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Abstract. Identifying gene function has many useful applications. Identifying 
gene function based on gene expression data is much easier in prokaryotes than 
eukaryotes due to the relatively simple structure of prokaryotes. Recent studies 
have shown that there is a strong learnable correlation between gene function 
and gene expression. In previous work, we presented novel clustering and 
Neural Network (NN) approaches for predicting mouse gene functions from 
gene expression. In this paper, we build on that work to significantly improve 
the clustering distribution and the network prediction error by using a different 
clustering algorithm along with a new NN training technique. Our results show 
that neural networks can be extremely useful in this area. We present the 
improved results along with comparisons. 
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1 Introduction 

1.1. Gene function prediction 

Gene function prediction is one of the primary goals of Bioinformatics. Identifying 
gene function can be extremely useful in many ways, especially in Gene Therapy 
[18]. Identifying gene function in prokaryotes is much easier than eukaryotes due to 
their lower structural complexity and number of genes. Tissue-specific gene 
expression is the most widely used predictor for gene function in mammals; for 
example, genes expressed in tongue are most probably involved in tasting. However, 
this method has not been scientifically justified. Recent studies have shown that there 
is a strong learnable correlation between gene function and gene expression [22]. 



       

According to Zhang et al, predicting gene function based on its expression is more 
effective than using tissue-specific function as a guide [22]. In previous work, we 
presented novel clustering and Neural Network (NN) approaches for predicting 
mouse gene functions from gene expression [2] .In this paper, we improve on that 
work.  

1.2. Neural Networks as a machine learning approach 

The machine learning technique used in this work is a NN for both prediction and 
clustering. As we will describe in the next section, Support Vector Machines (SVM) 
and graphical models have been used in related work. In spite of their scalability and 
huge learning and classification capabilities, NN have not, to our knowledge, been 
used to predict gene function in higher order organisms than yeast. According to 
Baldi, NN are superior classification machines, and in theory they can approximate 
any reasonable function to any degree of required precision [3]. In the same source, 
the authors showed that NN, with the right modeling, can be extremely useful in 
various Bioinformatics problems, such as sequence encoding and correlation, 
prediction of protein secondary structure, and prediction of signal peptides and their 
cleavage sites.    

In this work, we used the Back-Propagation algorithm (BP) to predict gene 
functions from gene expression. The earliest description of BP was presented by 
Werbos in 1974 [21]; then, it was independently rediscovered by Le Cun et al [12]. 
Multilayer perceptrons (MLP) is perhaps the most famous implementation of BP. It 
has been very successfully used in various domains, such as prediction, function 
approximation and classification. For classification, MLP is considered a super-
regression machine that can draw complicated decision boundaries between 
nonlinearly separable patterns [7].  The nonlinearity power of MLP is due to the fact 
that all its neurons use a nonlinear activation function to calculate their outputs.  

Unlike SVM, MLP can be implemented in two versions with respect to the output: 
first is the Softmax version, which has only one output neuron to be activated with a 
certain input, while the other has more than one output activated at a time, which is a 
very powerful feature of MLP as it correlates all the functions a gene might be 
involved in. In this work we used MLP in three different ways: Firstly, the ‘binary 
method’, where we used MLP as a binary classifier, in which, the input is gene 
expression measurements and the desired output is a single Gene Ontology 
‘Biological Process’ (GO-BP) category. Having 922 different GO-BP categories, this 
will result in 922 binary classifiers.  In the second approach, the ‘multi-output 
method’, we unleashed the MLP power by training it with the same input as before 
but with all 922 GO-BP categories as the desired output. This approach not only 
predicts gene function from gene expression but also ties the expression to all possible 
functions simultaneously. By using this method, the prediction that a gene is being 
involved in a certain function is not independent any more, but it depends also on the 
prediction of the rest of the functions the NN knows about; which is very useful and 
desired results from a biological point of view. Finally, we introduced the ‘clustering 
method’, in which we clustered genes annotations into distinct groups and used those 
groups as the desired output for the network.  



       

1.3. Relation to previous work and results summary 

In [2], we presented promising results for the three methods with some drawbacks for 
the multi-output and the clustering methods. In this paper, we used a highly optimized 
MLP implementation and different clustering algorithm to overcome these 
drawbacks.  As for the multi-output method, we used Generalized Feed Forward 
(GFF) MLP with two-phase training mechanism which resulted in about 10 times 
more accurate prediction in less than half the training time. For the clustering method, 
we replaced the simple K-means algorithm [13, 17] with Kohonen Self Organizing 
Maps (SOM) [9, 10] which resulted in much better populated clusters and hence a 
more accurate MLP prediction on those clusters.  

Our results show that NN is a good candidate for predicting gene function from 
gene expression. As a binary classifier, MLP is very successful and has the advantage 
of eliminating the need for the kernel function needed by SVM. As a multi-output 
regression machine, using the two-phase training algorithm, GFF MLP is able to 
predict the whole set of 922 possible functions for each gene with a remarkable 
accuracy. Finally, the highly adaptive and competitive nature of SOM resulted in a 
more uniform clustering distribution which, in turn, helped the MLP to give better 
generalization in predicting genes groups. Results comparison will be presented in the 
subsequent results sections. 

1.4.   Literature review 

Using gene expression for predicting gene functions has been proven to be effective 
in prokaryotes. For eukaryotes, tissue-specific expression is widely used for 
predicting gene functions [22]. However, the correlation between gene expression, 
gene sequence and gene functions has attracted the attention of many 
bioinformaticians. In [4], the authors used a probabilistic approach to correlate gene 
sequence and expression. In [18], there is an investigation of gene function by 
identifying interactions between a protein and other macromolecules. Some 
bioinformaticians tried to predict gene functions only from the pattern of the GO-BP 
annotation categories vocabulary mentioned at the Gene Ontology (GO) database 
without considering genes expression. In [8], King et al used Bayesian networks and 
decision trees to model the relationship among different GO-BP categories 
vocabulary, only 41 genes out of 100 manually assessed were judged to be true.  

SVMs are the most widely used machine learning approach to predict genes 
functions from genes sequences and expressions. In [5], the authors used SVM to 
functionally classify genes by using gene expression data from DNA microarray. 
They used gene expression of 2,467 genes with known function from the budding 
yeast Saccharomyce cerevisiae measured in 79 different DNA microarrays. Still, this 
work used yeast genes not higher order organisms; also, the classification is binary 
and the performance is assessed against other basic classification algorithms like 
Fisher’s linear discriminate and decision trees.  

In 2004, Vinayagam et al used SVM to predict gene function based on the 
nucleotide sequences mentioned in the GO database. Although there is no gene 
expression involved, this research is relevant because it uses the same method to 



       

predict gene function from tissues taken from different species ranging from as simple 
as yeast to as complicated as mouse [19]. 

The first attempt to use NN to predict gene function class from gene expression 
was in 2002 by Mateos et al [15]. In that work, the classes used to train the MLP were 
taken from the Yeast Genome Database at the Munich Information Center for Protein 
Sequences (MIPS) functional catalog.   

The most related work is by Zhang et al in [22], where gene expression is used as 
SVM input to predict gene function category. This work is very important in many 
ways. First of all, it is for mouse genes which are homologous to human genes. Also, 
the authors showed the shortcomings of depending on tissue-specific information to 
predict gene function and the crucial need for another method. The dataset of the 
microarray generated for this work is a public resource for mammalian functional 
genomics. The authors stated four reasons that support the integrity and validity of 
their data. Finally, it uses specific 922 GO-BP categories mentioned in [25]. The 
authors provided a mechanism to measure the accuracy of their predictions through a 
recall value. The reader is directed to [24] and [22] for full details about this work.  

Instead of using SVM, we used MLP for prediction and SOM for clustering. Our 
work goes beyond binary classification by predicting all possible functions the gene 
might be involved in simultaneously, which expresses the relation between the 
expression level and all possible functions. To decrease the required training time, we 
used SOM to group genes based on their annotations into distinct annotation groups 
and then trained the MLP to predict gene group number instead of predicting the 
whole 922 vector of annotations.  

2 Data preparation  

Data used for this paper is provided by Zhang et al [24]. The reader is directed to [22] 
for a complete explanation of the data gathering process. The authors designed their 
own microarray to contain nearly 40,000 genes from 55 different mouse tissues. From 
those 40,000 only 21,266 confidently detected transcripts were extracted. Those are 
the ones that exceeded the 99th percentile of intensities from the negative controls. 
From those 21,266 genes, only 7,388 genes have at least one specific GO-BP 
category; the rest were considered negative genes because their annotations were too 
general. We will refer to these 7,388 genes as the annotated genes. 

Our data preparation process has three stages: first, extracting the expression 
microarray data of the annotated genes; second, constructing a binary matrix that 
describes the annotations associated with each of those genes, and finally clustering 
those binary vectors. 

As an input to this data preparation process, two matrices were downloaded from 
[24]: the (21,266 X 55) matrix of the microarray data normalized and centered by 
subtracting the mean, and the two-column annotation matrix which has genes in one 
column and their annotations in the other column. Then, the two-column annotation 
file is parsed to extract all distinct genes and all distinct annotations. Finally, a two 
dimensional binary matrix (7,388 X 922) is created; in which, each annotated gene 



       

has a binary vector denoting all of its 922 annotations. If the gene is annotated in a 
GO-BP category, its corresponding bit is set to 1 otherwise to 0. 

This binary matrix is the desired output of the MLP. If we chose only one GO-BP 
category as a desired output, the MLP will work as a binary classifier; if we 
considered more than one column as an output, the MLP will have number of output 
neurons equal to the number of GO-BP categories we are considering.  

3 Neural network topology selection 

Selecting an appropriate network topology is one of the main difficulties of using NN 
in classification; that is why Wang et al. used Extreme Learning Machine (ELM) 
algorithm instead of NN in spite of the potential promising results of NN in 
classifying protein sequence [20]. In addition to network parameters like learning rate 
and momentum, NN topology is also determined by its size, synaptic weight 
connections, and the hidden-units activation function. By network size we mean the 
number of hidden layers and number of hidden units in each layer. Network size is a 
measure of system complexity and is directly proportional to the training time 
required. The less complex the network is, the less its tendency to memorize the 
training set. That is why MLP size reduction is always recommended when possible 
[7, 23]. In general, the most common way to reduce network size is weight pruning as 
mentioned by Zurada and Haykin [7, 23], which suggests removing the ineffective 
weights during training. Instead of pruning only the weights, we started with number 
of hidden units equal to twice the number of the input features. Then, without 
affecting the cross validation (CV) error, we kept dividing this number by 2. The 
number of input neurons is constant in all our networks and equals to the number of 
the microarray tissues which is 55.  

Concerning the synaptic weight connections, there are two types of MLPs: the 
standard MLP in which each layer is fully connected to its next layer only; the second 
type is the Generalized Feed Forward GFF network which is a generalization of the 
MLP such that connections can jump over one or more layers. Connections that jump 
from the input layer directly to the output layer are usually called shortcut weights. In 
theory, an MLP can solve any problem that a generalized feedfoward network can 
solve [7]. In practice, however, generalized feed forward networks often solve the 
problem more efficiently. In our experiments, in the case of group number prediction, 
GFF required fewer training epochs than the MLP and showed fewer tendencies to 
memorize. Also, the GFF structure enabled us to use a two-phase training algorithm 
which resulted in a much faster training in the case of the multi-output method.  

The main idea behind GFF is that both the shortcut weights and the output neurons 
try to learn the linear relations of the search space providing a starting point for the 
nonlinear hidden units to model the more complex areas of the same search space. 
Without shortcut weights, the hidden units will try equally hard for both the linear and 
non-linear relations of the search space which decreases the efficiency. It is wroth 
mentioning that GFF does not provide any improvement over the standard MLP in 
many cases. We used the sigmoidal activation function in all our work because no 



       

negative output is desired. Also, the sigmoidal activation function is superior in 
classification [1,16, 20].  

3.1   Regularization, convergence criteria and error measurement  

Cross Validation CV is our main method for regularization and stopping. Before 
training starts, the data set is divided into 3 subsets: validation set, 5% of the whole 
dataset; testing set, 15% of the dataset and the remaining examples are used for 
training. Once the network starts, its initial state after 50 epochs is recorded and the 
whole training stops if the CV Mean Square Error (MSE) did not improve for 100 
consecutive epochs. The best weights are saved once the CV error starts to increase 
and used for testing. The CV set changes with every epoch, and the test set is 
randomly chosen and kept hidden during training.  

For error measurement, we based our comparison on the (MSE) because the actual 
error rate of classification sometimes becomes misleading depending on the output 
values [16]. The MSE is twice the average cost. 

4 Neural networks as a binary classifier 

In this approach we used NN as a binary classifier. The input is the gene microarray 
expression levels and the output is either 1 or 0 depending on whether the gene is 
predicted to be involved in the desired GO-BP category or not, respectively. A 
separate NN is needed for each gene function. So, 922 binary classifiers are needed to 
predict all GO-BP categories using this approach. The minimum topology size was 2 
hidden layers with 100, and 50 hidden units (from input to output). Instead of using 
only one output for the network, we used two binary output neurons to better assess 
the network accuracy through a difference threshold. The ordered pair (0, 1) means 
the same as 0 and (1, 0) means the same as 1. 

Due to space limitations, we present only prediction results for the GO-BP 
categories with maximum gene participation. Those categories are the best examples 
of network performance in this type of problem as they require the maximum 
generalization and hence are the hardest to predict. Table 1 summarizes the prediction 
results for the selected GO-BP categories. With some statistical analysis of the data, 
we found most of the categories have gene participation of less than 20; the maximum 
participation is 455 genes in the “lipid metabolism [GO:0006629]” category. It is 
clear from the way we prepared our data that the minimum participation will be 1 and 
never 0. Figure 1 shows the overall gene participation distribution. This highly 
skewed and non-uniform distribution of the desired output might make the network 
performance questionable because the maximum gene participation in any category is 
6.15%. So, in many cases the network might tend to sacrifice the positive output for 
the sake of negative output and still the MSE will be low.  



       

 
Fig. 1. Overall gene participation distribution for all categories 

4.1   More expressive dataset  

To prove our hypothesis and provide a fair assessment of the NN performance in this 
problem without getting affected by the skewed data distribution mentioned above, 
we prepared a balanced subset from our original data. The number of examples in this 
dataset is 990, containing nearly equal numbers of positive and negative genes for the 
“lipid metabolism [GO:0006629]” category. The network recorded a much lower 
training MSE because of the fewer training examples. The actual output is in Table 3. 

4.2   Results  

We performed binary classification for GO-BP categories with a gene participation of 
at least 350. That gave us 10 categories to predict.  Table 1 summarizes the results for 
the 10 selected GO-BP categories.  

Table 1. Binary prediction results for the selected GO-BP categories. Training MSE, CV MSE 
and Test MSE are divided by 10-3 

Function Name GO-BP 
category 

# 
Positive 
Genes 

Training 
MSE 

CV 
MSE 

Test 
MSE 

Training 
time in 

Sec. 
lipid metabolism GO:0006629 455 47.726 74.236 43.3793 195 
Intracellular protein 
transport GO:0006886 454 46.539 35.539 42.299 1054 

Carbohydrate metabolism GO:0005975 446 45.141 34.291 51.039 19281 
Cation transport GO:0006812 410 42.293 42.405 42.220 944 
Response to abiotic 
stimulus GO:0009628 396 38.608 27.702 58.423 38148 



       

Response to 
pest/pathogen/parasite GO:0009613 394 42.712 65.791 32.425 480 

Cytoskeleton org. and 
Biogenesis GO:0007010 392 41.041 29.260 41.503 1212 

Neurogenesis GO:0007399 371 46.374 46.374 33.157 384 
Cell-cell signaling GO:0007267 361 38.951 45.093 32.468 695 
Mitotic cell cycle GO:0000278 350 36.708 21.205 50.843 42360 

 
Each row in table 1 represents an independent assessment of MLP as a binary 
classifier over different training and test sets, which eliminates the possibility that a 
certain choice of a test set led to above noted acceptable performance. To further 
confirm that the MLP performance is independent on a specific test set, the whole 
operation is repeated 10 times for the lipid metabolism category; each time a different 
test and CV sets are chosen. Test set size for this experiment is set to be 10% of the 
original dataset. Results are summarized in table 2. Mean, variance and standard 
deviation show that the MLP performance is not affected by choosing different test 
and CV sets.  

Table 2. 10 different training trials for predicting the Lipid Metabolism category with different 
CV and testing sets every time. Mean, variance and standard deviation shows that the 
performance is independent on the test set selection. 

 Training MSE CV MSE Test MSE Training time in sec 
Training trial 1 0.04759 0.060595 0.037616 600 
Training trial 2 0.04601 0.048333 0.063285 801 
Training trial 3 0.04757 0.047356 0.039626 660 
Training trial 4 0.04741 0.048257 0.049865 900 
Training trial 5 0.04862 0.047795 0.050367 780 
Training trial 6 0.04659 0.047757 0.052177 880 
Training trial 7 0.04597 0.047756 0.057675 806 
Training trial 8 0.04884 0.048400 0.038508 816 
Training trial 9 0.04743 0.047468 0.041631 836 
Training trial 10 0.04778 0.047780 0.040702 912 
Average 0.047381 0.0491497 0.0471452 799.1 
Variance 9.335434 e-007 1.6295514 e-005 7.8703624 e-005 10058 
Standard Deviation 0.0009662004 0.0040367 0.008871 100.29 

 
Tables 1 and 2 reflect an acceptable performance for the MLP for predicting gene 
function from its expression level. The network successfully predicted genes 
functions in the 10 categories with test MSE accuracy in the range of [0.032425, 
0.051039].  But we used a balanced dataset from the lipid metabolism [GO:0006629]  
category to assess the MLP performance in case of a harder problem in which a clear 
distinction between equal numbers of positive and negative genes must be made.  
In this dataset, the NN achieved a training MSE of 10 - 7  in approximately 10 hours of 
training. The testing MSE was 0.247147. The actual output of the testing results is 
summarized in the table 2 where D and A stand for the desired and actual outputs 
respectively. These results provide a fair assessment of the NN performance in this 
problem without getting affected by the skewed data distribution showed in Figure 4. 
Consequently, it proves our hypothesis that NN can be a promising tool to 
successfully predict gene function from expression level.  



       

Table 3. Actual NN test results for the balanced sub-dataset. Each row is the desired and actual 
output for three different test cases. Bold lines separate different test cases.  

D0 D1 A 0 A 1 D0 D1 A 0 A 1 D0 D1 A 0 A 1 
1 0 0.99921 0.00078 1 0 0.42998 0.57001 1 0 0.99916 0.00083
1 0 1.00126 0.00127 0 1 0.39137 0.60863 1 0 0.00031 1.00030
0 1 0.0012 1.00120 1 0 0.99938 0.00061 0 1 0.99413 0.00586
0 1 0.00018 1.00017 0 1 0.99937 0.00062 1 0 0.99897 0.00103 
1 0 1.00007 7.4E-05 0 1 0.09959 0.90041 0 1 0.99767 0.00232
0 1 8E-06 1.00000 1 0 0.0014 1.00139 1 0 0.00956 1.00956
1 0 0.77768 0.22231 0 1 0.99963 0.00036 0 1 0.99855 0.00144
1 0 0.98661 0.01338 1 0 0.99904 0.00095 0 1 0.25183 0.74817
0 1 0.99954 0.00045 0 1 0.00318 1.00318 1 0 0.99917 0.00082
1 0 1.00188 0.00188 0 1 0.31028 0.68972 0 1 0.96651 0.03348
1 0 0.00018 1.00017 0 1 1.00339 0.0034 1 0 0.12562 0.87437
1 0 0.99915 0.00084 1 0 0.99911 0.00088 0 1 0.00019 0.99980
1 0 0.03331 0.96668 0 1 0.99929 0.00070 1 0 0.98230 0.01769
1 0 0.98329 0.01670 0 1 0.00094 1.00093 1 0 0.99913 0.00086
0 1 0.00022 0.99977 0 1 0.00033 0.99966 1 0 0.99905 0.00094
1 0 0.99926 0.00073 1 0 1.00254 0.00255 0 1 0.99929 0.00070
1 0 1.00058 0.00059 1 0 1.00043 0.00044 1 0 0.00013 0.99986
0 1 1.0005 0.0005 0 1 0.00024 0.99975 1 0 0.99921 0.00078
1 0 0.99846 0.00153 0 1 0.99450 0.00549 1 0 0.99892 0.00107
0 1 0.00455 1.00454 1 0 1.00054 0.00055 1 0 0.99972 0.00027
1 0 0.99928 0.00071 0 1 0.99947 0.00052 1 0 0.99853 0.00147 
0 1 0.00019 1.00019 1 0 0.99940 0.00059 1 0 0.99921 0.00078
1 0 0.97760 0.02239 1 0 0.99844 0.00156 1 0 0.23115 0.76885
1 0 0.99915 0.00084 1 0 0.99944 0.00055 1 0 0.11786 0.88213
1 0 0.99945 0.00054 0 1 0.97167 0.02832 0 1 1.00252 0.00252 
0 1 0.00021 0.99978 1 0 0.99912 0.00087 1 0 1.00111 0.00112 
0 1 0.00044 0.99955 1 0 1.00061 0.00062 0 1 0.99449 0.00550
0 1 0.99962 0.00037 1 0 0.98305 0.01694 0 1 0.00215 1.00215

5 Neural network with 922 outputs  

In this approach we tried to use the full capability of NN to simultaneously predict all 
functions the gene might be involved in as a binary vector. The same input matrix is 
used but the desired output is a binary vector of 922 bits. We will briefly summarize 
our previous standard MLP results followed by the improved method and 
comparisons. 

5.1. Standard MLP  

Although the results were promising, the training time required was huge, exact 
training time required and number epochs are in table 4. The minimum topology size 
was 3 hidden layers with 200, 100, and 50 hidden units (from input to output), and 
922 output units. Results and performance summary can be found in table 4. The 2 
hidden layers topology used in case of binary classifier in section 4 was too simple to 
provide and acceptable performance in this case, even when we increased the number 



       

of hidden units. An additional hidden layer boosted the network ability to draw more 
complex decision boundaries for the 922 different outputs and hence improved the 
results to a remarkable extend as shown in the results section. Adding a fourth hidden 
layer might further improve the results, but that will further increase the system 
complexity and training time required which in turn might compromise the method 
feasibility. Number of hidden units in each layer is determined using same technique 
mentioned in section 3 and in [1].  

We used batch learning to reduce the training time.  The network results along with 
the CV error progress showed that this method is effective. The next section outlines 
how we overcame the huge training time difficulty.  

5.2. GFF network with two-phase training 

The main idea behind GFF is dividing the network units into two sets with respect to 
their learning capabilities: the shortcut weights along with the output units will learn 
the linear (the easier) part of the search space, while the hidden units will model the 
more complex areas to reach the global minima or a satisfactory approximation. 
However, letting the two sets learn simultaneously will create kind of learning 
competition as an error update by one set might cancel part or all of the update done 
by the other set, which delays convergence. 

The main idea behind our method is learning the problem search space in two 
phases. Phase one is freezing the hidden units and allowing only the shortcut weight 
along with the output units to learn. Without hidden layers, the search space will be 
convex and both the shortcut weights and the output units, with appropriate 
parameters, are guaranteed to converge relatively quickly. Phase two starts once phase 
one is completed by freezing the shortcut weights and allowing all other units to learn. 
Freezing the shortcut weights during this phase is just for the sake of speed because 
they reached their minimum energy already and cannot compete any more with the 
hidden units.  Because the hidden weights are randomly initialized at this point, there 
is a spike increase in MSE which diminishes quickly, in one or two epochs, to use the 
point reached by phase one as a starting point.  

Using this training algorithm, we achieved more than 10 times accuracy in less 
than half the training time. Table 4 summarizes this method’s results along with 
standard MLP results for comparison. 

Table 4. Comparison with previous results 

 Training 
MSE 

CV 
MSE 

Test 
MSE 

Training time in 
Sec 

Epochs 

Standard MLP 0.061335 0.061616 0.061778 211673 1059 
GFF with 2 
phases training 

0.00523 0.00484 0.00455 133200 13118 



       

6 Neural network for gene cluster prediction 

In some cases, predicting all gene functions is very difficult, especially if the 
microarray data is noisy or the function itself did not appear in many training 
examples. As a result, clustering a gene among the most similar genes in terms of 
function is still an important Bioinformatics application.  In this approach, we used 
clustering algorithms to group the binary vectors, denoting the genes possible 
annotations, into k distinct groups. Instead of predicting the whole binary vector, the 
MLP tries to predict the group number the gene belongs to based on its microarray 
expression level. Unlike many other studies, we do not cluster gene expression 
profiles, but we cluster binary vectors of functions annotations without any guidance 
from the expression levels values. The expression level value will be used afterwards 
by the NN to predict the cluster the gene should belong to. A suggested future work is 
to compare the resultant clusters in this work with those resulting from clustering 
genes expression levels to be able to conclude possible relations between the two 
clustering techniques. 
In general, cluster analysis involves two main tasks: 1) determining the appropriate 
number of clusters and 2) assigning each data point to one and only one cluster. In 
this work we focused mainly on the appropriate assignments to clusters to generate as 
uniform membership distribution as possible. This uniform membership distribution 
among clusters is necessary to be able to fairly judge the NN ability to solve such a 
problem. We achieved this uniform distribution by trying different clustering 
algorithms and fine tuning their parameters as we will see.  
As a result, there is no biological preference towards number of clusters used in this 
study. We did not focus on biologically inferring the number of clusters prior to 
clustering process because of two main reasons: 1) there is no statistical way to prove 
that a given number of clusters is the right one [14]. 2) We are not clustering the 
genes expressions, but rather we are clustering the binary vectors of functions 
annotations.  The next subsection summarizes our previous work followed by how we 
improved it using SOM and a results comparison. 

6.1.   K-means for clustering   

In [2] we used a sequential version of K-means to cluster genes annotation vectors 
into k groups; then, based on the expression level, the network should predict the 
most suitable group for a given gene. Training was fast; however, the network initial 
state, in terms of MSE and error percentage, was worse. By monitoring the CV error 
progress, it was easy to see that the network started to memorize the training set after 
the first few epochs.  Table 5 summarizes the results for 4 different groupings (4 
different values of k). 

Table 5: MLP results for 4 different clusters generated by K-means  

#of Groups(k) Training MSE CV MSE Testing MSE Training time in sec 
500 0.096455 7.350921 7.081350 1660 
300 0.110561 0.179318 0.179431 7560 



       

200 0.121474 0.294703 0.252912 790 
100 0.096305 6.743814 5.059804 24240 

 
This poor performance can be explained by the grouping distribution. As in figures 

2 and 3, the first group always dominates and possesses nearly 50% of the total 
number of vectors regardless of the number of means specified. Some other groups 
have as few as 1 member only. The next section will illustrate how SOM clustering 
improved the clustering distribution, which in turn improved the NN ability to 
generalize. 
 

  
Fig. 2. K-Means Genes distribution (500 groups)              Fig. 3. K-means Genes distribution (300 groups) 

6.2. Kohonen SOM for clustering 

Another clustering algorithm like Kohonen SOM is suggested because the group 
centers along with its neighbors adapt and learn with every member they acquire 
which gives more chance for a more balanced distribution [9, 10]. In this work, we 
used SOM with hexagonal lattice type, sheet shape and Gaussian neighborhood 
function defined by: 
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Where: t  is time, c and i are output units, r rc i−  is the Euclidian distance 

between the output units, and  σ  is Gaussian neighborhood radius, initialized to 5 
and ending with 1. Learning rate α is initialized to 0.5 in the rough training phase 
and to 0.05 in the fine tuning training phase.  The learning rate update function is 
defined by: 
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Where: 0α is the initial learning rate and T  is the training length. 
Figures 4 and 5 show the histograms for the resultant distribution for 500 and 300 

groups respectively. Comparing with figures 2 and 3, it should be clear that we have a 
more balanced distribution than K-means.  It is worth mentioning that Kohonen SOM 



       

outperformed other clustering algorithms like hierarchical clustering and K-means 
when used to cluster genes expression profiles [6,14] 

 

  
Fig. 4. SOM Genes distribution (500 groups)        Fig. 5.  SOM Genes distribution (300 groups) 

 
Table 6 shows the NN performance results using this more balanced distribution. 

Table 6 is to be compared with same results of K-means in Table 5. In addition to the 
improvement over the results obtained by K-means, table 6 shows that Kohonen SOM 
is a good candidate for clustering binary vectors. Also, this experiment shows the 
effect of the dataset distribution on NN performance. With a more uniform 
distribution of classes’ memberships, NN can perform well regardless of the number 
of classes.   

Table 6. MLP results for 4 different clusters generated by Kohonen SOM 

#SOM Groups Training MSE CV MSE Testing MSE Training time in sec 
500 0.056891 0.054700 0.057854 8345 
300 0.059087 0.052453 0.060239 3625 
200 0.059664 0.06319 0.06603 8548 
100 0.061224 0.056372 0.065313 1251 

7 Results Comparison 

The closest to this work is Mateos et al [15] and Zhang et al [22]. Although Mateos et 
al work is for predicting yeast gene functions and among only 100 predefined classes, 
the prediction methods are similar to ours. Taking the dataset size into consideration, 
results in our work present a more promising performance for NN. The authors have a 
consistently poor performance (<60%) in terms of the number of False Positive (FPs). 
They defined three biological factors, in addition to the high noise to data ratio of 
their dataset, that cause this poor performance: class size, heterogeneity and the high 
degree of intersection among functional classes. Their conclusion is that when it 
comes to NN, FPs and False Negative (FNs) computationally do not necessarily mean 
the same biologically [15]. 

A quick comparison with Zhang et al work in [22] shows that NN outperforms 
SVM in this problem. However, a detailed comparison is not easy to perform for 



       

many reasons: First of all, NN is used in three different ways in our work while only 
binary classification is performed in [22]. Also, the authors presented prediction 
results for both annotated and unannotated genes, while we used only the annotated 
genes for this work. Finally, Zhang et al did not use the SVM discriminate value to 
asses the SVM performance, they rather processed it to obtain an estimate of the 
probability of correct prediction of each gene in each category (the recall value). 

8 Concluding remarks and future work 

In this work we confirmed our previous results that Neural Networks NN can 
effectively predict mouse gene function from gene expression levels. The learnable 
correlation between gene expression levels and their function categories in eukaryotes 
have been confirmed by our results. We presented three different ways to use NN to 
solve this problem. NN solved the binary classification version of the problem 
effectively. The actual results for a balanced, and hence harder, data set have been 
presented. Generalized Feed Forward networks GFF with two-phase training showed 
superiority over the standard MLP in predicting all GO-BP categories a gene might be 
involved in, with remarkable accuracy and in a more reasonable training time. Finally, 
Kohonen SOM is proven to be far more effective than K-means to group similar gene 
annotations as a preprocessing step for the NN. This research, especially the multi-
output method, shows that NN can be a very effective Bioinformatics tool and should 
give NN a greater impact in gene function prediction in the future.  

From a biological point of view, this work is very important because it defines 
another method that can be used to accurately predict gene function from gene 
expression in mammals. Results of this method can be used in conjunction with other 
machine learning methods to narrow down the list of genes for biologists to perform 
the actual biological experiments. Those biological experiments are usually very 
expensive and can only be done on a handful number of genes. Consequently, it is 
very common and always desirable to combine and cross validate results from 
different computational methods and end up with the most trusted predictions for 
biological experiments. An example of that is work by Hui Lan et al. in which, the 
authors cross validated the prediction results from multiple machine learning methods 
to end up with and accurate prediction of gene functions in Arabidopsis [11]. 
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