
 Abstract
Cost-Based Abduction (CBA) is an AI model for
reasoning under uncertainty. In CBA, evidence to
be explained is treated as a goal which is true and
must be proven. Each proof of the goal is viewed
as a feasible explanation and has a cost equal to the
sum of the costs of all hypotheses that are assumed
to complete the proof. The aim is to find the Least
Cost Proof. This paper uses CBA to develop a nov-
el method for modeling Genetic Regulatory Net-
works (GRN) and explaining genetic knock-out ef-
fects. Constructing GRN using multiple data
sources is a fundamental problem in computational
biology. We show that CBA is a powerful formal-
ism for modeling GRN that can easily and effec-
tively integrate multiple sources of biological data.
In this paper, we use three different biological data
sources: Protein-DNA, Protein–Protein and gene
knock-out data. Using this data, we first create an
un-annotated graph; CBA then annotates the graph
by assigning a sign and a direction to each edge.
Our biological results are promising; however, this
manuscript focuses on the mathematical modeling
of the application. The advantages of CBA and its
relation to Bayesian inference are also presented.

1 Introduction
Since the word gene was coined in 1909, it had been a
common belief that the higher an organism’s complexity,
the more genes it has. However, genome sequencing has
revealed that the entire human genome contains only 23,000
to 40,000 genes, which is close to the number of genes in
some types of worm [Baldi and Hatfield, 2003]. It is now
known that it is not the number of genes, but gene interac-
tion and regulation that are the sources of organism com-
plexity. As a result, Genetic Regulatory Networks (GRN)
have become one of the most interesting and challenging
problems in computational biology and is expected to be the
center of attention for a few decades to come [Baldi and
Hatfield, 2003].

Other mathematical modeling and approaches to GRN in-
clude discrete models like Boolean Networks [Kauffman,
1993], continuous models like ordinary, stochastic and qua-

litative differential equations [Baldi and Hatfield, 2003],
probabilistic and graphical models including Bayesian Net-
works (BN) [Beer and Tavazole, 2004; Friedman, 2004;
Huttenhower et al., 2006] and factor graphs [Yeang et al.,
2004] , and rule-based models including Induction Logic
Programming [Ong et al., 2007], and Abduction Logic Pro-
gramming [Papatheodorou, 2007; Ray and Kakas, 2006]

Despite the advantage of being able to integrate different
sources of biological knowledge in a single, homogeneous
knowledge base, the area of rule-based models has received
little attention in computational biology in general and in
GRN modeling in particular. This is because there is no
direct way to integrate an objective or a cost function with
the knowledge base to measure solution quality. This issue
is addressed to some extent by probabilistic inductive logic
programming, which combines probability and logic pro-
gramming [Raedt et al., 2008]. In addition, there is no clear
mathematical correspondence between rule-based models
and other machine-learning approaches, such as probabilis-
tic methods and Neural Networks (NN).

In this paper, we propose using Cost-Based Abduction
(CBA) to model GRN by explaining the effects of genetic
knock-out experiments. Because CBA is a rule-based sys-
tem, it integrates different data sources efficiently and easi-
ly. In addition, it provides an associated cost for each expla-
nation of the data; this cost serves as an objective function
that we want to minimize. Interestingly, CBA has a clear,
mathematical correspondence to BN, as we show later. Our
results show that CBA is a promising tool in the field of
computational biology.

This paper is organized as follows: the rest of the intro-
duction gives the necessary background on CBA, its relation
to Bayesian inference and NN, and describes the data
sources used in the paper. We then describe how to use the
data sources to create an un-annotated, or a skeleton graph.
Finally, we describe our algorithm for building a CBA sys-
tem from the skeleton graph. In particular, we show how to
create rules and assign costs in a way that naturally enforces
the constraints of genetic pathways and explains the effects
of genetic knock-outs.

1.1 Cost-Based Abduction
CBA was first introduced by Charniak et al. [Charniak and
Shimony, 1990]. Formally, a CBA system is a 4-tuple

Explaining Genetic Knock- -Based Abduction Out Effects Using Cost

Emad A. M. Andrews and Anthony J. Bonner
Department of Computer Science, University of Toronto, Canada

{emad, bonner}@cs.toronto.edu

1635

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

(, , ,)H R c G , where H is a set of hypotheses, or proposi-
tions, c is a function from H to a nonnegative real c(h)
called the assumability cost of h � H, R is a set of rules of
the form:

1 2
:(...)

n ki i i iR p p p p� � � for all ,..,
i ni ip p H� ,

ki
p H� and G H� is the goal, or the evidence set [Ab-

delbar, 1998].
Our objective is finding the Least Cost Proof (LCP) for

the goal. The cost of a proof is the sum of the costs of all the
hypotheses that were assumed to complete the proof. Any
given hypothesis pi � H can be true either by proving it or
by assuming it and paying its assumability cost. Hypotheses
that can be assumed have finite assumability costs and are
called “assumables”. Hypotheses that are proved from the
assumables are called “provables”. A provable can be
thought of as an assumable with an infinite assumability
cost that we cannot afford. We can assume, without loss of
generality, that all rule consequents are provables. To see
this, suppose ip is an assumable with assumability cost

()ic p x� and suppose it appears as the consequent of at
least one rule, ir . We can create a new hypothesis ip� with
an assumability cost equals to x , set the assumability cost
of ip to � and add the rule: i ip p� � . In addition, for the
purpose of this paper, we call every hypothesis belonging to
the goal set G H� a sub-goal hypothesis. All sub-goals in
our system are provables.

Finding the optimal solution in CBA has been shown to
be NP-Hard [Charniak and Shimony, 1994]. The most sig-
nificant approaches to finding LCP for CBA can be found at
[Den, 1994; Ishizuka and Matsuo, 2002; Ohsawa and Oh-
sawa, 1997]. One of the most successful algorithms uses
Integer Linear Programming (ILP) as developed by Santos
[Santos Jr., 1994]. Abdelbar et al. showed how to solve
CBA using High-Order Recurrent Neural Networks
(HORN) [Abdelbar et al., 2003; Abdelbar et al., 2005].

Finding the LCP in a CBA system is equivalent to find-
ing the maximum a posteriori assignment (MAP) in BN
[Charniak and Shimony, 1990; Charniak and Shimony,
1994]. They showed that everything one can do using BN
can also be done using CBA, and vice versa. However, de-
spite their equivalence, CBA has many advantages. For in-
stance, it is believed that finding LCP is more efficient than
finding MAP, and it may be easier to find heuristics for
CBA than for BN [Abdelbar, 1998; Charniak and Shimony,
1994]. Also, using costs instead of probabilities gives
another perspective to the problem and is easier for some
people to grasp. We have also found that the CBA know-
ledge representation in terms of rules is more natural for
modeling genetic regulation. Finally, Santos has found ne-
cessary and sufficient conditions under which a CBA sys-
tem is polynomially solvable [Santos Jr. and Santos, 1996].
In contrast, conditions for polynomial solvability of finding
MAP in BN have not been found, even with applying re-
strictions on the graphical representation [Shimony, 1994]
and even for trying to find an alternative next-best explana-
tion [Abdelbar and Hedetniemi, 1998]. Andrews et al. pro-
vided a framework for finding MAP for BN using HORN
and using CBA as an intermediate representation [Andrews
and Bonner, 2009]; the theoretical foundation of that

framework shows the strong equivalency between BN/CBA
and HORN search spaces [Andrews and Bonner, 2011].

1.2 Biological Data Sources
In this paper, we illustrate the application of CBA to GRN
by using it to model and learn the well-studied pheromone
pathway in Yeast. We use three well-known data sets for
this purpose. The first data set consists of protein-DNA inte-
ractions, also called location data or factor-binding data,
from [Lee et al., 2002]. The directionality of these interac-
tions is known to be from a protein to a gene in the DNA.
The second data set consists of protein-protein interactions
from the well-known DIP database. The directions of the
protein-protein interactions are not known a priori and are
learned by CBA. Finally, we use the knock-out data from
[Hughes et al., 2000]. Knock-out data describes the effects
of induced deletion mutation experiments on some genes.
We do not use the knock-out data to build the skeleton
graph. Instead, the effect of the knock-outs is what is being
explained by the CBA system, and the resultant explana-
tions annotate the entire graph, which in turn represents the
learned GRN model. Both protein-DNA and protein-protein
data indicate whether there is an interaction without specify-
ing its sign. CBA uses the knock-out data to infer the sign of
each interaction, as well as the directions of protein-protein
interactions.

2 The Method
Our modeling method, described below, can be summarized
as follows. We first select the elements in the genome that
we are interested in, which we call the elements of interest
set. In this paper, we select all genes and proteins that are
known to participate in the pheromone pathway. We then
create a skeleton graph. Each node in the skeleton graph
represents a gene and its protein product, which is unique
across all data sets. An edge in the skeleton graph represents
a potential interaction between a pair of nodes. Using this
graph, we enumerate all paths between each knocked-out
gene and genes it is known to affect. Our CBA builder algo-
rithm then uses these enumerated paths to build a CBA sys-
tem that effectively annotates the entire graph while looking
for the LCP of all the knock-out effects. The resulting anno-
tated graph is the learned model for the GRN under study.

2.1 The Un-annotated (Skeleton) Graph
To build the skeleton graph, we first create a node for each
element in our elements-of-interest set. Graph edges are
then created in two phases. Phase 1 creates (directed) Pro-
tein-DNA edges: we search the location dataset for interac-
tions between nodes of the graph; and for each such interac-
tion, we create a directed edge from the protein to the DNA.
Phase 2 creates (undirected) Protein-Protein edges: we
search the DIP database for protein-protein interactions be-
tween nodes of the graph; and for each such interaction, we
create an undirected edge between the two nodes. These two
phases result in an un-annotated graph. We then use a recur-
sive breadth-first algorithm to enumerate all possible paths

1636

between each knocked-out gene and genes it is known to
affect. We call these paths enumerated or potentially valid
paths.

The CBA system (described below) adds annotations to
the skeleton graph. In the annotated graph, all edges have
signs and existence labels, and in addition, undirected edges
have directions. As in [Yeang, et al., 2004], a valid path ka	
starts with a knocked-out gene kg and ends with an ob-
served (or affected) gene ag , and must satisfy the following
constraints:

1. All edges are in forward direction, from kg to ag .
2. The aggregate sign of the edges in the path must be

consistent with the sign of the knock-out effect.
3. The path must end with a protein-DNA edge.
4. The path must be no longer than a predefined upper

bound.
5. If an intermediate gene in the path is also knocked

out, it must exhibit a knock-out effect on ag .
6. Each edge must have one and only one direction and

one and only one sign.
We use the potentially valid paths enumerated from the

skeleton graph to build a CBA system whose LCP enforces
these constraints to give us the best valid paths and a fully
annotated graph.

2.2 Example
Figure 1 shows a skeleton graph that might be generated by
the algorithm described above.

Let us assume that we have two knock-out effects to ex-
plain, 1 3(, ,)g g
 � and 3 5(, ,)g g
 � . The notation (, ,)i jg g
 �
means that deletion of gene ig results in down-regulation of
gene jg . We say that a knock-out effect 1 3(, ,)g g
 � is ex-
plained if there is a valid path that connects both genes. The
skeleton graph above suggests three potentially valid paths
that might explain these knock-out effects: 1 2 3g g g� � ,

1 4 3g g g� � , and 3 4 5g g g� � . Clearly, the direction
of the edge between 3g and 4g is vital to any explanation of
the data. In particular, the direction has to be from 3g to 4g .
If this direction is reversed, we will not be able to explain

3 5(, ,)g g
 � . The two paths that explain all the data are
1 2 3g g g� � and 3 4 5g g g� � . In addition, to be con-

sistent with the knock-out effects, the edge signs along both

paths must be either (,)� � or (,)� � . (The aggregate sign of
the edges in a valid path must be the opposite of the ob-
served knock-out effect, since the deletion itself is nega-
tive.)

3 The CBA Builder Algorithm
This section shows how we use the potentially valid paths to
build a CBA system that finds valid paths that provide the
best explanation of all the knock-out data and that fully an-
notate the graph.

3.1 Creating the CBA Hypotheses
For each potentially valid path ka	 for a knock-out pair
(, ,)k ag g

 , we create the following hypotheses:
� kjk � , kjk � and 0kjk , for every intermediate gene jg in

ka	 , including the observed gene ag . These hypo-
theses represent aggregate positive, negative and zero
knock-out effects, respectively, from the knocked-out
gene kg to the intermediate gene jg . kjk � and kjk �

are provables while 0kjk is an assumable.
� kao . This is a sub-goal hypothesis representing the

observed knock-out effect to be explained.
For each edge ijE between ig and jg we create the follow-
ing hypotheses:
� 1ijx and 0ijx , assumables representing the existence of

the edge in the GRN (i.e., whether or not it represents
a real biological interaction).

� ijs � and ijs � , assumables representing the sign of the
edge.

� i jd � and j id � , assumables representing the direction
of the edge. (Used for undirected edges only.)

� ijs , a sub-goal to determine the sign of the edge.
� ijd , a sub-goal to determine the direction of the edge.

(Used for undirected edges only.)
� ijy , a sub-goal to determine whether the edge exists in

the GRN.

3.2 Creating the CBA Rules
Given a potentially valid path ka	 for a knock-out pair
(, ,)k ag g

 , let the genes on the path be

0 1
, ,...,

mj j jg g g ,
where

0j kg g� and
mj ag g� . For the first edge

1kjE on the
path, we create two rules:
�

1 1 1 11kj kj k j kjx s d k� � �� � �
�

1 1 1 11kj kj k j kjx s d k� � �� � �
For every subsequent edge

1n nj jE
�

, we create four rules:
�

1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �

�
1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �

�
1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �

�
1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �

where the rules contain directionality assumables only if the
edge is undirected.

1g

2g

bove.

4g

3g

5g

Figure 1: Location data suggests the potential existence of the di-
rected edges. Protein-protein data suggests the potential existence
of the undirected edges. Dashed arrows are the knock-out effects
to be explained by CBA.

1637

The main feature of these rules is that for any two con-
secutive edges on the path, the consequents of the rules for
the first edge are antecedents of the rules for the second
edge. This makes it easy to enforce the second path con-
straint above, since the consequent of each rule represents
the aggregate effect of all the edges along the path from the
first edge up to the edge for the rule in question.

For each undirected edge, we create two rules, which in-
tuitively mean that the edge has two possible directions:
�

1 1n n n nj j j jd d
� �� � and

1 1n n n nj j j jd d
� �� �

For every edge, we create two rules, which intuitively mean
that the edge has two possible signs:
�

1 1n n n nj j j js s
� �� � and

1 1n n n nj j j js s
� �� �

For every edge, we create two rules, which intuitively mean
that the edge does or does not exist in the GRN:
�

1 11n n n nj j j jx y
� �

� and
1 10n n n nj j j jx y
� �

�
For each knock-out pair (, ,)k ag g

 , we create the follow-
ing three rules, which intuitively mean that the knock out
can have three possible effects on the observed gene: up-
regulation, down-regulation or leaving it unchanged.
� ka ka kak ck o� �� � , ka ka kak ck o� �� � , 0ka kak o�

Here, kack � and kack � are auxiliary assumables that carry the
costs of positive and negative knock-out effects.

Finally, all sub-goal hypotheses
1 1 1

{ , , , }
n n n n n nj j j j j j kay d s o
� � �

are added to the goal set.

3.3 Assigning Costs to Hypotheses
The last step in creating the CBA system is assigning the
proper cost to each assumable. For all ijs � , ijs � , i jd � and

j id � , we assign an equal and relatively high cost, to force
the system to assume only one sign and only one direction
while not being biased towards a particular choice. We cal-
culate the cost of the existence hypotheses 1 0{ , }ij ijx x and
the knock-out effect hypotheses { , }ka kack ck� � based on ob-
served experimental values reported in the datasets.

Calculating costs for edge existence assumables
The costs of the existence hypotheses 1 0{ , }ij ijx x for an edge
depend on the likelihood that the edge represents a real bio-
logical interaction. These likelihoods are derived from the
protein-DNA and protein-protein data. The likelihood itself
is not reported in the data, but the p-value is.

We recover the likelihood using the same methods as
[Yeang, et al., 2004]. For example, for protein-DNA data,
we assume the p-value comes from testing the null hypothe-
sis 0H (0 1ijx � , the interaction does not occur) against the
alternative hypothesis 1H (1 1ijx � , the interaction does oc-
cur). Accordingly, we recover the log likelihood that the
interaction has occurred as follows:

0 1 1 log()2 log()1 2 2

0

(| 1) (|)
(| 0) (|)

d d L nij n

ij

P D x P D H e e
P D x P D H

�
��

� � �
�

� (1)

where D is the observed data, 0d and 1d are the degrees of
freedom in 0H and 1H , n is the sample size the p-value was
computed from, which is 3 in our case, and L is recovered
from the p-value using the following approximation:

11

0

(|)
2 log (1)

(|)
P D HL F p
P D H

�� � � (2)

where p is the reported p-value, and F is the cumulative
2� distribution with one degree of freedom. The costs of

edge existence are then computed as follows:
0() log(1 (1))ijc x � � � � and 1() log((1))ijc x � � �� � .

Calculating costs for knock-out effect assumables
The likelihood of a knock-out interaction can be recovered
using the same approximation mentioned above. If the like-
lihood of the knock-out effect kak between genes kg and ag
is � , then the cost of assuming no knock-out effect is

0() log(1 (1))kac k �� � � �� .
The cost of assuming a positive knock-out effect kak � is

log((1)) 0
()

log((1)) 0
ka

ka
ka

if o
c ck

if o
�

� ��

� � � ��
� �� � � ��

� �
�

 (3)

The cost of assuming a negative knock-out effect kak � is

log((1)) 0
()

log((1)) 0
ka

ka
ka

if o
c ck

if o
�

� ��

� � � ��
� �� � � ��

� �
�

 (4)

Here, kao is the observed effect of the knock-out on the ex-
pression level of gene ag , and � is a very small real num-
ber representing the possibility that the effect is due to
something other than the knock-out experiment.

4 Results
We used integer linear programming (ILP) to solve the re-
sultant CBA system. In particular, we used the popular pub-
lic domain LP-solve to solve the CBA system after convert-
ing it to an equivalent ILP program.

In addition to toy examples like Figure 1, we applied our
method to the well-studied Yeast pheromone pathway. The
skeleton graph consisted of 37 protein-DNA interactions
and 30 protein-protein interactions. We tried upper bounds
of up to 10 nodes per path. In all cases, the paths discovered
to explain the knock-out effects satisfied the valid path con-
straints mentioned above. Table 1 summarizes the result for
different upper bounds:

Path length 2 3 4 5 6 7 8
Hypotheses 346 463 534 826 895 951 897
Rules 297 420 509 935 1281 1421 1465
ILP itera-
tions

448 642 769 1538 1959 2237 2002

Potentially
valid paths

31 40 48 159 582 1687 3911

Table 1: This table illustrates the effect of increasing path length
on the size and complexity of the CBA instance created.

1638

4.1 Comparison
Many of the elements of our work are based on [Yeang,

et al., 2004], which uses a probabilistic approach to infer a
GRN of Yeast from multiple biological datasets. They use
the same datasets as we do and create what they call a phys-
ical network model. The main difference is that they use
factor graphs instead of CBA, and they compute MAP in-
stead of LCP. We found that the CBA approach produced
better results for the pheromone pathway. For instance, their
method was only able to find approximate MAP configura-
tions, while CBA was able to find an exact LCP. Moreover,
while they used a maximum path length of 5, CBA could
easily handle paths of length 10. Finally, because CBA
computes the exact LCP, the solution does not have variant
parts as in models that compute approximate MAPs.

A complete discussion and comparison of biological re-
sults is beyond the scope of the present paper. However,
using CBA, we did recover almost all the confirmed signal
transduction directionalities in the pheromone pathway,
including STE11� STE7, {STE5,STE7}� FUS3 and
{FUS3,KSS1}� STE12. The 21 direct regulations of
STE12 were also detected. Neither FUS3 nor KSS1 violated
any path constraints. We recovered a consistent relation
between STE12 and MCM1 in both signals and directionali-
ties.

The next section elaborates on interesting features of the
size of the CBA system produced by our build algorithm.
These features explain why our model can handle path
lengths longer than other probabilistic models.

4.2 CBA Size Features

It is easy to verify that apart from the goal rule, our CBA
builder will always produce rules that consist of at most 5
variables, including the consequent. This fixed length guar-
antees that the complexity of the graph will never cause an
unexpectedly long constraint when using ILP or an unex-
pectedly high-order edge when using NN. This short rule
length also makes the job of the CBA solver easier. Howev-

er, the difficulty of a CBA instance depends on more than
just rule length. Other factors include solution depth, the
ratio of assumables to provables, and the ratio of the number
of hypotheses to the number of rules.

In the probabilistic approach of [Yeang, et al., 2004], the
size of the factor graph depends on the number of paths in
the GRN. In contrast, in the approach described here, the
size of the CBA system depends only on the number of
edges in the GRN. This is possible because, as a logical
formalism, CBA very naturally deals with both AND and
OR constraints and with constraints based on paths and sub-
networks in a graph. Consequently, the hypotheses and
rules for an edge are created only once, and reused for each
path that the edge belongs to. As a result, increasing the
number of paths or increasing path length does not result in
an exponential increase in the size of the CBA system. Fig-
ure 2 illustrates the relation between path length and other
aspects of CBA complexity for the pheromone pathway.

5 Concluding Remarks and Future Work
We applied CBA to the modeling of genetic regulatory net-
works (GRN). CBA can easily integrate biological data
from multiple sources and explain the effects of gene knock-
out experiments. The size of the CBA instance does not
increase exponentially with problem size. Our results sug-
gest that CBA can be a useful tool for computational biolo-
gy in general and for GRN modeling in particular. We tested
our algorithm on the pheromone pathway in Yeast. In addi-
tion to testing our model on other pathways and larger
GRNs, future work includes further optimization of the
CBA instance. We need, for instance, to make the path
enumeration phase more efficient, either by building the
CBA rules directly from the edges without any path enume-
ration or by using a more efficient algorithm than recursive
breadth-first search. It will also be interesting to use the
node ordering of the CBA instance to create an equivalent
BN and compare performance. Finally, because we use an
ILP solver, we can study the characteristics of the resulting
constraint matrix and check whether it meets the CBA poly-
nomial-solvability conditions determined by Santos.

References
[Abdelbar, 1998] Ashraf M. Abdelbar. An algorithm for

finding MAPs for belief networks through cost-based
abduction. Artificial Intelligence, 104(1-2):331-338,
1998.

[Abdelbar, et al., 2003] Ashraf M. Abdelbar, Emad A. M.
Andrews and Donald C. Wunsch II. Abductive reasoning
with recurrent neural networks. Neural Networks, 16(5-
6):665-673, 2003.

[Abdelbar, et al., 2005] Ashraf M. Abdelbar, Mostafa A. El-
Hemely, Emad A. M. Andrews and Donald C. Wunch II.
Recurrent neural networks with backtrack-points and
negative reinforcement applied to cost-based abduction.
Neural Networks, 18(5-6):755-764, 2005.

Figure 2: This graph illustrates the effect of increasing path length
on the complexity and the size of the CBA instance.

1639

[Abdelbar and Hedetniemi, 1998] Ashraf M. Abdelbar and
Sandra M. Hedetniemi. Approximating MAPs for belief
networks is NP-hard and other theorems. Artificial Intel-
ligence, 102(1):21-38, 1998.

[Andrews and Bonner, 2009] Emad A. M. Andrews and
Anthony J. Bonner. Finding MAPs Using High Order
Recurrent Networks. In Proceedings of the 16th Interna-
tional Conference on Neural Information Processing:
Part I. C. S. Leung, M. Lee, and J. H. Chan (Eds.) pages
100-109: Springer-Verlag, Berlin / Heidelberg, 2009.

[Andrews and Bonner, 2011] Emad A. M. Andrews and
Anthony J. Bonner. Finding MAPs using strongly equiv-
alent high order recurrent symmetric connectionist net-
works. Cognitive Systems Research,
doi:10.1016/j.cogsys.2010.12.013, 2011.

[Baldi and Hatfield, 2003] Pierre Baldi and G. Welesley
Hatfield. DNA Microarrays and Gene Expression: From
Experiments to Data Analysis and Modeling. Cambridge
University Press, Cambridge, 2003.

[Beer and Tavazole, 2004] Micheal A. Beer and Saeed Ta-
vazole. Predicting gene expression from sequence. Cell,
117(2):185-198, 2004.

[Charniak and Shimony, 1990] Eugene Charniak and Solo-
mon E. Shimony. Probabilistic semantics for cost-based
abduction. In Proceedings of the 8th National confe-
rence on Artificial intelligence, pages 106-111, Boston,
Massachusetts, 1990. AAAI Press.

[Charniak and Shimony, 1994] Eugene Charniak and Solo-
mon Eyal Shimony. Cost-based abduction and MAP ex-
planation. Artificial Intelligence, 66:345-374, 1994.

[Den, 1994] Yasuharu Den. Generalized Chart Algorithm:
An Efficient Procedure for Cost-Based Abduction. In
Proceedings of the 32nd annual Meeting of the Associa-
tion for Computational Linguistics, pages 218-225, Las
Cruces, New Mexico, 1994. Association for Computa-
tional Linguistics.

[Friedman, 2004] Nir Friedman. Inferring cellular networks
using probabilistic graphical models. Science,
303(5659):799-805, 2004.

[Hughes, et al., 2000] Timothy R. Hughes, Matthew J. Mar-
ton, Allan R. Jones, Christopher J. Roberts, Roland
Stoughton, Christopher D. Armour, Holly A. Bennett,
Ernest Coffey, Hongyue Dai, Yudong D. He, Matthew J.
Kidd, Amy M. King, Michael R. Meyer, David Slade,
Pek Y. Lum, Sergey B. Stepaniants, Daniel D. Shoe-
maker, Daniel Gachotte, Kalpana Chakraburtty, Julian
Simon, Martin Bard and Stephen H. Friend. Functional
discovery via a compendium of expression profiles. Cell,
102:109–126, 2000.

[Huttenhower, et al., 2006] Curtis Huttenhower, Matt Hibbs,
Chad Myers and Olga G. Troyanskaya. A scalable me-
thod for integration and functional analysis of multiple
microarray datasets. Bioinformatics, 22(23):2890-2897,
2006.

[Ishizuka and Matsuo, 2002] Mitsuru Ishizuka and Yutaka
Matsuo. SL Method for Computing a Near-Optimal So-
lution Using Linear and Non-linear Programming in
Cost-Based Hypothetical Reasoning. Knowledge-based
systems, 15(7):369-376, 2002.

[Kauffman, 1993] Stuart Kauffman. The Origins of Order:
Self-Organization and Selection in Evolution. Oxford
University Press., New York, 1993.

[Lee, et al., 2002] Tong Ihn Lee, Nicola J. Rinaldi,
Franc¸ois Robert, Duncan T. Odom, Ziv Bar-Joseph,
Georg K. Gerber, Nancy M. Hannett, Christopher T.
Harbison, Craig M. Thompson, Itamar Simon, Julia Zeit-
linger, Ezra G. Jennings, Heather L. Murray, D. Benja-
min Gordon, Bing Ren, John J. Wyrick, Jean-Bosco
Tagne, Thomas L. Volkert, Ernest Fraenkel, David K.
Gifford and Richard A. Young. Transcriptional regulato-
ry networks in saccharomyces cerevisiae. Science,
298:799–804, 2002.

[Ohsawa and Ohsawa, 1997] Yukio Ohsawa and Mitsuru
Ohsawa. Networked bubble propagation: a polynomial-
time hypothetical reasoning method for computing near-
optimal solutions. Artificial Intelligence, 91(1):131-154,
1997.

[Ong, et al., 2007] Irene M. Ong, Scott E. Topper, David
Page and Vitor Santos Costa. Inferring Regulatory Net-
works from Time Series Expression Data and Relational
Data Via Inductive Logic Programming. In Lecture
Notes in Artificial Intelligence. S. Muggleton, R. Otero,
and A. Tamaddoni-Nezhad (Eds.) pages 366-378: Sprin-
ger-Verlag, 2007.

[Papatheodorou, 2007] Irene V. Papatheodorou. Inference of
Gene Relations from Microarray Experiments by Abduc-
tive Reasoning. University of London, PhD thesis, 2007.

[Raedt, et al., 2008] Luc De Raedt, Paolo Frasconi, Kristian
Kersting and Stephen Muggleton (Eds). Probabilistic in-
ductive logic programming: theory and applications.
Springer-Verlag, 2008.

[Ray and Kakas, 2006] Oliver Ray and Antonis Kakas. Pro-
LogICA: a practical system for Abductive Logic Pro-
gramming. In Proceedings of the 11th International
Workshop on Non-monotonic Reasoning, pages 304-312,
2006.

[Santos Jr., 1994] Eugene Santos Jr. A linear constraint sa-
tisfaction approach to cost-based abduction. Artificial In-
telligence, 65(1):1-27, 1994.

[Santos Jr. and Santos, 1996] Eugene Santos Jr. and Eugene
S. Santos. Polynomial Solvability of Cost-Based Abduc-
tion. Artificial Intelligence, 86:157-170, 1996.

[Shimony, 1994] Solomon Eyal Shimony. Finding MAPs
for belief networks is NP-hard. Artificial Intelligence,
68(2):399-410, 1994.

[Yeang, et al., 2004] Chen-Hsiang H. Yeang, Trey Ideker
and Tommi Jaakkola. Physical network models. Journal
of computational biology, 11(1-2):243–262, 2004.

1640

