The computation of both a random-walk kernel and a diffusion kernel requires the

eigen-decomposition of a base kernel, which has a worst-case time complexity O(n3).

Computing the learned random-walk kernel described above requires solving in addition,

the quadratically constrained convex optimization problem in equation 2.11, which has

a worst-case time complexity O(mn3
tr) using an interior-point method, where ntr is the

number of training data points.

2.4.2 Learned empirical-map kernel

An empirical-map kernel based on PSI-BLAST E-values has been applied in the analysis

of biological sequence data with reasonably good performance [74]. I compared the

Leave-One-Out nearest neighbor classification errors on protein sequence classification

produced using PSI-BLAST E-values to those produced using a normalized profile kernel,

and found that the normalized profile kernel captures the neighborhood similarity much
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better than the PSI-BLAST E-values. This motivated me to use the normalized profile

kernel to derive an empirical-map kernel for biological sequence classification. In [74],

the authors report their best result after tuning a scaling parameter, however, they do

not provide a method for calculating this parameter. In contrast, here I propose three

approaches for calculating the scaling parameter in the empirical-map kernel.

Given a similarity matrix S where Sij is the similarity score between data points Xi

and Xj, the empirical map for data point x is defined as:

Φemp(x) = (e−λS(x,X1), e−λS(x,X2), . . . , e−λS(x,XP ))T , (2.14)

where P is the number of available data points including both labeled data points and un-

labeled data points. The empirical-map kernel is defined as Kλ,ij = Φemp(Xi)
T Φemp(Xj).

The key to deriving the optimal empirical-map kernel is calculating the scaling parameter

λ.

In this chapter, I use the normalized profile kernel matrix as the similarity matrix.

Given a profile kernel matrix Kprof , I normalize it such that every sequence has a unit

feature vector (the norm is 1) as follows:

Kprof,norm = ∆− 1
2 Kprof∆− 1

2 , (2.15)

where ∆ is a diagonal matrix and ∆ii = Kprof
ii . Then the empirical-map kernel is given

by:

Kemp
λ,ij =

P
∑

k=1

e−λ(Kprof,norm
ik

+K
prof,norm
jk

). (2.16)

I normalize Kemp again so that every sequence has a unit feature vector, giving the

following normalized empirical-map kernel:

Kemp,norm
λ,ij =

∑P

k=1 e−λ(Kprof,norm
ik

+K
prof,norm
jk

)

√

∑P

k=1 e−2λK
prof,norm
ik

∑P

k=1 e−2λK
prof,norm
jk

. (2.17)

One way to calculate λ is by cross validation, however, it is computationally expensive

to search over a long list of candidate values and often this method fails to produce good
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values of λ. Alternatively we can substitute K with Kemp,norm
λ in Equation 2.2, perform

the maximization with respect to α and then perform the minimization with respect to λ.

However, this problem is non-convex with respect to λ, and, each iteration for calculating

the optimal value of α with λ fixed involves a quadratic programming problem. Instead,

in this chapter, I propose three different approaches to calculate λ. The first approach

calculates λ by maximizing the Kernel Alignment Score (KAS) [14]. Given the labels of

training data, the optimal kernel is given by Kopt = Y Y T . I calculates λ by maximizing

the alignment score as follows:

KAS = Trace(Kemp,normT Kopt)/

√

Trace(Kemp,norm2)Trace(Kopt2). (2.18)

The second approach calculates λ in a way that encourages the similarities between

data points within a class to be as large as possible. Given a kernel matrix K, I calculate

the probability of sequence i and sequence j being in the same class as, Pij =
Kij

Pℓ
k=1 Kik

,

where ℓ is the size of the labeled training set. I calculate the probability matrix P emp,norm
λ

using Kemp,norm
λ , and ,P opt using Kopt. To enforce the class-dependent constraint, I

minimize the following KL-divergence between P opt and P emp,norm
λ :

KL =
∑

ij

P opt
ij log[P opt

ij / P emp,norm
λ,ij ]. (2.19)

In the third approach, λ is chosen such that the normalized empirical-map kernel in

equation 2.17 corresponds to a good metric for defining a neighborhood consistent with

the labels of the labeled data, i.e., I choose λ to minimize the Leave-One-Out Nearest

Neighbor classification error over the labeled dataset. To limit the search space, I use the

optimal λs found by the first approach and the second approach as reference values, and

I always take the smallest λ when there are several local minima of λ achieving equally

good classification error.

All the three approaches of computing λ described above have a worst-case time com-

plexity O(n2
tr). The third approach is often the most stable and often works best in

practice, therefore, I suggest using this approach as the default approach for computing
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λ in the empirical-map kernel for possible future applications. Once λ is decided, the

worst-case time complexity for computing an empirical-map kernel is O(n3) using tra-

ditional matrix multiplications, but this time complexity is reduced to O(n2.376) using

advanced matrix multiplication algorithms in [13]. In contrast, computing an improved

random-walk kernel has a worst-case time complexity O(n3) dominated by the eigen-

decomposition of the base kernel matrix.

2.4.3 Experimental results based on learned random-walk and

empirical-map kernels

Since the optimization procedure for calculating the convex combination coefficients for

combining random-walk kernels is highly dependent on labels, I adopted the following

approach: prior to training the SVM, I added to the positive training set labeled as

positive, close homologs of the positive training data in the unlabeled set found by PSI-

BLAST with E-value less than 0.05. When training the SVM based on random-walk

kernels with a fixed number of random steps, diffusion kernels, and empirical-map kernels,

I also used unlabeled data as discussed above. The improved random-walk kernel and

the empirical-map kernel are based on the two profile kernels which produced the top 2

results on SCOP in [40]. Both profile kernels were obtained by setting the k-mer length

to 5 and the parameter σ to 7.5. However, the best profile kernel was obtained using

the PSI-BLAST profile trained up to 5 search iterations while the second best profile

kernel was obtained using the PSI-BLAST profile trained up to 2 search iterations. The

profile kernels were normalized to have trace n as in equation 2.15 before they were used

for the SVM classification and the calculation of improved random-walk kernels. In [42],

[40] and [74], it has been shown that normalized mismatch string kernels including the

profile kernels are very effective for protein classification. And in the experiments, the

maximum number of steps m of random walks for the improved random-walk kernel

was set to 6 (when it was set to 7, 8, 9, or 10, I saw an increasing computational time
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but no significant improvement in the results over that of m = 6). To compare improved

random-walk kernels to diffusion kernels, the free parameter β in Kdiffuse was decided by

5-fold cross validation. When using Leave-One-Out Nearest Neighbor classification error

to decide λ, I used the values found by the first and the second approaches as reference

and limit the search space to regions around the reference values. I used a hard-margin

SVM to identify protein remote homology (the free parameter C in the SVM was set to

infinity, which has been shown to be very effective for protein classification [74]).

Table 2.1 shows the ROC50 scores produced by the random-walk kernels with the

best fixed number of random steps, the scores produced by the improved random-walk

kernels, and, the scores produced by the diffusion kernels based on the best and second

best profile kernels. It clearly shows that the improved random-walk kernels have much

better performance than the profile kernels and the diffusion kernels. Moreover, based

on the best profile kernel, the random-walk kernel with the best fixed number of random

steps (2 steps) has a worse performance than the base kernel; and based on both profile

kernels, the diffusion kernels have a worse performance than the two base kernels. The

poor performance of the diffusion kernels here is probably due to the very limited positive

labeled data and the non-optimality of the parameter β decided by cross validation. From

Table 2.1, I conclude that the convex combination of random-walk kernels is an effective

way of using random walks. Table 2.2 lists the ROC50 scores by the empirical-map

kernels with λ calculated using three different approaches. From Table 2.2, I see that

the first and the second approaches have similar performance, while the third approach

outperforms these two. In the remainder of this chapter, the empirical-map kernel is

taken in reference to the kernel with λ calculated using the third approach except where

explicitly stated.

Table 2.3 gives the overall mean ROC50 scores over 54 protein families obtained by

several previous representative approaches and my improved random-walk kernels and

empirical-map kernels. It can be clearly seen that previous approaches except for the
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Random-Walk Kernel (RWK) Overall Mean ROC50

2-step RWK using the second best profile kernel 0.847

improved RWK using the second best profile kernel 0.867

diffusion kernel using the second best profile kernel 0.746

the second best profile kernel (base kernel) 0.824

2-step RWK using the best profile kernel 0.862

improved RWK using the best profile kernel 0.901

diffusion kernel using the best profile kernel 0.790

the best profile kernel (base kernel) 0.874

Table 2.1: Overall mean ROC50 scores over 54 protein families corresponding to different

random-walk kernels and diffusion kernels. 2-step random-walk kernels work best on the

SCOP dataset among all the random-walk kernels with a fixed number of random steps.

We see that improved random-walk kernels outperform random-walk kernels with the

best fixed number of random steps and diffusion kernels. Using Wilcoxon Matched-Pairs

Signed-Rank test, we have the following p-values: Based on the second best profile kernel,

the p-value for the ROC50 score difference between the learned random-walk kernel and

the base kernel was 1.52×10−4, and the p-value for the pair between the learned random-

walk kernel and the second best profile kernel with 2 steps of random walks was 0.14,

and the p-value for the pair between the learned random-walk kernel and the diffusion

kernel was 1.39× 10−7. However, the p-value for the ROC50 score difference between the

second best profile kernel with 2 steps of random walks and the base kernel was 0.06.

Based on the best profile kernel, the p-value for the ROC50 score difference between

the learned random-walk kernel and the base kernel was 3.30 × 10−3, and the p-value

for the pair between the learned random-walk kernel and the best profile kernel with 2

steps of random walks was 1.27× 10−2, and the p-value for the pair between the learned

random-walk kernel and the diffusion kernel was 8.84 × 10−7. However, the p-value for

the ROC50 score difference between the best profile kernel with 2 steps of random walks

and the best profile kernel was 0.62.
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Empirical-Map Kernels Overall Mean ROC50

using the second best profile kernel[1] 0.862

using the second best profile kernel[2] 0.866

using the second best profile kernel[3] 0.878

the second best profile kernel (base kernel) 0.824

using the best profile kernel [1] 0.904

using the best profile kernel [2] 0.900

using the best profile kernel [3] 0.911

the best profile kernel (base kernel) 0.874

Table 2.2: Overall mean ROC50 scores over 54 protein families corresponding to different

empirical-map kernels with λ calculated using three different approaches. ’[i]’ denotes

the empirical-map kernel with λ calculated using the i-th approach, i = 1, 2, or 3. From

this table, we find that the third approach for deciding λ is the best. In contrast, the

cross validation procedure (see [50] for details) to choose λ gives overall mean ROC50

scores 0.848 based on the second best profile kernel and 0.891 based on the best profile

kernel, and the searching procedure is very slow.
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Methods Overall Mean ROC50

eMOTIF (see reference [9] and [40]) 0.247

SVM-pairwise [PSI-BLAST] (see reference [46] and [40]) 0.533

spectrum-kernel [PSI-BLAST] (see reference [42]) 0.545

neighborhood (see reference [74]) 0.699

the second best profile kernel (the second best result) 0.821

the best profile kernel (the best result) 0.874

improved RWK using the second best profile kernel 0.867

empirical-map kernel using the second best profile kernel 0.878

improved RWK using the best profile kernel 0.901

empirical-map kernel using the best profile kernel 0.911

Table 2.3: Overall mean ROC50 scores over 54 protein families corresponding to different

kernels. Here the empirical-map kernels refer to the kernels with λ calculated using the

third approach. In this table, the top rows show the results produced by several previous

representative approaches and the best published results; the middle rows show my results

using the improved Random-Walk Kernel (RWK) and the empirical-map kernel based on

the second best profile kernel; and the bottom rows show my results using the improved

Random-Walk Kernel (RWK) and the empirical-map kernel based on the best profile

kernel. Using Wilcoxon Matched-Pairs Signed-Rank Test, we have the following p-values:

Based on the second best profile kernel, the p-value for the ROC50 score difference between

the improved random-walk kernel and the base kernel was 1.52 × 10−4, and the p-value

for the pair between the empirical-map kernel and the base kernel was 1.67×10−4. Based

on the best profile kernel, the p-value for the pair between the improved random-walk

kernel and the base kernel was 3.30 × 10−3, and the p-value for the pair between the

empirical-map kernel and the base kernel was 3.05 × 10−2.
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Methods ROC50 on the hardest protein family

eMOTIF (see reference [9] and [40]) 0.000

SVM-pairwise [PSI-BLAST] (see reference [46] and [40]) 0.000

spectrum-kernel [PSI-BLAST] (see reference [42]) 0.000

neighborhood (see reference [74]) 0.000

the second best profile kernel (the second best result) 0.045

the best profile kernel (the best result) 0.122

improved RWK using the second best profile kernel 0.454

empirical-map kernel using the second best profile kernel 0.455

improved RWK using the best profile kernel 0.509

empirical-map kernel using the best profile kernel 0.903

Table 2.4: The ROC50 scores on the most difficult protein family Glutathione S-

transferases, N-terminal domain corresponding to different kernels. Here the

empirical-map kernels refer to the kernels with λ calculated using the third approach.

In this table, the top rows show the results produced by several previous representa-

tive approaches and the best published results; the middle rows show my results using

the improved Random-Walk Kernel (RWK) and the empirical-map kernel based on the

second best profile kernel; and the bottom rows show my results using the improved

Random-Walk Kernel (RWK) and the empirical-map kernel based on the best profile

kernel.
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Figure 2.2: The number of protein families with ROC50 scores above different thresholds

for different kernels using the second best profile kernel.
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Figure 2.3: The number of protein families with ROC50 scores above different thresholds

for different kernels using the best profile kernel.
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Figure 2.4: The results obtained using the second best profile kernel: the top 10 largest

improvement in ROC50 scores out of 54 protein families for the improved random-walk

kernel based on the second best profile kernel over the base kernel. In each group (for

one protein family), the left black bar corresponds to the improved random-walk kernel

based on the second best profile kernel, and the right white bar corresponds to the base

kernel.
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Figure 2.5: The results obtained using the second best profile kernel: the top 10 largest

improvement in ROC50 scores out of 54 protein families for the empirical-map kernel

based on the second best profile kernel over the base kernel. In each group (for one

protein family), the left black bar corresponds to the empirical-map kernel based on the

second best profile kernel, and the right white bar corresponds to the base kernel.
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Figure 2.6: The results obtained using the best profile kernel: the top 10 largest improve-

ment in ROC50 scores out of 54 protein families for the improved random-walk kernel

based on the best profile kernel over the base kernel. In each group (for one protein

family), the left black bar corresponds to the improved random-walk kernel based on the

best profile kernel, and the right white bar corresponds to the base kernel.
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Figure 2.7: The results obtained using the best profile kernel: the top 10 largest improve-

ment in ROC50 scores out of 54 protein families for the empirical-map kernel based on

the best profile kernel over the base kernel. In each group (for one protein family), the

left black bar corresponds to the empirical-map kernel based on the best profile kernel,

and the right white bar corresponds to the base kernel.
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Figure 2.8: The SVM classification scores calculated using the best profile kernel and

the empirical-map kernel based on the best profile kernel on the most difficult protein

family Glutathione S-transferases, N-terminal domain. The top plot corresponds

to the best profile kernel and the bottom plot corresponds to the empirical-map kernel.

In both plots, the stars represent all positive test proteins and the circles represent some

negative test proteins. In each plot, the horizontal line sits at the smallest value of the

classification scores for all the positive test proteins. The top plot shows that if we want

to classify most of the positive test proteins correctly by setting an appropriate threshold,

there will be a lot of false positives; however, the bottom plot clearly shows that we can

almost classify all the positive test proteins correctly by setting an appropriate threshold

while only introducing a very small number of false positives.
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Figure 2.9: This figure shows how the feature component exp(−λd) in the empirical-map

varies with the distance d between pairwise sequences for different λ values. When the

normalized profile kernels are used to calculate the distances between pairwise sequences,

the distances are always between 0 and 2.
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profile kernels have low ROC50 scores, below 0.70. The two profile kernels produce ROC50

scores above 0.80. In contrast, my improved random-walk kernels and empirical-map

kernels produce ROC50 scores above 0.90. Because I have only a few positive test cases

but, hundreds, or even thousands of negative test cases in most of the 54 experiments, the

mean ROC50 score produced by a random predictor is close to 0. We can see that all the

approaches listed in the table have much better performance than a random predictor.

Table 2.4 shows the ROC50 scores for the most difficult protein family Glutathione

S-transferases, N-terminal domain on which all the previous approaches produced

very poor performance while my approaches performed well. In the experiment for this

protein family, I have 13 positive test proteins and 927 negative test proteins, therefore,

the ROC50 score produced by a random predictor should be close to 0, while the profile

kernels and my proposed kernels performed much better than a random predictor.

Figures 2.2-2.8 show my results in detail. Figures 2.2-2.3 show the number of protein

families that score above the different ROC50 threshold values for my kernels and the

top two profile kernels (note that they are not ROC50 curves but the summarization

of all the ROC50 scores). Figures 2.4-2.7 show the ten largest improvements in ROC50

scores for my kernels over the top two best profile kernels. Figure 2.8 compares the SVM

classification scores calculated using the best profile kernel and the scores calculated using

the empirical-map kernel based on the best profile kernel on the most difficult protein

family Glutathione S-transferases, N-terminal domain. On this special family, I

tried to find the obvious changes of cluster patterns by visualizing the kernel matrices,

but, it turned out that the improvements of ROC50 scores were due to subtle changes of

some kernel entries, which are hard to capture by eyes. Besides, I found that, based on

the best profile kernel, the empirical-map kernel resulted in much more support vectors

than the improved random-walk kernel and the base kernel. Out of 1943 training protein

sequences, the empirical-map kernel with the learned λ = 3 resulted in 1901 support

vectors, while the random-walk kernel and the base kernel resulted in 1026 and 1083
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support vectors respectively. In the empirical-map kernel, λ = 3 allows a lot of weak

pairwise sequence similarities contributing to the construction of the kernel, moreover,

almost every training sequence for this protein family were learned to be a support vector

using this kernel, therefore, the drastic improvement given by the empirical-map kernel for

this protein family is probably due to the combination of a lot of weak pairwise sequence

similarities, which might correspond to the combination of a lot of short sequence motifs.

In the next section, I will discuss how to extract biologically meaningful sequence motifs

that are crucial for determining each positive test protein’s superfamily membership using

the random-walk kernel to rank protein sub-sequences.

To determine whether the improvements obtained by the improved random-walk ker-

nels and the empirical-map kernels are statistically significant, I performed Wilcoxon

Matched-Pairs Signed-Ranks Tests on the differences between paired kernels. All the

resulting p-values were below 0.05. The resulting p-value for the ROC50 score difference

between the improved random-walk kernel based on the second best profile kernel and the

base kernel was 1.52×10−4. The p-value for the pair between the improved random-walk

kernel based on the best profile kernel and the base kernel was 3.30× 10−3. The p-value

for the pair between the empirical-map kernel based on the second best profile kernel and

the base kernel was 1.67× 10−4, and the p-value for the pair between the empirical-map

kernel based on the best profile kernel and the base kernel was 3.05 × 10−2.

However, based on both the profile kernels, the p-values for the ROC50 score differ-

ences between the empirical-map kernels and the improved random-walk kernels are both

greater than 0.15, which are not statistically significant.

2.4.4 Discussions about learned random-walk and empirical-

map kernels

In this chapter, I proposed two kernel learning approaches for protein remote homol-

ogy detection based solely on protein sequence data. One approach approximates the
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random-walk kernel with the optimal number of random steps by calculating a convex

combination of random-walk kernels with different numbers of random steps, and, the

other approach uses profile kernels to derive empirical-map kernels with the scaling pa-

rameter λ calculated using a principled approach. The first approach reduces to a convex

optimization problem avoiding concerns of local minima. The second approach initial-

izes the value of λ in the empirical-map kernels by minimizing the KL divergence and

maximizing the Kernel Alignment Score, and, then refining the value of λ by minimizing

the Leave-One-Out nearest neighbor classification errors. It is a robust approach. I ran

the procedure for calculating λ several times, each time obtaining the same refined value

of λ on each protein family.

Both approaches make use of a large number of pairwise sequence similarities and

unlabeled data to derive new kernels, which corresponds to new similarity metrics for

pairwise sequences. In the first approach, pairwise sequence similarities contribute to

defining the transition probability matrix for the random walks. The convex optimization

procedure induces the new kernel to reflect the manifold structure of the sequences that

is optimally consistent with the labeled training sequences.

In the second approach, the scaling parameter λ plays the role of selecting features in

a soft way for the empirical-map kernel. When λ is small, small pairwise sequence simi-

larities contribute weakly to the construction of the kernel based on the empirical map.

When λ is large, only large pairwise sequence similarities contribute to the construction

of the new kernel. Figure 2.9 illustrates how the feature component in the empirical

map varies with distance between pairwise sequences for different λ values (note that the

distances between pairwise sequences based on the normalized profile kernels are between

0 and 2). All the three procedures in the second approach make use of the label infor-

mation of training sequences to calculate λ in order to achieve good separability between

positive sequences and negative sequences.

The experimental results on protein remote homology detection show that the im-



Chapter 2. Protein Sequence Classification and Motif Discovery 37

proved random-walk kernels and the empirical-map kernels proposed here produce strik-

ingly better results than previous methods, including the best approaches for solving this

problem proposed to date. Out of 54 protein families, the best profile kernel produced

ROC50 scores above 0.90 for 30 families while the empirical-map kernel based on the

best profile kernel produced ROC50 scores above 0.90 for 41 families. On one hand, this

shows the effectiveness of the empirical map kernel, and on the other hand, it shows that

the base kernel (the best profile kernel) has very good performance producing almost

perfect results on more than half of the protein families. From Figures 2.4-2.7, I find

that my approaches give more than 10% improvement over the base kernels on many dif-

ficult protein families. In particular, on the most difficult protein family Glutathione

S-transferases, N-terminal domain on which all the previous approaches failed to

produce useful results (ROC50 scores of zero or close to zero), my approaches produced

very good results.

My approaches are general and are readily applicable to other biological classification

problems such as Transcription Factor Binding Site prediction and gene function predic-

tion etc. The approaches described here can also be applied to non-biological problems

such as document classification, handwritten digit classification and face recognition etc

where kernels are constructed on texts and images instead of on biological data.

2.5 Protein sequence motif discovery using learned

random-walk kernels

To identify sequence motifs making important contributions to discriminating the remote

homology membership of a protein sequence x, I calculate the j-th positional contribution

Anthony
Highlight
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to the positive classification of sequence x using the following equation:

σ(x[j]) = max(
ntr
∑

i=1

αiK(i, x[j − k + 1 : j + k − 1]), 0),

(2.20)

where i indexes training sequences, x[j − r + 1 : j + r − 1]) represents a subsequence

window with radius r centered at position j, K(i, x[j − r + 1 : j + r − 1]) represents the

contribution to the kernel entry K(i, x) made by x[j− r +1 : j + r−1]), K is the learned

random-walk kernel, and α is the dual parameter of the SVM based on K. However, the

mapping from the base kernel which is a profile kernel to the learned random-walk kernel

is not linear, so there is no closed-form solution to calculate K(i, x[j − r + 1 : j + r− 1]).

Instead, I resort to the following algorithm to calculate K̂(i, x[j − r + 1 : j + r − 1]),

which is an approximation to K(i, x[j − r + 1 : j + r − 1]).

Algorithm 1 The algorithm for computing positional contribution to positive classifi-

cation σ(x[j])

Input: sequence profiles P , sequence x, position j, radius r, µ, α, profile kernel matrix

Kprof , and learned random-walk kernel matrix K.

Output: K̂(·, x[j − r + 1 : j + r − 1]) and σ(x[j])

1. Use P to compute the contribution to the profile-kernel matrix made by x[j − r + 1 :

j + r − 1], denoted by M , which is symmetric and has non-zero entries only in the row

and the column corresponding to sequence x.

2. Normalize Kprof and M using diagonal entries in Kprof . K̃0
ij =

K
prof
ij

q

K
prof
ii K

prof
jj

, and

M̃ij =
Mij

q

K
prof
ii K

prof
jj

.

3. Compute new learned random-walk kernel matrix K ′ based on new base kernel

matrix (K̃0 − M̃) and input combination coefficient µ.
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4. K̂(·, x[j − r + 1 : j + r − 1]) = K(·, x) − K ′(·, x).

5. Replace K with K̂ in equation 2.20 to compute σ(x[j]).

I can use the above algorithm to compute the positional contribution score to positive

classification for both positive training and test sequences. Then I can rank the positions

by the positional contribution score σ, and the top ranked positions, which occupy above

90% of the total positional contribution score mass, can be regarded as essential regions

discriminating the remote homology membership of the considered sequences.

2.5.1 Experimental results on protein sequence motif discovery

In this subsection, I present the results of motif discovery using the SVMs based on

the learned random-walk kernels. I set the radius parameter r in section 2.5 to 5. My

experimental results show that the important discriminative motifs for a protein sequence

often lie in the regions connecting or bordering at common structure motifs such as

α-helixes and β-sheets. This completely makes sense in biology. Common structure

motifs occur frequently in all kinds of protein sequences, while the regions connecting or

bordering at these common motifs represent different ways of assembling these common

structures, which should be more important identifiers of remote homology than other

regions.

In the following, I will perform a case study for the identification of super-family

ConA-like lectins/glucanases. On this super-family, the ROC50 scores produced by

the state-of-the-art profile kernel and the random-walk kernel with 2 random steps are,

respectively, 0.63 and 0.74, while the the ROC50 score produced by the learned random-

walk kernel is 0.93.

Figure 2.10 shows the distributions of positional contribution scores to the positive

classification of 4 positive training sequences with PDB id 1a8d-1, 3btaa1, 1epwa1, and
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1kit-2. This figure shows that a small fraction of positions, which are peaky positions in

the figure, have much higher scores, meaning that they are much more important than

other positions for the identification of remote homology. Figure 2.11 shows the distri-

bution of the positional contribution scores to positive classification of another positive

training sequence with PDB id 2nlra. The blue positions are local peak positions, and

the red positions correspond to the top 10 highest positions. Figure 2.12 shows the motif

of sequence 2nlra annotated by PDB, and Figure 2.13 shows the motif predicted by the

SVM based on the learned random-walk kernel, in which the blue and red positions in

Figure 2.11 are also marked blue and red respectively here. From this figure, we can see

that the blue and red regions lie either in the center of a standard structure motif, which

may represent a standard motif, or lie in the regions connecting or bordering at standard

motifs, which may act as bridge motifs.

Figures 2.14, 2.15, 2.16 and 2.17 show the results for a positive test sequence with

PDB id 1c1l. In details, Figure 2.14 shows the distribution of the positional contribution

scores to positive classification of sequence 1c1l, and the red positions correspond to the

top 15 highest positions. Figure 2.15 shows the ROC50 scores of predicting the super-

family of sequence 1c1l by training SVMs on learned random-walk kernels by respectively

removing the subsequence window with radius 5 centered at each position. We can see

that the results in Figure 2.15 are consistent with the positional contribution scores in

Figure 2.14. Figure 2.16 shows the motif of this sequence annotated by PDB, and Figure

2.17 shows the motif predicted by the learned random-walk kernel. The red regions

correspond to the red positions in Figure 2.14. Again, we can see that the red regions

represent standard motifs or act as bridge motifs.
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Figure 2.10: The distributions of positional contribution scores to positive classification

for 4 positive training sequences.
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protein sequence with PDB id 2nlra

Figure 2.11: The positional contribution scores to positive classification of a positive

training sequence with PDB id 2nlra. The blue positions are local peak positions, and

the red positions correspond to the top 10 highest positions.
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Figure 2.12: The structure motif annotated by PDB for protein sequence with PDB id

2nlra.
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Figure 2.13: The sequence motif discovered by the SVM based on the learned random-

walk kernel for protein sequence with PDB id 2nlra. The sum of the positional contri-

bution scores of the green regions are above 80% of the sum of all the positional scores

in 2nlra. The red regions correspond to the top 10 ranked positions, which correspond

to the red positions in Figure 2.11. The blue regions correspond to the blue positions in

Figure 2.11.
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Figure 2.14: The positional contribution scores to positive classification of a positive test

sequence with PDB id 1c1l. The red positions correspond to the top 15 highest positions.



Chapter 2. Protein Sequence Classification and Motif Discovery 46

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

position index

R
O

C
50

 s
co

re
 u

si
ng

 a
 k

er
ne

l S
V

M
 b

as
ed

 o
n 

K
′

protein sequence with PDB id 1c1l

Figure 2.15: The ROC50 score obtained using a kernel SVM based on K ′ after remov-

ing the subsequence window with radius 5 centered at each position for the positive

classification of the sequence with PDB id 1c1l.
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Figure 2.16: The structure motif annotated by PDB for protein sequence with PDB id

1c1l.
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Figure 2.17: The sequence motif discovered by the SVM based on the learned random-

walk kernel for protein sequence with PDB id 1c1l. The sum of the positional contribution

scores of the green regions are above 90% of the sum of all the positional scores in 1c1l.

And the red regions correspond to the top 15 ranked positions, which are also marked

red in Figure 2.14.



Chapter 3

MicroRNA Regulation Prediction

Using Proteomic Data

To understand the underlying mechanisms of gene function, it’s important to know how

gene expression is precisely regulated. Gene expression is mainly regulated by tran-

scription factors at the transcriptional stage. Besides transcription factors, microRNAs

(miRNAs) also play important roles in regulating metazoan gene expression, especially at

the post-transcriptional stage. In this chapter, I will present computational approaches

to miRNA target prediction and miRNA regulatory mechanism inference using proteomic

data. Since this project is a collaborative project, I will use ”we” subsequently in this

chapter. We should note that this project was finished in 2007, and at that time, we did

not have miRNA knockdown or miRNA transfection data, miRNA target prediction was

very difficult, and we did not know which miRNA regulatory mechanism was dominant.

Currently, biologists can perform miRNA transfection or knockdown experiments or use

deep sequencing to get a lot of positive interactions.

Due to the difficulties in identifying microRNA (miRNA) targets experimentally in a

high-throughput manner before 2008, several computational approaches were proposed,

and most leading algorithms are based on sequence information alone. However, there

49
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has been limited overlap between these predictions, implying high false-positive rates,

which underlines the limitation of sequence-based approaches. Considering the repressive

nature of miRNAs at the mRNA translational level, here we describe a Bayesian model to

make predictions by combining sequence complementarity, miRNA expression level, and

protein abundance. Our underlying assumption is that, given sequence complementarity

between a miRNA and its putative mRNA targets, high miRNA expression directly

result in low protein abundance of the target gene. After having identified a set of

confident predictions, we then built a second Bayesian model to trace back to the mRNA

expression of the confident targets to investigate the mechanisms of the miRNA-mediated

post-transcriptional regulation: translational repression, which has no effect on mRNA

level, or mRNA degradation, which significantly reduces mRNA level.

3.1 Background

MicroRNAs (miRNAs) are a class of small non-coding RNAs, typically about 22 nu-

cleotides in length, and are known to block protein synthesis of their target genes by

binding to the 3’ Untranslated Region (UTR) of the mRNA transcripts with perfect

(in plants) or imperfect (in animals and C. elegans) base pairing [8]. It was estimated

that thousands of genes in the mammalian genome are under regulation by miRNA at

the post-transcriptional level [38], and they have been shown to have many important

functional roles [3].

Despite microRNAs’ importance and prevalence, it has proved to be difficult to ex-

perimentally identify and validate their target genes. To this date, only about 40 miRNA

targets have been confirmed in mouse and about 200 in human [59]. As an alternative, a

number of computational prediction programs had been developed and were widely used

to predict miRNA targets in silico (see [17], [35], [38], and [44]). Most of these computa-

tional programs combine two types of data in making predictions: sequence complemen-
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tarity between the miRNA and the putative target binding sites, and the evolutionary

conservation of such sites (for a review, see [59]). Although great progress has been made

in improving prediction accuracy, accurate prediction of miRNA targets remains chal-

lenging, with the major difficulty being the lack of agreement among these algorithms. A

recent benchmark study has compared the predicted targets of several leading algorithms

and reported significant discrepancy among them [59]. The disagreement among these

algorithms can be largely attributed to the different scoring schemes and weights given to

imperfect base pairing between miRNA and binding sites and evolutionary conservation

of the binding sites. Moreover, some of these sequence-based algorithms are known to be

less robust as slight changes in parameters often result in very different predictions [75].

Because of the repressive nature of miRNAs’ regulatory roles and the availability of

the genome-wide mRNA expression data, it was suggested that using gene expressions

data could be helpful in predicting true miRNA targets [47]. The rationale of such ap-

proach is the following: if a miRNA is highly expressed and a putative target gene is

lowly expressed in corresponding tissues, then it is considered as an additional evidence

that the candidate gene is a true target. In [31] and [29], this idea was implemented as a

probabilistic model which can simultaneously accounts for the interactions between mul-

tiple miRNAs and a target gene. The negative correlation between the expression levels

of miRNA and target mRNA has been observed in various experiments (see [20], [47], and

[60]). But some researchers claim that, in contrast to the miRNAs in plants, the miRNAs

in animals typically have imperfect sequence complementarity to their target sites and

function mostly by binding to the target sites to inhibit the translation process, instead

of causing degradation of the mRNA transcripts ([19], [71]). And in some cases, a strong

positive correlation has also been observed between the expression levels of miRNA and

their target mRNAs [68], which could be attributed to common regulators shared by the

miRNA and their target genes. However, several recent miRNA transfection and miRNA

knockdown experiments ([6], [58]) show that, although a cohort of genes were modestly
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repressed by miRNAs at the protein level with little or no change at the mRNA level,

almost all target genes that exhibite large protein level changes have large mRNA level

changes. And a recent paper [25] shows that mRNA destablization caused by miRNAs

is the dominant mechanism that accounts for the protein level changes of miRNA target

genes. It’s still controversial that whether mRNA degradation or translational repres-

sion is the dominant mechanism of miRNA regulation, but all the experimental results

suggest that protein abundance data provides a direct and good alternative approach to

predicting miRNA targets, given that we can get high-quality proteomic data.

All the evidence described above suggest that in animals, the repression effect of

miRNAs on their target genes is more obviously manifested at the translational level (i.e.

protein abundance), thus, identifying miRNA targets solely based on transcriptional data

might miss some miRNA targets. In contrast, regardless of by degradation or by transla-

tional repression, the protein abundance of the target genes should be always negatively

regulated. Motivated by this observation and by previous work, in this chapter we pro-

pose a new Bayesian approach to predicting miRNA targets in mouse using proteomic

data in a high-throughput manner. In [66], researchers have used miRNA expression

data and proteomic data to identify miRNA targets. However, their predictions are

mainly based on biological experiments and no computational algorithm was proposed,

and sequence-based methods such as TargetScan, PicTar and miRanda were only used to

support their predictions. Besides, their experimental predictions were only performed

in one tissue of rat, kidney. To our knowledge, our approach is the first computational

one that incorporates miRNA expression data and proteomic data in multiple tissues to

carry out high-throughput miRNA target predictions. In [31], proteomic data was only

used to decide whether a probabilistic model for modeling translational repression or a

model for modeling mRNA degradation should be used for miRNA target prediction,

which is completely different from our model that directly uses proteomic data for target

prediction.
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Figure 3.1: A flowchart of the algorithms described in this work. The described algorithm

takes four types of experimental data: (1) a set of putative miRNA targets, (2) protein

abundance, (3) miRNA expression profiles, and (4) mRNA expression profiles. Details

can be found in the main text.
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Our method consists of two steps. In the first step, it takes as input a set of putative

miRNA target genes derived from sequence information alone; it then applies a Bayesian

probabilistic model using protein abundance data to assign confidence scores to the pre-

dicted miRNA-target pairs. In the second step, another Bayesian probabilistic model

is applied to the miRNA and mRNA expression data to predict whether the miRNA-

mediated regulation is through translation repression or mRNA degradation. Figure 3.1

shows a flowchart of our approach.

3.2 Data Gathering

The mouse protein abundance data was derived from a recently published mass spec-

trometry study [36], in which the abundance of 4,768 proteins across 6 mouse tissues

(brain, heart, liver, lung, placenta and kidney) was surveyed. After comparing with gene

expression data from two microarray studies ([64], [76]), 1,758 proteins were confidently

cross-mapped to their corresponding mRNAs. The incomplete coverage of the proteomic

data was likely due to instrumentation bias, stringent filtering rules of database search

or instability of low-level transcripts. The miRNA expression data was extracted from

previous published microarray studies [5]. These authors also used TargetScan and mi-

Randa separately to derive two lists of putative miRNA targets in mouse. The normalized

mRNA expression profiling of 41,699 transcripts in 55 tissues was from [76]. Among these,

1,758 were confidently cross-mapped to the proteins (see above).

We chose to use full Bayesian model to make inference so as to take into account all

possible uncertainties in our model. Inferences were made based on Gibbs sampling [22],

which was performed in the WinBugs environment [61].
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3.3 Method and Results

3.3.1 Deriving a list of putative miRNA targets by sequence

data alone

We described the sources of the data in the above Methods section. As described in

the Introduction, our current methods take as input a set of putative predictions from

a sequence-based prediction algorithm. We decided to run our procedures twice us-

ing two different prediction algorithms: TargetScan [43] and miRanda [17]. The gen-

eral results and conclusions are unchanged. Based on the intersection among the four

types of datasets (predicted miRNA targets, miRNA expression, protein abundance and

mRNA expression), we retained 21,721 putative interactions for TargetScan predictions

(75 miRNAs, 1,404 cross-mapped mRNAs) and 17,339 putative interactions for miRanda

predictions (70 miRNAs, 1408 cross-mapped mRNAs).

After compiling the datasets, we investigated mRNA or protein expression profiles

in 6 tissues (brain, heart, liver, lung, placenta and kidney), among which expression in

4 tissues (brain, heart, liver and lung) were used for model construction and making

predictions, while the remaining 2 tissue types (placenta and kidney) were used for blind

tests.

3.3.2 Modeling protein abundance

Instead of looking for the degradation of mRNA transcripts by possible multiple miR-

NAs as previously described in [29], our method directly models the relationship between

miRNA expression and protein abundance (see Figure 1). We start with a set of miRNA

and target genes as predicted from a sequence-based approach, we then model the protein

abundance of the putative targets and the miRNA in individual tissues. If we observe a

negative correlation between the miRNA and the putative target across multiple tissues,

then the algorithm will assign a higher confidence score to this miRNA-protein pair.
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Conversely a positive correlation between miRNA expression and protein abundance, es-

pecially the cases where a high miRNA expression coincide with high protein abundance,

will result in a low confidence score for the miRNA-protein pair.

We chose to use a probabilistic framework to model the relationship between miRNA

expression profiles and protein abundances. The first challenge in this approach is to find

an appropriate background distribution to model the protein abundance data. Unlike

mRNA expression profiles, which can be effectively modeled using a Gaussian distribu-

tion, the peptide counts are discrete values. A possible choice is to use Poisson to model

the count events; however, a simple Poisson model is not suitable for modeling the pep-

tide counts in this study since there are excessive zeros in the dataset and the non-zero

counts are also over-dispersed (variance are much greater than the mean). After compar-

ing with other possible models such as zero-inflated Poisson and transformed Gaussian,

we chose to use Negative Binomial model (NB) to characterize the peptide counts, with

which the Poisson mean and over-dispersion can be considered simultaneously with lower

model complexity. Recent research also suggested NB is an optimal choice to model the

abundance data with excessive zeros [72].

The protein abundance data has discrete integer values corresponding to protein

counts and a lot of zeros corresponding to no protein abundance, and has much larger

sample variance than sample mean, which cannot be effectively modeled by a Poisson

distribution but can be fitted very well by a Negative Binomial distribution empirically.

A Negative Binomial distribution with a positive real parameter r and a real parameter

γ ( 0 < γ < 1) is described in the following equation:

p(k|r, γ) =

(

k + r − 1

r − 1

)

γr(1 − γ)k

=
Γ(k + r)

k!Γ(r)
γr(1 − γ)k. (3.1)

In the above equation, k is an integer, and the mean of the distribution is r 1−γ

γ
. With

integer r, p(k|r, γ) can be viewed as the probability of having observed k successes if
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we are observing a sequence of Bernoulli trials with success probability p until we have

observed a pre-defined number of r failures, which is conversely analogous to a Binomial

distribution, so it is called Negative Binomial distribution. If we re-parametrize the

Negative Binomial distribution using the mean parameter λ = r 1−γ

γ
and the positive real

parameter r, we have the following equation:

p(k|r, γ) = NB(k|λ, r)

=
λk

k!

Γ(r + k)

Γ(r)(r + λ)k

1

1 + λ
r

. (3.2)

In the above equation, Γ(·) is the Gamma function, r controls the over-dispersion of the

distribution, and, when the over-dispersion parameter r approaches infinity, NB(k|λ, r)

approaches a Poisson distribution with mean parameter λ. The above NB model uses

r to adjust the variance independently of the mean parameter λ of the distribution,

differing from a Poisson distribution which has equal mean and variance. We model

protein abundance data by NB using the parametrization in Equation 3.2. We assume

the abundance of each protein i in tissue type t, Wit, follows NB distribution, with two

parameters θit and rt, 1 ≤ i ≤ N and 1 ≤ t ≤ T , where N and T are the total number

of genes (proteins) and total number of tissues types, respectively. Thus, the probability

of protein i with peptide count k in tissue t can be modeled as the following in Equation

3.3.

p(Wit = k|θit, rt) = NB(k|θit, rt). (3.3)

In Equation 3.3, θit represents the Poisson mean for protein i in tissue t and rt

represents the over-dispersion of the data, which was shared by all the proteins in the

same tissue t. We then used hierarchical Bayesian Negative Binomial regression to regress

the Poisson mean θit with miRNA expression in corresponding tissues, Mjt, 1 ≤ j ≤ J ,

and 1 ≤ t ≤ T , where J is the total number of miRNAs in the dataset. Equation 3.4

gives the regression of the Poisson mean in the model. Thus,

ln(θit) = ln(τt) − ρt

J
∑

j=1

ωjδijMjt (3.4)
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In Equation 3.4, τt stands for the background protein abundance shared by all the proteins

in the same tissue t. As suggested in [29], we introduced δij as a binary latent variable

indicating whether or not the miRNA j regulates the gene i; ωj is a regression coefficient

associated with j-th miRNA expression shared by all the tissue types, and ρt is a scaling

parameter for tissue t accounting for the measurement difference in different tissues.

Since sequence complementarity is a necessary condition for true targets, we use a binary

variable Sij as the putative predictions between miRNA j and protein i, which was derived

from sequence-based predictions (TargetScanS, miRanda, or PicTar, etc); Sij = 1 means

that there is a putative predictions between i and j. The probability of a putative

prediction being a true positive, p, is formally given in Equation 3.5.

p(δij = 1|Sij = 1) = p,

p(δij = 1|Sij = 0) = 0 (3.5)

To avoid over-fitting the data and to account for all possible uncertainties, we chose to

use full Bayesian approach to infer δij so that all the uncertainties and nuisance variables

can be integrated out. Thus we assigned the priors to other parameters as follows (most

were assigned flat priors):

p ∼ beta(1, 1),

τt ∼ uniform(0, 50),

ρt ∼ gamma(α, α),

α ∼ uniform(0, +∞),

ωj ∼ exponential(β),

β ∼ uniform(0, 1000),

rt ∼ exponential(a),

a ∼ uniform(0, 1000),

(3.6)
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We chose the above Beta prior because Beta distribution is the conjugate prior of

Bernoulli distribution and Beta(1, 1) defines a uniform distribution between 0 and 1. We

chose a uniform distribution between 0 and 50 as the prior of τt because the peptide count

in our dataset never exceeds 50. We chose a Gamma prior for the scaling parameter ρt

because we just wanted to define an arbitrary prior over a non-negative parameter. And

we chose exponential priors for the over-dispersion parameter rt and the regression coef-

ficient ωj because we wanted to have a prior on non-negative parameters and we wanted

to penalize very large values. The upper bound in the last two uniform distributions were

set large enough to make sure a wide range of exponential distributions can be sampled

for rt and ωj. With the likelihood and priors defined above, we then implemented Gibbs

sampling [22] to compute marginal distribution of δij conditioned on all evidence. All

the inferences were made on drawing 5,000 samples after 10,000 iterations.

3.3.3 Apply Bayesian model to predict miRNA targets

We applied the model described above to the 21,712 putative miRNA-protein interactions

derived from TargetScan, and assigned a confidence score to each putative interaction.

Then we ranked the 21,712 putative interactions from the highest to the lowest confidence,

and grouped them into 44 bins with each bin containing 500 ranked interactions. The

results are shown in Figure 3.2A-D for 4 different tissue types.

As shown in Figure 3.2, our model can well capture the miRNAs’ repression effects in

these four tissues. The miRNA-protein pairs that are predicted to have the highest confi-

dence scores have lower protein abundance and higher miRNA expression; conversely the

miRNA-protein pairs with the lowest confidence scores also have higher protein abun-

dance and higher miRNA expression. For the interactions ranked with intermediate

confidence scores, the miRNA expression is low, and the protein abundance can be either

low or high. The fact that a large number of TargetScan predictions are located in the

right side of the curve, i.e. low confidence score with high miRNA expression and high
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Figure 3.2: miRNA targets prediction using miRNA expression and protein abundance.

With our model, in the 4 tissues (panel A-D), the most confident predictions (on the

left) have the lowest protein abundance and the highest miRNA expression; while the

least confident predictions (on the right) are high in both protein abundance and miRNA

expression. All the data were scaled between 0 and 1. The putative predictions were

from (Babak, et al, 2004) using TargetScan.
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protein abundance, indicates the extent of possible false-positives in the predictions made

from sequence data alone. Because the Bayesian approach is intrinsically evidence-based,

a prediction can only be made with high confidence if the miRNA is highly expressed in

a certain tissue.

Note that the high-confidence miRNA-protein interaction pairs as shown in Figure

3.2 are predictions pooled from all 4 tissues. We do not explicitly model the tissue

specificity of miRNAs in our model (see Equation 3.3); instead, the strengths of the

miRNA regulation in specific tissues are inferred from the expression level of miRNAs.

For instance, a miRNA can be interpreted as a functional regulator in a given tissue only

if it is highly expressed and it has high confidence score with a potential target protein

that is lowly expressed in that tissue.

3.3.4 Blind tests for the Bayesian predictions method

As described above, we only used the protein abundance and miRNA expression in brain,

lung, heart and liver to train our model and make predictions; the data in the remaining

two tissues (placenta and kidney) was left out during the model construction stage. To

further validate our method, we subsequently conducted a blind test on the placenta and

kidney data sets.

Figure 3.3A shows the results of the blind test. On the X-axis, we sorted the miRNA-

protein pairs according to the confidence scores predicted by using the four training

tissues; on the Y-axis, we plotted the protein abundance and miRNA expression level

that are observed in placenta. The results indicate that, as a general trend, the predicted

interactions can also reflect the desired tendency in placenta. The predicted interactions

with high confidence usually have low protein abundance and high miRNA expression.

The least confident predictions also have highly expressed proteins and highly expressed

miRNAs, indicating those proteins are unlikely to be repressed by the miRNAs in pla-

centa.
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In kidney as the second blind test, shown in Figure 3.3B, although the miRNA expres-

sion data were not available for this tissue type, clearly our predictions were also effective

and the most confident predictions have the lowest protein abundance and vice versa.

All the above analysis were based on the sequence-based predictions from TargetScan.

The same results also hold true after we repeated the analysis using predictions from

another program miRanda [17]. Next, to test the robustness of our method, we shuffled

the gene labels to randomize the proteomic data, and we also applied our Bayesian model

on the random data. We rank the interaction pairs from the most confident to the least

confident, and Figure 3.2C shows the grouped protein abundance of the ranked miRNA

targets for the random data with the same grouping used for the results in Figure 3.2

and 3.3AB. To compare the ranked protein abundance in the brain tissue for the real

data in Figure 3.2 to that in Figure 3.3C, we grouped 5 consecutive groups (dots) into

one region, the standard deviations of the first 7 disjoint neighboring regions of the real

data are, respectively, 0.0039, 0.0049, 0.0091, 0.0069, 0.023, 0.039, and 0.024, and the

standard deviations of the first 7 regions of the random data are, respectively, 0.17, 0.17,

0.16, 0.063, 0.075, 0.082, and 0.064. We can see that, on the real data, the standard

deviations of protein abundance for the highly-ranked miRNA-protein interaction pairs

are much smaller, and the p-value for the two sequences of standard deviations based

on Wilcoxon Signed-Rank Test is 0.016. Moreover, the results in Figure 3.2C from the

shuffled data appear clearly random, which strongly suggests that our predictions did

not occur by chance.

3.3.5 Comparison with TarBase and other methods

We further searched for published experimental evidence for our predicted interactions

in TarBase [59], which is a comprehensive database containing experimentally verified

miRNA targets in a number of organisms. However, to this date, there are only 41

experimentally verified miRNA targets for mouse in the database. Since in the database
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Figure 3.3: Blind test of our predictions on placenta (A) and kidney (B). (C) Result from

randomization with protein labels shuffled.
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all targets used gene symbol, we then converted the Swiss-Prot protein names in our

study to corresponding gene symbols via http://idconverter.bioinfo.cnio.es/ [1]. However,

except for the gene Arid3a (ARI3A MOUSE), all other genes were not included in our

dataset as they do not have protein abundance data compiled in this study. For Arida3a,

in TarBase, it was annotated to be regulated by miR-125b. From our predictions based

on miRanda predictions, the interactions between miR-125b and ARI3A MOUSE was

ranked among top 5% in all the 17,339 putative interactions, suggesting ARI3A MOUSE

is likely a true target. However, this interaction was not detected by TargetScan as

compiled in [5].

We also compared our prediction results to the results obtained using the method

in [29]. Most of the predictions by both models are consistent, but our approach di-

rectly used the proteomic data for target predictions 1, and we believe that modeling

proteomic data is the most reliable way of filtering miRNA target predictions when

large-scale proteomic data become available. In details, the miRNA/target interac-

tions such as mmu-mir-214/Q8R399 MOUSE, mmu-mir-211/Q8BYX4 MOUSE, mmu-

miR-292-5p/KCNN3 MOUSE, and mmu-miR-298/RRAS2 MOUSE all ranked among

top 10% in all the putative interactions in both models. However, the miRNA/target in-

teractions such as mmu-miR-298/PLF3 MOUSE, mmu-miR-210/Q8BSZ8 MOUSE, and

mmu-miR-92/8BZZ4 MOUSE all ranked among top 1% in all the putative interactions

in our model, but they all ranked among bottom 15% in all the putative interactions in

the model by [29]. We found that these miRNA/target pairs all have very good relatively

high miRNA expression vs. relatively low protein abundance patterns, but they don’t

have very clear relatively high miRNA expression vs. relatively low mRNA expression

patterns. Since miRNAs can either degrade mRNAs or repress mRNA translation, which

will be discussed later in this chapter, we believe that these interactions are likely to be

1Our Bayesian model filters sequence-based predictions and removes a lot of false positives predicted

by sequence models.
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false negatives predicted by the model in [29].

3.3.6 Two possible mechanisms: mRNA degradation vs. trans-

lational repression

In this section, we tried investigating whether the predicted target genes are regulated by

translational repression or by mRNA degradation using a Bayesian model, which was only

an attempt to understand miRNA regulatory mechanism based on all the data published

before 2007. In [31], Bayesian Networks were constructed to test whether a mRNA

degradation model or a translational repression model is more appropriate for fitting the

mRNA expression and protein abundance data to predict miRNA targets by comparing

the Bayesian scores of the Bayesian Networks, and this model provided a very reasonable

model selection method for restricting all miRNA and target gene interactions to one type

of miRNA regulatory mechanism and completely ignoring the other one, but the model is

not capable of inferring which mechanism is more likely for a specific miRNA and target

gene interaction. In another word, the model in [29] can only predict one type of miRNA

targets with the assumed regulatory mechanism. An improved version of this model was

published in [30], which infers the regulatory mechanism of a specific miRNA-protein

interaction by regressing the target protein abundance based on either mRNA expression

level alone or both mRNA expression level and miRNA expression level using linear

models. By comparing the sum of least squared errors of the two different linear models

using cross validation on different tissues, the improved model can predict the miRNA

regulatory mechanism for the given interaction, but the model suffers from the limited

available tissues for fitting each linear model for each miRNA-protein interaction. In

this section, we presented an alternative Bayesian model for inferring miRNA regulatory

mechanism. For the top miRNA-protein pairs that are predicted to be true regulator

and targets, we can distinguish between these two possible regulatory mechanisms by

analyzing the correlation between the miRNA expression and the mRNA expression.
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For example, if a top-ranked miRNA-protein pair has high miRNA expression and high

mRNA expression, then it is a strong indicator that the protein target is regulated

by translational expression. In contrast, if a predicted miRNA target has low mRNA

expression, then it is likely regulated by mRNA degradation.

There are two common concerns in modeling the mRNA expression data: (1) the

intrinsic low signal-to-noise ratio of microarray data, (2) the potential problem of missing

values since a large number of the genes have expression levels measured as 0 [76]. To

overcome these difficulties, we elected to discretize the mRNA expression data by using

a cutoff of 0.1 to binarize the expression level to either low or high, which was decided

by checking the histogram of the expression level and fitting a Mixture of Gaussians with

two mixture components. For a given mRNA i in tissue t, 1 ≤ i ≤ L and 1 ≤ t ≤ T ,

where L is the total number of mRNAs in the confident predictions derived from the first

model, its mRNA expression Rit can be either low (Rit = 0) or high (Rit = 1). Let the

probability of degradation for mRNA i in tissue t be qit, we assume,

P (Rit = k) = q
(1−k)
it (1 − qit)

k, k = 0 or 1. (3.7)

We next used logistic regression to regress qit with the expression of miRNAs that regu-

lates gene i, in tissue t. Then we have the following equation,

logit(qit) = log(
qit

1 − qit

) =
H

∑

j=1

ΦjbijMjt (3.8)

in which H is the total number of miRNAs in the miRNA-protein interactions, Mjt is the

expression of the j-th miRNA in tissue t, bij is a binary latent variable indicating whether

or not the gene i is degraded by miRNA j , and Φj is a scaling parameter associated

with the j-th miRNA, shared by all tissue types. The rationale behind Equation 3.8

is that for a given gene i, if its expression is low in tissue t, i.e. Rit = 0, then from

the perspective of maximum likelihood, we need to maximize qit so that the interactions

between gene i and its regulating miRNAs that are highly expressed in tissue t should be

assigned a higher degradation score. In this sense, the observed low expression of mRNA
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and high expression of miRNA together lead to the assignment of a high degradation

probability. Similarly, if in tissue t, Rit = 1, then qit needs to be minimized, implying

those highly expressed miRNAs should be associated with a low degradation score, so

the highly expressed miRNAs and mRNAs indicate such regulation is more likely to be

through translational repression than through degradation.

Regarding the latent variable bij, we further required that:

p(bij = 1|δij = 1) = h,

p(bij = 1|δij = 0) = 0, (3.9)

in which, δij indicates whether or not mRNA i is targeted by miRNA j. If δij = 1, then

the miRNA j has a probability h to cause degradation to its target mRNA i. We then

used a full Bayesian approach to estimate the parameters in the model to avoid over-

fitting the data and to account for all potential uncertainties. In the Bayesian framework,

we then assigned priors to other parameters in the model as follows:

Φj ∼ exponential(Ψ),

Ψ ∼ uniform(0, +∞),

h ∼ beta(1, 1). (3.10)

Having defined the likelihood and the priors, we then inferred the posterior marginal

distribution of p(bij = 1|S,W,M), conditioned on all the evidence. By implementing

Gibbs sampling in the environment of WinBugs [61], all the inferences were based on

drawing 5,000 samples after 10,000 iterations.

3.3.7 Apply the Bayesian model to mRNA data

By implementing the model described above, we calculated the confidence scores for

mRNA degradation for each miRNA-protein interaction pair, which indicated the like-

lihood that miRNA causes degradation to their mRNA targets. The lower degradation
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score implies higher probability of being translationally repressed. Then, we ranked the

scores from the highest to the lowest, and grouped them into 50 bins, each containing 100

ranked interactions. Figure 3.4 shows the mRNA expression level of the ranked miRNA

targets across 4 tissue types. The miRNA targets near the top of the Figure 3.4(A)

have the highest probability of being regulated by mRNA degradation, as demonstrated

by their low mRNA expression level (details shown in Figure 3.4(B)). Conversely the

targets near the bottom have the highest probability of being regulated by translational

repression (details shown in Figure 3.4(C)). The top ranked interactions are associated

with the low mRNA expression and the bottom ranked interactions are associated with

high mRNA expression, which is consistent with our model assumptions. We can use

the degradation probabilities to infer the exact regulatory mechanism for each miRNA-

protein interaction pair, and we can verify the highly-ranked predictions by biological

experiments, which will be done in the future.

3.4 Discussion

3.4.1 miRNA regulation by translational repression

In this chaper we described two novel formalisms in the computational analysis of miRNA

regulation. We first introduced a Bayesian approach to identify miRNA targets based

on protein abundance data. After having selected high confidence predictions, we then

introduced a second Bayesian model to further distinguish the two possible regulatory

mechanisms, i.e. mRNA degradation versus translational repression. We showed that our

model is very effective in describing the three intertwining genomics data sets, i.e. miRNA

expression, mRNA expression, and protein abundance. Our results demonstrated that

protein abundance is a very useful resource in predicting miRNA targets. We would like

to point out that although in this chapter our model takes as input the predictions from

TargetScan and miRanda, essentially results from any other sequence-based predictions
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Figure 3.4: (A) Ranking of miRNA targets according to the probability of being regulated

by the mechanism of mRNA degradation; the targets were ranked from the highest

degradation probability (top) to the lowest degradation probability (bottom). It also

showed mRNA expression of the targets across 4 tissue types. Black color denotes high

expression and white color denotes low expression. (B) The top ranked interactions have

the highest degradation probability, and are associated with the low mRNA expression.

(C) The bottom ranked interactions have the lowest degradation probability, and thus

are associated with high mRNA expression.
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can be used in our model.

3.4.2 Potential limitations and future directions

Even though our framework has obtained encouraging results, it certainly has limitations.

We envision that it can be improved in the following area. (1) As we noted, miRNA is

not the only mechanism of gene regulation. Some of the observed variations in protein

abundance across tissues are likely the result of regulation at the transcription level by

transcription factors, or at the post-transcriptional level by mRNA degradation path-

ways. (2) Although it has been reported that the mechanism of translational repression

by miRNAs has little impact on mRNA level, the mRNA expression is still helpful in

predicting miRNA targets, and recent research suggested that targeted mRNA showing

strong correlation (positive and negative) with miRNAs ([19] and [68]). In the future,

we could incorporate the mRNA expression data with the proteomic data to build an

integrated predictive model. (3) At this stage, our model takes as input the sequence-

based predictions from another prediction programs such as TargetScan or miRANDA,

therefore our algorithm does not explicitly consider the sequence complementarity and

evolutionary conservation. As a future work, it would be interesting to extend our model

to incorporate these properties into a unified probabilistic framework. (4) In our model,

similar with [29], we assumed a single baseline distribution of protein abundance for all

the genes in each tissue type. However, this is a significant simplification since different

genes could have distinct baseline expression levels. The next step in this work is to take

this into account and develop a more realistic expression baseline model. For example it

would be possible to take into account the codon usage of the genes to infer the possible

baseline expression of a given gene [48].



Chapter 4

Gene Function Prediction Using

Yeast Morphology Data

Protein sequence determines gene function at sequence level by determining different

structures, miRNAs influences or controls gene function at expression and protein abun-

dance level by affecting the protein production quantities, and finally, different genes

manifest their ultimate functions at the morphology level. In this chapter, I will discuss

how to predict gene functions from yeast cellular morphology data.

4.1 Background

The budding yeast Saccharomyces cerevisiae has been thoroughly studied as model or-

ganism to reveal gene functions to answer many important biological questions. To

study gene functions, gene knockout experiment is the most extensively used approach

by biologists. However, biologists found that approximately 19% of yeast genes are es-

sential for haploid viability under normal laboratory conditions (growth at 30 degree in

rich medium with glucose) [23]. Because essential genes cannot be deleted in a yeast

haploid strain, their functions cannot be studied directly by knockout experiments. Bi-

ological experiments show that a lot of genes involved in important biological processes

71
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such as transcription, splicing, ribosome biosynthesis, translation, cell wall and mem-

brane biogenesis, DNA replication, nuclear transport, and basic cytoskeletal functions

are all required for cell proliferation and are often essential. Although they are more

important, essential genes are less known to biologist for their precise functions at the

molecular level. Fortunately, conditional alleles provide opportunities to study the func-

tions of essential genes. Conditional yeast gene mutants include temperature-sensitive

(ts) alleles, cold-sensitive (cs) alleles, temperature-inducible degron (td) mutants [16],

and tetracycline-regulatable promoter-replacement (tet) alleles [18].

Temperature-sensitive alleles (mutants) are the most commonly used conditional al-

leles in yeast. At the permissive temperature, the activity or phenotype of a ts mutant

is very similar to that of the wild type. However, at the restrictive temperature, the

activity of a ts mutant is reduced or abolished, resulting in a slow-growth or lethal phe-

notype. Given that many ts mutants are readily available and relatively easy to work

with, temperature-sensitive mutants (ts allels) have been used by biologists for decades

to study gene functions in vivo and to unravel the gene interaction networks. Biologists

have developed several different methods for creating temperature sensitive mutants such

as DNA shuffling and error-prone Polymerase Chain Reaction (PCR).

In this project, my collaborators constructed a collection of temperature-sensitive

(ts) mutants of yeast essential genes in the S288c background. They gathered over 1000

yeast strains and DNA constructs carrying ts alleles from about 300 different laboratories.

They constructed 795 ts strains representing more than 500 essential genes, accounting

for about 50% of yeast essential genes, and they verified close to 99% of the ts alleles

using Polymerase Chain Reaction (PCR) and by complementation of the ts phenotype

with the cognate plasmid. Then the ts collection was characterized by quantitative phe-

notypic analysis called high content screening (HCS) using eight fluorescent markers on

eight fundamental sub-cellular compartments or structures, including nucleus, DNA dam-

age foci, mitochondria, mitotic spindle, actin patches, plasma membrane, Endoplasmic
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Reticulum, and Peroxisome.

By quantifying these cell image data using an ImageXpress 5000A fluorescence mi-

croscopy system, my collaborators generated a morphological profile for every ts mutant

at both permissive temperature (26 degree) and restrictive temperature (32 degree). On

average, each marker has about 12 features. For each marker of a given mutant, they

measured the values of the corresponding group of features from a lot of microscopy

images in which each image contains a lot of cells, giving each feature a distribution

of values. According to the diameter ratio between mother cell and daughter cell, we

classified the cells obtained from microscopy images to 4 cell groups: large bud cells,

middle bud cells, small bud cells, and unbud cells. Because small bud cells have a lot of

missing values, we did not include them for analysis. Adding the features of 8 markers

together, each cell group has about 100 features including general cellular parameters,

such as cell shape, budding index, organelle density, as well as multiple marker-specific

parameters such as Spindle Length, Spindle Fiber Length, Actin Area, Mitochondria

Perimeter, Nucleus Shape Factor, Nucleus Elliptical Form Factor, Peroxisome Inner Ra-

dius, Peroxisome Outer Radius, etc. Adding the features from the 3 cell groups together,

we have about 300 features in total for each ts allele in our final dataset.

By analyzing these cellular morphology data, we want to characterize how yeast

essential genes affect morphology when mutated and what the functions of these essential

genes are. Thereby, we aim to identify novel functions of well-characterized genes and

new roles of uncharacterized genes in well-established pathways. The significance of

this project is that my collaborators are the first to produce the whole-genome yeast ts

alleles on the same yeast strain under the same conditions. Since yeast essential genes

cannot be knocked out, by studying these ts alleles, they can generate a comprehensive

map of yeast essential gene functions in vivo based on cell morphology changes obtained

from microscopy image data. Moreover, ts alleles provide them with opportunities to

study synthetic lethal genetic interactions (SGA) [67] within essential genes and between
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essential genes and non-essential genes, which significantly extends the traditional SGA

technique that can only be applied to non-essential genes.

In this project, I proposed using Rank Sum (RS) test, Kolmogorov-Smirnov (KS)

test [24, 28], and Kernel Density Estimation (KDE) [73] to transform this dataset over

distributions of distributions to a feature matrix with one ts allele mutant having one

feature vector. To perform function prediction, I used Kernel Support Vector Machine

classifiers to evaluate the performance of different feature representations, and I evalu-

ated the performance of the SVM using a combined kernel which is a convex combination

of kernels based on different feature representations. I also used feature selection algo-

rithms such as forward-backward feature selection [27], random forest [62], and recursive

feature elimination method [26], to perform function prediction and informative feature

extraction for these essential genes. These genes were assigned to 24 functional categories

based on Gene Ontology assignment and manual curation of biological experts. Function

prediction is very natural in this context because the original goal of ts allele studies is

to explore the gene functions in vivo. To perform function prediction, I used RBF kernel

SVMs based on different feature representations. The final results show that the features

derived from the changes of mutant phenotype relative to the wild-type phenotype at 26

degree using a triple-valued RS test are the most informative ones for function prediction.

My contribution in the project is that I proposed novel data representation schemes

to transform the complex microscopy image features of each ts allele to a sensible feature

vector and that I can directly measure the similarities between pairwise ts alleles for

function prediction. I proposed the first pipeline and method for analyzing such kind of

morphology data of mutants for gene function prediction. And based on my effective data

representation, I can further study which ts alleles result in the same type of abnormal

phenotype.
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4.2 Density Estimation Methods and Statistical Tests

Because we need to estimate the distribution of wild-type feature values and to compare

the population of mutant feature values to the population of wild-type feature values, I

will review some density estimation methods and statistical tests for comparing samples

in this section.

4.2.1 Gaussian Mixture Models

Gaussian Mixture Model (GMM) [49], which is also called the Mixture of Gaussians,

is the most commonly used parametric method for density estimation and clustering in

machine learning. Given a dataset with N independent and identically distributed data

points, X = {x(1), . . . ,x(n), . . . ,x(N)}, which is sampled from a Mixture of Gaussians

with K components, GMM assumes the variable x takes the probability density function

of the following form,

p(x) =
K

∑

k=1

πkN (x|µk,Σk), (4.1)

where πk is the mixing coefficient for component k, N (x|µk,Σk) is the k-th Gaussian

distribution with mean µk and covariance Σk, and
∑

k πk = 1, πk ≥ 0, k = 1, . . . , K.

The parameters of GMM {πk, µk,Σk} can be learned using standard Expectation

Maximization (EM) algorithm [15]. EM algorithm is often used to learn the parameters

of a model with latent variables in a maximum likelihood setting. It bounds the log

likelihood of data with a function called free energy by assuming a probability distribution

q over latent variables, and then it performs coordinate descent to minimize the free

energy over the q distribution and the parameters of the model.

Use a discrete latent variable z(n) to indicate which component the data point n comes

from, the EM algorithm for GMM iterates the following two steps:

E-step: Compute the posterior probability for each data point n,
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p(z(n) = k|x(n)) =
πkN (x(n)|µk,Σk)

∑K

j=1 πjN (x(n)|µj,Σj)
(4.2)

M-step: re-estimate the parameters of GMM using the newly computed posterior prob-

abilities,

µnew
k =

∑N

n=1 p(z(n) = k|x(n))x(n)

∑N

n=1 p(z(n) = k|x(n))
(4.3)

Σnew
k =

∑N

n=1 p(z(n) = k|x(n))(x(n) − µnew
k )(x(n) − µnew

k )T

∑n

n=1 p(z(n) = k|x(n))
(4.4)

πnew
k =

∑N

n=1 p(z(n) = k|x(n))

N
. (4.5)

The EM algorithm iterates the E-step and the M-step until convergence. Although

GMM has wide applicability, it’s often hard to choose the optimal number of mixture

components for it. For some special datasets which contains lots of data points taking

several unique values, GMM often has trouble in estimating the covariance matrix.

4.2.2 Kernel Density Estimation

Kernel Density Estimation (KDE) [73, 10] is a non-parametric method that is extensively

used for density estimation. It can be viewed as a smooth version of histogram method

for density estimation. Suppose we have a one-dimensional dataset with N data points,

in histogram methods, we partition the input space x into several bins with the same

width w, and we count the number of data points Ni falling in bin i, then the probability

density pi over bin i can be approximated by,

pi =
Ni

Nw
. (4.6)

Histogram method is simple and easy to use, but it is not smooth due to coarsely

divided bins. Instead of using bins, we can use a smooth kernel function to define smooth

volumes around data points. Given a kernel function K and a positive number h called
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bandwidth, KDE defines the probability distribution of x as follows,

p(x) =
1

Nh

N
∑

n=1

K(
x − x(n)

h
), (4.7)

where K denotes the kernel function, and a smooth Gaussian kernel with K(x) =

1√
2π

exp(−x2) is often used. The bandwidth h plays an important role in smoothing:

if h is too small, the estimated density function will be sensitive to noise; if h is too large,

the estimated function will fail to capture the multi-modal properties of the underlying

distribution. A lot of heuristic methods have been proposed for choosing h [33]. When

applying KDE to estimate the wild-type feature value distributions on the morphology

dataset, to estimate h, I used a heuristic method that estimates the variance of the

median-subtracted residuals of log-transformed data and minimizes the L2 risk function

of the underlying probability density function of data, which is implemented in Matlab

R2008b. And there are often a large number of values for each wild-type feature, choos-

ing h becomes not crucial, which alleviates the sensitivity problem caused by the choice

of bandwidth parameter [73].

4.2.3 Rank-Sum Test for Comparing Two Samples

Rank-Sum (RS) test [24, 28] is a non-parametric test for comparing two non-paired

samples to check if they have the same median. Suppose we have one sample X =

{x(1), . . . , x(n)} and another sample Y = {y(1), . . . , y(m)}, the basic idea of the RS test is

to combine X and Y together and sort the combined data with an increasing order to

see if one sample is stochastically larger or smaller than the other. The RS test performs

the following procedure for small n and m:

1. Let N = n + m, and let R1, . . . , RN be the rank of the combined data, with the

smallest rank being 1 and the largest rank being N , and calculate the observed rank sum

W of sample X (or Y);

2. find all possible permutations of the ranks of size N , and assign n ranks to X and m



Chapter 4. Gene Function Prediction Using Yeast Morphology Data 78

ranks to Y;

3. For each permutation, calculate the sum of the ranks assigned to X (or Y), denoted

by S;

4. P-valueonesided = thenumberoftimesS>W

(n+m
n )

, and P-valuetwosided = 2× P-valueonesided.

If N is large, performing all possible permutations is impossible. According to the

sampling theory from a finite population, the mean of S is E(S) = mµ = n(N+1)
2

, where

µ =
PN

i=1 Ri

N
= N+1

2
, and the variance of S is var(S) =

mn
PN

i=1(Ri−µ)2

N(N−1)
= mn(N+1)

12
. If there

are k groups of ties, let ti denote the number of observations in the i-th tied group, the

adjusted variance of S is var(Swithties) = mn(N+1)
12

− mn
Pk

i=1(t3i−ti)

12N(N−1)
, and the mean of S

remains the same. Therefore, the p-value for rejecting the hypothesis can be computed

using z-score = W−E(S)√
var(S)

to refer a unit Gaussian distribution.

4.2.4 Kolmogrov-Smirnov Test for Comparing Two Samples

Kolmogrov-Smirnov (KS) Test [24, 28] is another non-parametric statistical test for com-

paring two samples. Instead of testing if one sample tends to be stochastically larger

or smaller than the other as the RS test, the KS test is a test that just tells if the two

samples are different for any reason. Suppose we also have the two samples X and Y as

in section 4.2.3, the KS test computes the empirical distribution function (EDF) F1 and

F2 for the two samples, where F1(x) = 1
n
I(xi <= x), and I(·) is an indicator function,

and F2y can be computed in a similar way. The KS statistics Dn,m is the largest distance

between the two EDFs, which can be computed as follows,

Dn,m = maxw|F1(w) − F2(w)|. (4.8)

The score of
√

nm
n+m

Dn,m follows a Kolmogrov distribution, and the p-value can be

readily computed.
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4.3 Data and Methods

In this section, I will describe the morphology dataset and the feature representation

methods. Suppose we have a n by m non-traditional matrix X , where n is the number of ts

alleles, m is the number of morphological features, each (i, j)−th component of X contains

a distribution of values with i indexing ts alleles and j indexing features, and each row of

X corresponds to one ts allele, then we can represent X by X = [x(1); . . . ;x(i); . . . ;x(n)],

and x(i) = [x
(i)
1 , . . . ,x

(i)
j , . . . ,x

(i)
m ], or equivalently, Xij = x

(i)
j , i = 1, . . . , n, and j =

1, . . . ,m. Here, the (i, j)-th component of X is a vector instead of a scalar. We should

note that x(i) has different lengths for different is, and x
(i)
j might have different lengths for

different js. The reason is that the cell populations carrying different ts alleles obtained

from microscopy images are different, and even for the same ts allele, the cell populations

for different biological markers are different. We also have an additional 1 by m similar

non-traditional matrix W = [w1, . . . ,wj, . . . ,wm] representing the morphological profile

of wild-type cells. Figure 4.1 illustrates the described dataset above. Because the given

dataset X is a non-traditional matrix instead of a n by m mathematical matrix, each

feature of each ts allele has a distribution of values with varying size, we cannot easily

measure the similarity between pairwise ts alleles, which poses challenges for function

prediction analysis using machine learning methods.

In this section, I will describe several methods which convert the given complex

dataset to a mathematical n by m feature matrix, so that we can easily apply ma-

chine learning methods on it for function prediction analysis. Because ts mutants often

show different phenotype rather than wild-type phenotype, in mathematical terms, the

feature values of ts mutants often have different distributions compared to the corre-

sponding feature value distribution of wild-type cells, I propose using statistical tests

and density estimation methods described in section 4.2 to quantify differences between

ts mutant feature distributions and wild-type feature distributions. In specific, I will

use Rank-Sum (RS) test and Kolmogorov-Smirnov (KS) test to directly compare mutant
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Figure 4.1: This figure shows the non-traditional matrix containing the values of different

features for wild-type cells and different temperature-sensitive mutants. The curve in

each grid illustrates the probability density function estimated from the distribution of

values of the corresponding feature (column) for the corresponding temperature-sensitive

mutant or wild type (row).
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feature distributions to wild-type feature distributions, and I will evaluate the average

log-probabilities of mutant feature values under the probability density function of cor-

responding wild-type feature values estimated using Kernel Density Estimation (KDE).

4.3.1 Calculate Features Using Rank-Sum Test

Algorithm 2 The algorithm for calculating feature matrices using Rank-Sum test and

Kolmogorov-Smirnov test.

Input: the profiles of ts mutants X and the wild-type profile W described in section 4.3,

the number of ts mutants n, and the number of features m.

Output: the feature matrix Frs based on the RS test and the feature matrix Fks based

on the KS test.

1. For ts mutant i = 1, . . ., n:

2. For morphology feature j = 1, . . ., m:

3. rs pvalue = Rank-Sum test(x
(i)
j , Wj);

4. ts median = median (x
(i)
j );

5. wt median = median (Wj);

6. Frs(i, j) = I(rs pvalue ≤ 0.05) ∗ sign(ts median − wt median);

7. ks pvalue = Kolmogorov-Smirnov test(x
(i)
j , Wj);

8. Fks(i, j) = I(ks pvalue ≤ 0.05);

9. End For loop over j;

10. End For loop over i;

11. Return Frs and Fks.

Algorithm 2 describes how to compute a n by m feature matrix using the RS test from

the given the non-traditional matrix X and wild-type feature data W in details, where I

is an indicator function, and sign(a) = +1 if a > 0, and −1 otherwise. In fact, we choose

the RS test because it is a non-parametric distribution-assumption-free test that can
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effectively test whether two population sets of data points are from the same underlying

distribution. Moreover, instead of giving a binary test result, I also compare the median

of mutant feature values to that of wild-type feature values to produce a triple-valued

test result, which reflects whether each ts mutant manifests elevated feature values (+1),

or reduced feature values (-1), or no change (0), relative to the corresponding wild-

type feature values. Based on this triple-valued representation, only pairwise ts mutants

that manifest the same direction of phenotype changes will have high similarities, and

pairwise ts mutants that both have abnormal phenotype but manifest different directions

of phenotype changes will have low similarities, which is different from what we get using a

binary representation. Experimental results later in this chapter will show that the triple-

valued representation is much better for function analysis than the binary representation

using RS test.

4.3.2 Calculate Features Using Kolmogorov-Smirnov Test

Besides RS test, Kolmogorov-Smirnov (KS) test reviewed in 4.2 is another non-parametric

distribution-assumption-free test for comparing two samples. Algorithm 2 shows how to

compute a binary feature matrix from the given dataset using KS test. Although KS

test can also be used here to generate feature representation, I believe that it is not

appropriate for this particular dataset. This is because the sample size of wild-type

feature values and that of mutant feature values differ a lot for some ts mutants. In

details, we often collect feature values for a lot of features from more than 10,000 wild-

type cells, but we often collect feature values for many features from below 50 cells

carrying some particular ts mutants, for which Figure 4.2 gives an example. Due to

the dramatic sample size difference, the KS test will simply output significant difference

although the mutant feature values are just like sampled values from the wild-type feature

distribution. And for some special ts mutants, the sample size of mutant feature values

is very small, which will cause problems for estimating empirical cumulative distribution
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Figure 4.2: This figure shows the histogram of the areas of unbud wild-type cells (the top

one) and the histogram of the areas of unbud cells carrying ts allele rsp5-sm1 (the bottom

one). From this figure, we can see that, for the feature ”Unbud Cell Area”, there are

above 60,000 wild-type sample cells available for measuring the wild-type feature values,

but there are only about 20 sample cells carrying the ts allele available for measuring the

mutant feature values.
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Figure 4.3: This figure presents the histogram of the actin orientation degrees of unbud

wild-type cells (the top one) and the corresponding probability density function of the

wild-type feature values estimated by KDE (the bottom one). This figure clearly shows

that the wild-type feature values here have a multi-modal distribution, which violates

the assumption of applying a t-test.
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Figure 4.4: This figure plots the histogram of the actin perimeters of large-bud wild-

type cells. Although there are a lot of wild-type large-bud cells measured here, the total

number of unique numerical values is very small, which will cause problems for density

estimation using GMM in a brute-force way.

thereby cause problems for KS test.

Some other researchers might want to use student t-test for comparing samples to

generate features for ts mutants. However, t-test requires the assumption that both

the mutant feature values and the wild-type feature values have Gaussian distribution,

which is often violated in our problem. Figure 4.3 gives such an example. It shows the

multi-modal distribution of the perimeters of large-bud wild-type cells.



Chapter 4. Gene Function Prediction Using Yeast Morphology Data 86

4.3.3 Calculate Features Through Kernel Density Estimation

The computed features of ts mutants should reflect how different the mutant feature value

distribution is from the corresponding wild-type feature value distribution. Besides using

statistical tests to directly quantify the difference between the two distributions, we can

use an alternative approach to quantify how the mutant feature values are distributed

under the wild-type feature distribution. We can use the kernel density estimation meth-

ods described in section 4.2 to estimate the wild-type feature distributions, then either

we can compute the proportion of deviant values in the sample of mutant feature values,

where the deviant values refer to the values with cumulative probability ≥ 0.95 or ≤ 0.05

under the wild-type distribution, or we can compute the average log-probabilities of the

mutant feature values under the wild-type distribution.

Gaussian Mixture Model (GMM) described in section 4.2 is a commonly used ap-

proach to density estimation, but it cannot be directly applied to our dataset to estimate

wild-type feature distributions. The reason is that, in our dataset, a lot of wild-type

cell feature values take a single numerical value, that is to say, although the population

size of wild-type feature values for many features is above 10,000, the number of unique

numerical values is very small, say, below 100. Figure 4.4 shows such an example. For

these cases, GMM often has components trapped into regions near some highly-popular

unique values, which will cause numerical problems for estimating variances.

Therefore, I turn to Kernel Density Estimation (KDE) for estimating wild-type fea-

ture distributions. I used the default heuristics procedure implemented in Matlab for

estimating the bandwidth parameter in KDE. Because the population size of wild-type

feature values is often very large, above 10,000, the final obtained distribution by KDE

will not be sensitive to the chosen bandwidth parameter. Algorithm 3 describes how

to compute the feature representation from the given dataset through KDE in details.

In this algorithm, I also normalize the proportion of deviants and the average of log-

probabilities to get the final feature matrix Fdev and Fprob so that each feature column
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has mean 0 and standard deviation 1. I also tried using KDE to estimate both wild-type

feature distributions and mutant feature distributions, and then I used the KL-divergence

between the corresponding two distributions as feature value. However, due to the small

size of the feature value population for many features of some ts mutants, I cannot es-

timate the mutant feature distribution in a robust way, which will make the computed

KL-divergence meaningless.

Algorithm 3 The algorithm for calculating feature matrices through Kernel Density

Estimation.

Input: the profiles of ts mutants X and the wild-type profile W described in section 4.3,

the number of ts mutants n, and the number of features m.

Output: the feature matrix Fdev based on the proportion of deviants and the feature ma-

trix Fprob based on the average log-probabilities.

1. For morphology feature j = 1, . . ., m:

2. Estimate the probability density function p and the cumulative distribution function

Pr for the population of wild-type feature values Wj using KDE;

3. For ts mutant i = 1, . . ., n:

4. Fprob(i, j) = average(log(p(x
(i)
j )));

5. Estimate the cumulative probabilities of mutant feature values under Pr using v =

Pr(x
(i)
j );

6. Fdev(i, j) = the proportion of the elements in v with value ≤ 0.05 or ≥ 0.95;

7. End For loop over i

8. End For loop over j

9. Normalize Fprob and Fdev so that each column has mean 0 and standard deviation 1;

10. Return Fprob and Fdev.
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4.4 Results on Gene Function Prediction

In this section, at first, I will present experimental results for gene function prediction

using the morphology profile of ts mutants at 26 degree (permissive temperature) and 32

degree (restrictive temperature) based on the feature representations calculated by the

RS test, the KS test, and KDE, respectively, and I will perform comparisons between the

results obtained using different feature representations and different degrees; then I will

present the experimental results based on the combined features including all the feature

representations described above; finally, I will use feature selection method to investigate

the respective informative features for each functional category.

For all the gene function prediction experiments described in this chapter, there are

775 ts mutants and 293 features altogether. But a lot of ts mutants have missing values

over many features, so I removed these ts mutants for the consideration of prediction

analysis. After the preprocessing, there are 644 ts mutants remaining at 26 degree, and

636 ts mutants remaining at 32 degree. These two sets of ts mutants almost completely

overlap. Based on Gene Ontology and my collaborators’ manual curation, I assigned

these ts mutants into 24 functional categories with each category containing more than

8 ts mutants. Table 4.1 shows all the 24 functional categories in details, and I will use

the ranked number in the table to denote each functional category in the subsequent

description of this chapter, and Table 4.2 shows the ts mutants without missing values

contained in some functional categories in the final morphology dataset at 26 degree.

To enable consistent comparisons between different feature representations, I ran-

domly split the ts mutants in each functional category without missing values at 26

degree into a positive training set containing two-thirds of the ts mutants and a posi-

tive test set containing the remaining one-third. All the other ts mutants outside each

functional category were split into either a negative training set or a negative test set,

also with two-thirds of them for training and one-third of them for test. I call the re-

sulting dataset obtained by this splitting ”Fixed-26” in the subsequent presentation of
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Function No. Function Name

1. Protein Degradation

2. Chromatin Structure and Maintenance

3. Cell Cycle Regulation

4. Ribosomal Biogenesis and Organization

5. Actin Cytoskeleton

6. Protein Modification

7. Protein Targeting

8. Mitosis

9. Vesicle Mediated Transport

10. Filamentous Growth

11. Secretory pathway

12. Translation

13. RNA Splicing

14. Microtubule Cytoskeleton

15. Pol II transcription

16. RNA Processing

17. Cell Wall Biogenesis and Organization

18. DNA Repair and Replication

19. Meiosis

20. Cytokinesis

21. Transcription

22. mitotic spindle organization and biogenesis in nucleus

23. Lipid Metabolic process

24. Mitochondrial Biogenesis and Organization

Table 4.1: The list of 24 functional categories that contain more than 8 ts alleles in each

category.
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Function No. ts mutants

3. cdc53-1, cdc34-2, cdc34-1, ubc9-2, sfi1-7, sfi1-3, ulp1-333, zpr1-1, cdc123-4

7. sec63-1, sec62-ts, srp101-47, sec53-6, sec11-2, srp102-510, spc3-4, sec61-2,

sec65-1

10. STE4, cdc24-H, cdc24-5, cdc24-4, cdc24-3, cdc24-2, cdc24-11, cdc24-1, cdc42-1

srv2-ts, srv2-2

12. cdc39-1, cdc36-16, mot1-1033, nab3-11, gcd1-502, ils1-1, efb1-4, yef3-F650S,

rpg1-1, hyp2-ts, hyp2-3, hyp2-2, hyp2-1, cdc33-E72G, ded1-F144C, ded1-95,

ded1-199, prt1-1

17. gpi8-ts, gaa1-ts, gab1-3, gab1-2, gab1-1, gfa1-97, pkc1-ts, pkc1-4, pkc1-3,

pkc1-2, pkc1-1, cdc10-5, cdc10-4, cdc10-2, cdc10-1, tsc11-7, tsc11-5, tsc11-1,

act1-4, act1-3, act1-2, act1-159, act1-155, act1-136, act1-133, act1-132,

act1-129, act1-125, act1-124, act1-122, act1-121, act1-120, act1-119,

act1-112, act1-111, act1-108, act1-105, act1-101, cdc12-td, cdc12-1, cdc11-5,

cdc11-4, cdc11-3, cdc11-2, cdc11-1, cdc3-3, cdc3-1, rho1-td, gpi19-2-XH,

gpi19-2, gpi1-1, gwt1-20, mcd4-174, gpi13-5, gpi13-4, gpi13-3, smp3-2, smp3-1,

gpi2-774, gpi2-1-7B, spt14-1-10C

24. mas2-10, mas1-1, ole1-m2, arc15-10, tim22-19, tim44-8, pam16-3, pam18-1,

mge1-100, sam35-2

Table 4.2: The final ts alleles without missing values contained in some functional cate-

gories in the morphological profile dataset at 26 degree.
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Feature Representations The Mean ROC Score The Mean ROC50 Score

The triple-valued RS test 0.74 0.37

The binary RS test 0.59 0.22

The KS Test 0.62 0.23

The average log-probabilities (KDE) 0.67 0.32

The proportion of deviant values (KDE) 0.66 0.26

Table 4.3: The overall mean ROC scores and the overall mean ROC50 scores over 24

functional categories obtained by kernel SVMs based on different feature representations

of the morphological profiles of ts mutants at 26 degree.

this chapter. I used linear SVM and RBF Kernel SVM to predict the functions of the ts

mutants in the constructed test sets, and I used ROC score and ROC50 score described

in chapter 2 to evaluate the performance of SVM classifiers based on different feature

representations. The free parameter C in SVM and the variance parameter σ in RBF

kernel were chosen by cross validation.

Because different ts mutants of the same essential gene are constructed by mutating

the gene at different locations, they may cause very different phenotype. Therefore,

it’s reasonable to put multiple ts mutants in the same functional category for random

training/test splitting for function prediction. To eliminate possible bias, I am doing

additional experiments for function prediction by not allowing different ts mutants of the

same essential gene to be split into both training set and test set.
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Figure 4.5: This figure shows the histograms of the feature values of all the ts mutants

on the feature ”UnBud Cell Breadth” at 26 degree, calculated using the average log-

probabilities of mutant unbud cell breadths under the probability density function of

the wild-type unbud cell breadths (the top sub-figure) and the proportion of deviant

mutant unbud cell breadths under the wild-type feature value distribution (the bottom

sub-figure).
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Figure 4.6: The number of functional categories with ROC scores above different thresh-

olds using RBF kernels based on different feature representations.
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Figure 4.7: The number of functional categories with ROC50 scores above different thresh-

olds using RBF kernels based on different feature representations.
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Figure 4.8: The ROC curves with the top 3 ranked ROC scores.
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Figure 4.9: The ROC curves with the ROC scores ranked from 4 to 6.
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Figure 4.10: The ROC curves with the ROC scores ranked from 7 to 9.
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4.4.1 Experimental Results Using RS Test, KS Test, and KDE

In this section, I will present the experimental results on gene function prediction using

different feature representations. The top sub-figure and the bottom sub-figure in Figure

4.5, respectively, show the histogram of the feature values of 644 ts mutants on the

feature ”UnBud Cell Breadth” at 26 degree, calculated, respectively, using the average

log-probabilities and the proportion of deviant values. Applying RBF kernel SVM based

on different feature representations to the 26 degree morphology dataset, the mean ROC

scores and the mean ROC50 scores over 24 functional categories obtained are summarized

in Table 4.3. Figure 4.6 and Figure 4.7, respectively, show the number of functional

categories that score above different threshold values of, respectively, ROC score and

ROC50 score using the RBF kernels based on different feature representations (note that

they are not ROC curves but the summarization of all the ROC and ROC50 scores).

We can see that the triple-valued RS test has the best performance among all the

feature representations. Based on the test, out of 24 functional categories, there are 18

functional categories with ROC score above 0.65, and there are 12 functional categories

with ROC score above 0.75. The 12 functional categories are Cell Cycle Regulation,

Ribosomal Biogenesis and Organization, Actin Cytoskeleton, Protein Targeting, Vesicle

Mediated Transport, Filamentous Growth, Translation, Nucleocytoplasmic transport,

Cell Wall Biogenesis and Organization, Meiosis, Cytokinesis, mitotic spindle organization

and biogenesis in nucleus, and Mitochondrial Biogenesis and Organization, which are

closely related to the cell structures that carry fluorescence markers. Figure 4.8-4.10

show the ROC curves for the functional categories with ROC scores among the top 9

ranked ones using the triple-valued RS test. In contrast, on the same dataset, the mean

ROC score and the mean ROC50 score obtained using the binary RS test are much worse

than those obtained by the triple-valued RS test, and the results obtained using the

KS test are close to those obtained by the binary RS test. The superior performance

of triple-valued RS test clearly demonstrates the importance of distinguishing elevated
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feature deviations from reduced feature deviations.

To further demonstrate that the superior performance of the triple-valued RS test to

that of the KS test is not random, I performed the following test: for each functional

category, I randomly split 2
3

ts mutants for training and 1
3

ts mutants for test using the

same splitting strategy for constructing ”fixed-26”, and then I calculated the ROC scores

obtained by the RBF kernel SVM based on, respectively, different feature representations,

and I repeated this procedure 100 times. The mean ROC scores obtained by the triple-

valued RS test, the binary RS test, the KS test, the average log-probabilities of mutant

feature values, and the proportion of deviant mutant feature values are, respectively,

0.70, 0.59, 0.60, 0.61, and 0.62, which again demonstrates the advantage of using the

triple-valued RS test.

To determine whether one feature representation is statistically significantly better

than another, I performed Wilcoxon Matched-Pairs Signed-Ranks Tests on the ROC score

and ROC50 score differences between pairwise feature representations. The resulting p-

value for the ROC score difference between the triple-valued RS test and the binary RS

test, the KS test, the proportion of deviant values, the average of log-probabilities, are,

respectively, 2.67e− 05, 1.15e− 04, 0.016, and 0.17. The resulting p-value for the ROC50

score difference between the triple-valued RS test and the binary RS test, the KS test, the

proportion of deviant values, the average of log-probabilities, are, respectively, 6.32e−05,

1.70e− 03, 0.032, and 0.46. Except the pairs mentioned above and the ROC and ROC50

score differences between the average log-probabilities and the binary RS test, the score

differences between any other pairs are not statistically significant. These statistical tests

again show that the triple-valued RS test is the best feature representation.

Because the ts mutants respectively appearing in the 26 degree dataset and in the 32

degree dataset almost completely overlap, I mapped the training and test ts mutants for

each functional category used in ”fixed-26” to the 32 degree dataset to make comparisons

possible. Table 4.4 presents the results obtained using RBF kernel SVMs based on
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Feature Representations The Mean ROC Score The Mean ROC50 Score

The triple-valued RS test 0.60 0.29

The binary RS test 0.58 0.22

The KS Test 0.57 0.22

The average log-probabilities (KDE) 0.59 0.23

The proportion of deviant values (KDE) 0.56 0.21

Table 4.4: The overall mean ROC scores and the overall mean ROC50 scores over 24

functional categories obtained by kernel SVMs based on different feature representations

of the morphological profiles of ts mutants at 32 degree.

different feature representations of the morphological profiles of ts mutants at 32 degree.

Again, we see that triple-valued RS test performs best. Comparing the results here to

the results in Table 4.3, we can see that the morphology profiles of ts mutants at the

restrictive temperature (32 degree) do not have as good predictive power as those at the

permissive temperature (26 degree). I tried to combine the features extracted from the

26 degree profiles and the features extracted from the 32 degree profiles, but the results

obtained did not improve upon those obtained using the 26 degree features alone.

4.4.2 Experimental Results Using Combined Features based on

Multiple Kernel Learning

From the results described in the previous sections of this chapter, we can see that the

triple-valued RS test has the best performance on function prediction, and the feature

representations calculated by KDE also have reasonably good performance. Are dif-

ferent feature representations complement to each other? To answer this question, I



Chapter 4. Gene Function Prediction Using Yeast Morphology Data101

propose using a convex combination of RBF kernels based on the four different feature

representations for function prediction, which is analogous to the convex combination of

random-walk kernels described in chapter 2. Therefore, the optimization problem here is

almost the same as what I described in chapter 2, and I also used MOSEK to solve the

resulting QCQP problem. Because Cross Validation (CV) set the variance parameter σ

in the previously used RBF kernels either to 5 or 15, I used a convex combination of 8

RBF kernels, in specific, the RBF kernels based on the feature representations by the

triple-valued RS test, the KS test, the average log-probabilities of mutant feature values,

and the proportion of deviant mutant feature values, with σ = 5 and σ = 15.

The overall mean ROC score and the overall mean ROC50 score obtained by the com-

bined kernels are, respectively, 0.73 and 0.38, which are almost the same as the results

produced by the best feature representation using the triple-valued RS test. Figure 4.11

shows the number of functional categories that score above different threshold values of

ROC score and ROC50 score using the combined kernel and the RBF kernel based on the

triple-valued RS test. This figure also shows that the combined kernel performs compa-

rably to the RBF kernel based on the best feature representation. I performed Wilcoxon

Matched-Pairs Signed-Ranks Tests on the ROC score and ROC50 score differences be-

tween the combined kernel and the RBF kernel based on the triple-valued RS test, and

there is no significant difference between them.

Figure 4.12 presents the combination coefficients of the 8 kernels in 24 functional

categories. Surprisingly, the kernel learning algorithm often places dominant weights on

the kernels based on the feature representations calculated through KDE instead of the

triple-valued RS test to construct the optimal kernel. However, the resulting kernel has

comparable performance to that of the kernel based on the triple-valued RS test, which

clearly shows the usefulness of the feature representations calculated by KDE.
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Figure 4.11: The number of functional categories with ROC scores and ROC50 scores

above different thresholds using the combined kernel and the RBF kernel based on the

triple-valued RS test.
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Figure 4.12: This figure shows the combination coefficients of different kernels. The odd

columns correspond to the RBF kernels with σ = 5 and the even columns correspond

to the RBF kernels with σ = 15. Column 1 and 2 correspond to the KS-test represen-

tation, column 3 and 4 correspond to the triple-valued RS-test representation, column

5 and 6 correspond to the average-log-probabilities representation, and column 7 and 8

correspond to the proportion-of-deviant-values representation.
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4.4.3 Gene Function Prediction with Feature Selection

To identify informative features for each functional category, I used Backward Feature

Selection (BFS) [27], Random Forest (RF) with 1000 trees [62], linear SVM with a fixed

number of features, and Recursive Feature Elimination (RFE) [26] to perform feature

selection. RFE is a recursive greedy feature selection method based on linear SVM.

I didn’t use Forward Feature Selection because SVM often failed to converge on this

dataset with a small number of features. In BFS, the optimal number of features will be

automatically determined, while the optimal number of features used in RF and RFE are

chosen by CV. For a lot of functional categories on which SVM or Random Forest (RF)

produces good results, the feature selection methods based on SVM or RF often output

very good informative features. For a detailed case study, I used Functional Category

22, mitotic spindle organization and biogenesis in nucleus, as a running example.

In linear SVMs, I selected features by choosing the features with the largest magnitude

of weights, since all the features take values on the same scale, -1, 0, or +1. For the linear

SVMs with a fixed number of features, the total number of selected features was set to

100. For BFS, RBF kernel SVM was used as base classifier, in which the optimal value

of σ found by CV was 5. Table 4.5 presents the mean ROC scores over 24 functional

categories by different feature selection methods. We can see that the linear SVM with

100 features selected give the best mean ROC score. Table 4.6 presents the selected

features by different methods for the spindle-related functional category in details. All the

methods succeed in selecting spindle-related features as informative features. In specific,

RFE selected 180 features, BFS selected 7 features, and RF selected 80 features. If I set

the fixed number of features selected by linear SVM above 100, the performance doe not

significantly improve, but if I set the number below 50, the performance dramatically

degrades. When all the 198 features were used as input to train a linear SVM, the mean

ROC score is 0.70, which is slightly better than what I got use only 100 selected features.

Some other researchers might doubt the validity of using a linear SVM without feature
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normalization for feature selection on our triple-valued dataset, so I also normalized the

dataset with each feature having mean 0 and standard deviation 1, and then I performed

linear SVM with a fixed number of 100 features for feature selection. As is shown in

Table 4.5, the overall performance is worse than that of the linear SVM without feature

normalization. And on the spindle-related function, the features selected by the linear

SVM with feature normalization are almost the same as those selected by the linear

SVM without feature normalization, except that two more unbud cell spindle features are

added and the two large-bud cell spindle features in Table 4.5 are removed. I performed

Wilcoxon Signed-Ranks tests on the ROC score differences between pairwise feature

selection methods, but I did not find significant difference between any pair of them.

Although feature selection methods can tell us which features are informative for

each functional category, they did not improve the performance of the RBF kernel SVMs

based on the triple-valued-RS-test feature representation.

4.5 Discussions

Because yeast essential genes cannot be deleted in biological knockout experiments for

direct functional studies, my collaborators collected an array of yeast ts alleles, and

measured the morphological profiles of these ts alleles using fluorescence markers at 8

key cell structures. It generates a dataset in which each feature of each ts allele has a

distribution of values.

In this chapter, I proposed several novel feature representation methods to transform

the morphological dataset into a mathematical feature matrix, which are based on the

triple-valued RS test, the binary RS test, the KS test, the average log-probabilities of

mutant feature values under the probability density function of wild-type feature values,

and the proportion of deviant mutant feature values under the cumulative distribution

of wild-type feature values. Both the probability density function and the cumulative
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Feature Selection the Mean ROC Score the ROC Score on the The number of

Methods No. 22 Function features selected

RFE 0.65 0.83 180

linear SVM

(100 features) 0.69 0.81 100

linear SVM

(100 features,

feature normalized) 0.67 0.83 100

BFS 0.68 0.82 7

RF 0.64 0.85 80

Table 4.5: This table gives the overall mean ROC scores over 24 functional categories and

the ROC scores on the spindle-related functional category produced by different feature

selection methods on the 26 degree morphology dataset using the triple-valued RS test.

The linear SVM with 100 features selected works best, and the BFS method based on

RBF kernels performs similarly to RFE, and RF performs worst overall.
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Methods Features Selected

linear SVMs unbud spindle Orientation, unbud spindle Breadth, unbud

spindle Fiber breadth, unbud spindle Equiv. oblate vol.,

midbud spindle Area, midbud spindle Perimeter, midbud

spindle Length, midbud spindle Fiberlength, midbud

spindle Shape factor, midbud spindle Equiv. oblate vol.,

largebud spindle area, largebud spindle Ell. form factor,

and many other non-spindle features (100 features selected)

RFE all the spindle-related features are included in the 180 selected

features

BFS unbud mito Fiberlength, unbud spindle Equivalent oblate volume,

midbud spindle Perimeter, largebud nls Outer radius, largebud

nls Equivalent radius, largebud nls Equivalent oblate volume,

largebud pm Shape factor (7 features total)

RF unbud spindle Perimeter, unbud spindle Orientation, unbud spindle Length,

unbud spindle Breadth, unbud spindle Fiberlength, unbud spindle Shape factor,

uunbud spindle Ell. form factor, unbud spindle Equiv. prolate vol.,

unbud spindle Equiv. oblate vol., midbud spindle Perimeter, midbud spindle

Fiberlength, midbud spindle Fiber breadth, midbud spindle Shape factor,

midbud spindle Ell. form factor, largebud spindle Area, largebud spindle Ell.

form factor, largebud spindle Equiv. oblate vol., and other non-spindle

features (80 features total)

Table 4.6: This table shows the detailed selected features by different feature selection

methods for the spindle-related functional category in Table 4.5. In this table, ”midbud”

denotes middle bud, ”mito” denotes mitochondria, ”nls” denotes nucleus, ”pm” denotes

plasma membrane, and ”er” denotes Endoplasmic Reticulum.
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distribution function of wild-type feature values were estimated using KDE. Experimental

results show that the RBF kernel SVM based on the triple-valued RS test has the best

predictive power, and the convex combination of RBF kernels based on the above different

feature representations has comparable performance to the RBF kernel based on the best

feature representation. The effectiveness of the triple-valued RS test demonstrates the

importance of modeling the direction of mutant phenotype changes, that is, the reduced

mutant feature values or elevated mutant feature values relative to the wild-type feature

values.

For the learned kernel based on multiple kernel learning, the learned combination co-

efficients and the insignificant p-values for the ROC and ROC50 score differences between

the triple-valued RS test and the average log-probabilities demonstrate the usefulness of

the feature representations calculated through KDE.

Using feature selection methods based on BFS, linear SVMs, or RF, we can identify

informative features for a lot of functional categories on which the RBF kernel SVMs have

high predictive power. Although there is no statistically significant ROC/ROC50 score

difference between pairs of used feature selection methods, on the 26 degree dataset with

the triple-valued-RS-test representation, the mean ROC and ROC50 scores produced by

the RBF kernel SVMs are, respectively, 0.74 and 0.37, in contrast, the mean ROC and

ROC50 scores produced by linear SVMs are, respectively, 0.70 and 0.28. The p-values

for the ROC and ROC50 score differences between the pair using Wilcoxon Matched-

Pairs Signed-Ranks Tests are, respectively, 8.6e − 3 and 9.3e − 3, which clearly shows

the advantage of using non-linear kernels. It proves that the dependencies between the

features of ts mutants are highly non-linear. Therefore, it’s difficult for linear feature se-

lection methods and linear predictive models to produce highly accurate and informative

features for each functional category. In the future, I will build more advanced feature

selection methods to handle this problem.

The methods developed in this chapter make it possible to further study the relations
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between pairwise ts alleles and to study the novel functions of essential genes by further

analyzing the highly-ranked false positives predicted by our prediction methods.



Chapter 5

Conclusions

5.1 Discussions

To understand gene regulation and gene function at a system level, I proposed machine

learning methods to analyze protein sequence data, miRNA and mRNA expression data,

proteomic data, and yeast cell morphology data in this thesis.

In details, I proposed learned random-walk kernels and learned empirical-map kernels

based on protein sequence profile kernels to classify protein sequences into different re-

mote homology categories. The overall mean ROC50 scores obtained by my approaches

are above 0.90, moreover, my proposed approaches even work very well on the difficult

protein families for all the other methods, which means that my approaches almost solved

this challenging problem on the SCOP benchmark dataset. Furthermore, the learned

random-walk kernels can be used to discover biologically meaningful sequence motifs

that are responsible for determining protein sequences’ remote homology membership.

In collaboration with biologists, I developed probabilistic graphical models to predict

miRNAs’ targets and to infer the possible mechanisms of miRNA regulation. The ap-

proach developed in this thesis is the first computational one that incorporates miRNA ex-

pression data and proteomic data in multiple tissues to perform high-throughput miRNA

110
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target predictions. Moreover, by combining miRNA expression profile data and mRNA

expression profile data, our model can be used to infer the regulatory mechanism of

miRNA regulation: translational repression which does not affect mRNA expression

level, or mRNA degradation which significantly reduces mRNA expression level.

To study the functions of yeast essential genes that cannot be directly deleted in

biological knock-out experiments, my collaborators created the first whole-genome ts

alleles for about 50% of all the yeast essential genes, and profiled these ts mutants using

high-content screening, which produces a complex dataset with each feature of each ts

mutant having a distribution of values of varying size. I proposed several novel feature

representation schemes based on the RS test, the KS test, and KDE, which enables kernel

SVMs and feature selection methods to be applied on this dataset to perform functional

analysis. The overall mean ROC score over 24 functional categories obtained by RBF

kernel SVMs based on the best feature representation, the triple-valued RS test, is 0.74.

Using the best feature representation, there are 18 out of 24 functional categories with

ROC score above 0.65, and there are 12 out of 24 functional categories with ROC score

above 0.75, which demonstrates the reasonably good predictive power of cell morphology

data for gene functions. And my prediction methods enable biologists to pick and study

novel functions of yeast essential genes by analyzing the highly-ranked false positives

produced by the prediction methods.

5.2 Future Research

For protein sequence analysis, I will apply my methods to predict protein folds solely

based on protein sequence data, which is a harder problem than protein remote homology

identification. I also plan to extend the learned random-walk kernels to a semi-supervised

setting, where I will use additional network information to leverage the unlabeled data

to learn a better kernel instead of just focusing on labeled data. On the machine learning
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side, I will try to prove the generalization bound of the learned kernels in semi-supervised

learning settings.

For miRNA regulation prediction, I plan to apply my approach to other organisms

to further study the regulation mechanisms of miRNAs, and I plan to develop fast infer-

ence methods based on varational inference [34] to scale the approach to large datasets.

Moreover, I will try to use the motif discovery method developed in this thesis to identify

possible sequence patterns in the 3’ UTRs that distinguish the mRNAs with different

miRNA regulation mechanisms.

For gene function prediction based on the yeast morphology data, I mentioned that

kernel SVMs perform much better than linear SVMs, which shows that the dependen-

cies between morphological features are very non-linear. Therefore, instead of using

template-like kernel methods, I will develop advanced methods that can capture higher-

order statistics hidden in the morphology data based on the triple-valued RS test, and

I plan to embed the data using the non-linear embedding methods developed in [53]

and [54] to visualize the relationships between pairwise ts mutants explicitly, which will

facilitate biologists to pick the ts mutants for further study. The current feature repre-

sentations are based on comparing mutant feature value distribution to wild-type feature

value distribution, which ignores the dependencies between features when deriving feature

representation. In the future, I will build generative models that can directly generate all

the feature values of ts mutants with dependencies considered, and I plan to use discrim-

inative label information to help learn a hybrid model. Infinite Mixture Models based on

Dirichlet Process [21] are possible good candidates. In the future, I will explore this line

of research.
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