
 Abstract
Cost-Based Abduction (CBA) is an AI model for
reasoning under uncertainty. In CBA, evidence to 
be explained is treated as a goal which is true and 
must be proven. Each proof of the goal is viewed 
as a feasible explanation and has a cost equal to the 
sum of the costs of all hypotheses that are assumed
to complete the proof. The aim is to find the Least 
Cost Proof. This paper uses CBA to develop a nov-
el method for modeling Genetic Regulatory Net-
works (GRN) and explaining genetic knock-out ef-
fects. Constructing GRN using multiple data 
sources is a fundamental problem in computational 
biology. We show that CBA is a powerful formal-
ism for modeling GRN that can easily and effec-
tively integrate multiple sources of biological data. 
In this paper, we use three different biological data 
sources: Protein-DNA, Protein–Protein and gene 
knock-out data. Using this data, we first create an
un-annotated graph; CBA then annotates the graph 
by assigning a sign and a direction to each edge. 
Our biological results are promising; however, this 
manuscript focuses on the mathematical modeling 
of the application. The advantages of CBA and its 
relation to Bayesian inference are also presented.

1 Introduction
Since the word gene was coined in 1909, it had been a 
common belief that the higher an organism’s complexity, 
the more genes it has. However, genome sequencing has 
revealed that the entire human genome contains only 23,000 
to 40,000 genes, which is close to the number of genes in
some types of worm [Baldi and Hatfield, 2003]. It is now 
known that it is not the number of genes, but gene interac-
tion and regulation that are the sources of organism com-
plexity. As a result, Genetic Regulatory Networks (GRN)
have become one of the most interesting and challenging 
problems in computational biology and is expected to be the 
center of attention for a few decades to come [Baldi and 
Hatfield, 2003]. 

Other mathematical modeling and approaches to GRN in-
clude discrete models like Boolean Networks [Kauffman, 
1993],  continuous models like ordinary, stochastic and qua-

litative differential equations [Baldi and Hatfield, 2003], 
probabilistic and graphical models including Bayesian Net-
works (BN) [Beer and Tavazole, 2004; Friedman, 2004; 
Huttenhower et al., 2006] and factor graphs [Yeang et al., 
2004] , and rule-based models including Induction Logic 
Programming [Ong  et al., 2007], and Abduction Logic Pro-
gramming [Papatheodorou, 2007; Ray and Kakas, 2006]

Despite the advantage of being able to integrate different
sources of biological knowledge in a single, homogeneous 
knowledge base, the area of rule-based models has received 
little attention in computational biology in general and in 
GRN modeling in particular.  This is because there is no 
direct way to integrate an objective or a cost function with 
the knowledge base to measure solution quality.  This issue 
is addressed to some extent by probabilistic inductive logic 
programming, which combines probability and logic pro-
gramming [Raedt  et al., 2008]. In addition, there is no clear 
mathematical correspondence between rule-based models 
and other machine-learning approaches, such as probabilis-
tic methods and Neural Networks (NN).

In this paper, we propose using Cost-Based Abduction 
(CBA) to model GRN by explaining the effects of genetic 
knock-out experiments. Because CBA is a rule-based sys-
tem, it integrates different data sources efficiently and easi-
ly. In addition, it provides an associated cost for each expla-
nation of the data; this cost serves as an objective function
that we want to minimize. Interestingly, CBA has a clear, 
mathematical correspondence to BN, as we show later. Our 
results show that CBA is a promising tool in the field of 
computational biology. 

This paper is organized as follows: the rest of the intro-
duction gives the necessary background on CBA, its relation 
to Bayesian inference and NN, and describes the data 
sources used in the paper. We then describe how to use the 
data sources to create an un-annotated, or a skeleton graph. 
Finally, we describe our algorithm for building a CBA sys-
tem from the skeleton graph. In particular, we show how to
create rules and assign costs in a way that naturally enforces
the constraints of genetic pathways and explains the effects 
of genetic knock-outs. 

1.1 Cost-Based Abduction 
CBA was first introduced by Charniak et al. [Charniak and 
Shimony, 1990]. Formally, a CBA system is a 4-tuple 
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( , , , )H R c G , where H is a set of hypotheses, or proposi-
tions, c is a function from H to a nonnegative real c(h)
called the assumability cost of h � H, R is a set of rules of
the form:

1 2
:( ... )

n ki i i iR p p p p� � � for all ,..,
i ni ip p H� , 

ki
p H� and G H� is the goal, or the evidence set [Ab-

delbar, 1998]. 
Our objective is finding the Least Cost Proof (LCP) for

the goal. The cost of a proof is the sum of the costs of all the 
hypotheses that were assumed to complete the proof. Any 
given hypothesis pi � H can be true either by proving it or 
by assuming it and paying its assumability cost.  Hypotheses 
that can be assumed have finite assumability costs and are 
called “assumables”. Hypotheses that are proved from the 
assumables are called “provables”. A provable can be 
thought of as an assumable with an infinite assumability 
cost that we cannot afford. We can assume, without loss of 
generality, that all rule consequents are provables. To see 
this, suppose ip is an assumable with assumability cost 

( )ic p x� and suppose it appears as the consequent of at 
least one rule, ir . We can create a new hypothesis ip� with 
an assumability cost equals to x , set the assumability cost 
of ip to � and add the rule: i ip p� � .  In addition, for the 
purpose of this paper, we call every hypothesis belonging to 
the goal set G H� a sub-goal hypothesis. All sub-goals in 
our system are provables.  

Finding the optimal solution in CBA has been shown to
be NP-Hard [Charniak and Shimony, 1994]. The most sig-
nificant approaches to finding LCP for CBA can be found at
[Den, 1994; Ishizuka and Matsuo, 2002; Ohsawa and Oh-
sawa, 1997]. One of the most successful algorithms uses
Integer Linear Programming (ILP) as developed by Santos
[Santos Jr., 1994]. Abdelbar et al. showed how to solve 
CBA using High-Order Recurrent Neural Networks
(HORN) [Abdelbar  et al., 2003; Abdelbar  et al., 2005]. 

Finding the LCP in a CBA system is equivalent to find-
ing the maximum a posteriori assignment (MAP) in BN
[Charniak and Shimony, 1990; Charniak and Shimony, 
1994]. They showed that everything one can do using BN 
can also be done using CBA, and vice versa. However, de-
spite their equivalence, CBA has many advantages. For in-
stance, it is believed that finding LCP is more efficient than 
finding MAP, and it may be easier to find heuristics for 
CBA than for BN [Abdelbar, 1998; Charniak and Shimony, 
1994]. Also, using costs instead of probabilities gives 
another perspective to the problem and is easier for some 
people to grasp. We have also found that the CBA know-
ledge representation in terms of rules is more natural for
modeling genetic regulation. Finally, Santos has found ne-
cessary and sufficient conditions under which a CBA sys-
tem is polynomially solvable [Santos Jr. and Santos, 1996]. 
In contrast, conditions for polynomial solvability of finding 
MAP in BN have not been found, even with applying re-
strictions on the graphical representation [Shimony, 1994]
and even for trying to find an alternative next-best explana-
tion [Abdelbar and Hedetniemi, 1998]. Andrews et al. pro-
vided a framework for finding MAP for BN using HORN 
and using CBA as an intermediate representation [Andrews 
and Bonner, 2009]; the theoretical foundation of that 

framework shows the strong equivalency between BN/CBA 
and HORN search spaces  [Andrews and Bonner, 2011]. 

1.2 Biological Data Sources
In this paper, we illustrate the application of CBA to GRN 
by using it to model and learn the well-studied pheromone 
pathway in Yeast. We use three well-known data sets for 
this purpose. The first data set consists of protein-DNA inte-
ractions, also called location data or factor-binding data,
from [Lee et al., 2002]. The directionality of these interac-
tions is known to be from a protein to a gene in the DNA. 
The second data set consists of protein-protein interactions
from the well-known DIP database. The directions of the 
protein-protein interactions are not known a priori and are 
learned by CBA. Finally, we use the knock-out data from 
[Hughes et al., 2000]. Knock-out data describes the effects 
of induced deletion mutation experiments on some genes. 
We do not use the knock-out data to build the skeleton 
graph.  Instead, the effect of the knock-outs is what is being 
explained by the CBA system, and the resultant explana-
tions annotate the entire graph, which in turn represents the 
learned GRN model. Both protein-DNA and protein-protein 
data indicate whether there is an interaction without specify-
ing its sign. CBA uses the knock-out data to infer the sign of 
each interaction, as well as the directions of protein-protein 
interactions. 

2 The Method
Our modeling method, described below, can be summarized 
as follows. We first select the elements in the genome that 
we are interested in, which we call the elements of interest 
set. In this paper, we select all genes and proteins that are 
known to participate in the pheromone pathway. We then 
create a skeleton graph. Each node in the skeleton graph 
represents a gene and its protein product, which is unique 
across all data sets. An edge in the skeleton graph represents 
a potential interaction between a pair of nodes. Using this
graph, we enumerate all paths between each knocked-out 
gene and genes it is known to affect. Our CBA builder algo-
rithm then uses these enumerated paths to build a CBA sys-
tem that effectively annotates the entire graph while looking 
for the LCP of all the knock-out effects. The resulting anno-
tated graph is the learned model for the GRN under study.

2.1 The Un-annotated (Skeleton) Graph
To build the skeleton graph, we first create a node for each 
element in our elements-of-interest set. Graph edges are
then created in two phases. Phase 1 creates (directed) Pro-
tein-DNA edges: we search the location dataset for interac-
tions between nodes of the graph; and for each such interac-
tion, we create a directed edge from the protein to the DNA. 
Phase 2 creates (undirected) Protein-Protein edges: we
search the DIP database for protein-protein interactions be-
tween nodes of the graph; and for each such interaction, we 
create an undirected edge between the two nodes. These two 
phases result in an un-annotated graph. We then use a recur-
sive breadth-first algorithm to enumerate all possible paths 
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between each knocked-out gene and genes it is known to 
affect. We call these paths enumerated or potentially valid 
paths.

The CBA system (described below) adds annotations to 
the skeleton graph.  In the annotated graph, all edges have 
signs and existence labels, and in addition, undirected edges 
have directions. As in [Yeang, et al., 2004], a valid path ka	
starts with a knocked-out gene kg and ends with an ob-
served (or affected) gene ag , and must satisfy the following 
constraints:

1. All edges are in forward direction, from kg to ag .  
2. The aggregate sign of the edges in the path must be 

consistent with the sign of the knock-out effect. 
3. The path must end with a protein-DNA edge. 
4. The path must be no longer than a predefined upper 

bound.
5. If an intermediate gene in the path is also knocked 

out, it must exhibit a knock-out effect on ag . 
6. Each edge must have one and only one direction and 

one and only one sign.
We use the potentially valid paths enumerated from the 

skeleton graph to build a CBA system whose LCP enforces 
these constraints to give us the best valid paths and a fully
annotated graph. 

2.2 Example
Figure 1 shows a skeleton graph that might be generated by 
the algorithm described above.

Let us assume that we have two knock-out effects to ex-
plain, 1 3( , , )g g
 � and 3 5( , , )g g
 � . The notation ( , , )i jg g
 �
means that deletion of gene ig results in down-regulation of
gene jg . We say that a knock-out effect 1 3( , , )g g
 � is ex-
plained if there is a valid path that connects both genes. The 
skeleton graph above suggests three potentially valid paths 
that might explain these knock-out effects: 1 2 3g g g� � ,

1 4 3g g g� � , and 3 4 5g g g� � . Clearly, the direction
of the edge between 3g and 4g is vital to any explanation of
the data. In particular, the direction has to be from 3g to 4g . 
If this direction is reversed, we will not be able to explain 

3 5( , , )g g
 � . The two paths that explain all the data are
1 2 3g g g� � and 3 4 5g g g� � . In addition, to be con-

sistent with the knock-out effects, the edge signs along both

paths must be either ( , )� � or ( , )� � . (The aggregate sign of 
the edges in a valid path must be the opposite of the ob-
served knock-out effect, since the deletion itself is nega-
tive.) 

3 The CBA Builder Algorithm
This section shows how we use the potentially valid paths to 
build a CBA system that finds valid paths that provide the 
best explanation of all the knock-out data and that fully an-
notate the graph.  

3.1 Creating the CBA Hypotheses
For each potentially valid path ka	  for a knock-out pair
( , , )k ag g
 
 , we create the following hypotheses: 
� kjk � , kjk � and 0kjk ,  for every intermediate gene jg in 

ka	 , including the observed gene ag . These hypo-
theses represent aggregate positive, negative and zero
knock-out effects, respectively, from the knocked-out
gene kg to the intermediate gene jg . kjk � and kjk �

are provables while 0kjk is an assumable. 
� kao . This is a sub-goal hypothesis representing the 

observed knock-out effect to be explained. 
For each edge ijE between ig and jg we create the follow-
ing hypotheses: 
� 1ijx and 0ijx , assumables representing the existence of 

the edge in the GRN (i.e., whether or not it represents 
a real biological interaction).

� ijs � and ijs � , assumables representing the sign of the 
edge.

� i jd � and j id � , assumables representing the direction 
of the edge. (Used for undirected edges only.)

� ijs , a sub-goal to determine the sign of the edge.
� ijd , a sub-goal to determine the direction of the edge. 

(Used for undirected edges only.) 
� ijy , a sub-goal to determine whether the edge exists in 

the GRN.

3.2 Creating the CBA Rules
Given a potentially valid path ka	 for a knock-out pair
( , , )k ag g
 
 , let the genes on the path be

0 1
, ,...,

mj j jg g g , 
where 

0j kg g� and 
mj ag g� . For the first edge 

1kjE on the 
path, we create two rules: 
�

1 1 1 11kj kj k j kjx s d k� � �� � �
�

1 1 1 11kj kj k j kjx s d k� � �� � �
For every subsequent edge

1n nj jE
�

, we create four rules:
�

1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �

�
1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �   

�
1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �

�
1 1 1 11n n n n n n n nj j j j kj j j kjx s k d k
� � � �� � � �� � � �

where the rules contain directionality assumables only if the 
edge is undirected.  

1g

2g

bove.

4g

3g

5g

Figure 1: Location data suggests the potential existence of the di-
rected edges. Protein-protein data suggests the potential existence
of the undirected edges.  Dashed arrows are the knock-out effects
to be explained by CBA.
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The main feature of these rules is that for any two con-
secutive edges on the path, the consequents of the rules for 
the first edge are antecedents of the rules for the second 
edge. This makes it easy to enforce the second path con-
straint above, since the consequent of each rule represents
the aggregate effect of all the edges along the path from the
first edge up to the edge for the rule in question.

For each undirected edge, we create two rules, which in-
tuitively mean that the edge has two possible directions:
�

1 1n n n nj j j jd d
� �� �   and    

1 1n n n nj j j jd d
� �� �

For every edge, we create two rules, which intuitively mean 
that the edge has two possible signs:
�

1 1n n n nj j j js s
� �� �    and    

1 1n n n nj j j js s
� �� �

For every edge, we create two rules, which intuitively mean 
that the edge does or does not exist in the GRN: 
�

1 11n n n nj j j jx y
� �

�    and   
1 10n n n nj j j jx y
� �

�
For each knock-out pair ( , , )k ag g
 
 , we create the follow-
ing three rules, which intuitively mean that the knock out 
can have three possible effects on the observed gene: up-
regulation, down-regulation or leaving it unchanged. 
� ka ka kak ck o� �� � ,    ka ka kak ck o� �� � ,    0ka kak o�

Here, kack � and kack �  are auxiliary assumables that carry the 
costs of positive and negative knock-out effects. 

Finally, all sub-goal hypotheses 
1 1 1

{ , , , }
n n n n n nj j j j j j kay d s o
� � �

are added to the goal set. 

3.3 Assigning Costs to Hypotheses 
The last step in creating the CBA system is assigning the 
proper cost to each assumable. For all ijs � , ijs � , i jd � and 

j id � , we assign an equal and relatively high cost, to force 
the system to assume only one sign and only one direction 
while not being biased towards a particular choice. We cal-
culate the cost of the existence hypotheses 1 0{ , }ij ijx x and 
the knock-out effect hypotheses { , }ka kack ck� � based on ob-
served experimental values reported in the datasets. 

Calculating costs for edge existence assumables
The costs of the existence hypotheses 1 0{ , }ij ijx x for an edge 
depend on the likelihood that the edge represents a real bio-
logical interaction. These likelihoods are derived from the 
protein-DNA and protein-protein data. The likelihood itself
is not reported in the data, but the p-value is.  

We recover the likelihood using the same methods as
[Yeang, et al., 2004]. For example, for protein-DNA data, 
we assume the p-value comes from testing the null hypothe-
sis 0H ( 0 1ijx � , the interaction does not occur) against the 
alternative hypothesis 1H ( 1 1ijx � , the interaction does oc-
cur). Accordingly, we recover the log likelihood that the 
interaction has occurred as follows: 

0 1 1 log( )2 log( )1 2 2

0

( | 1) ( | )
( | 0) ( | )

d d L nij n

ij

P D x P D H e e
P D x P D H

�
��

� � �
�

�       (1)

where D is the observed data, 0d and 1d are the degrees of 
freedom in 0H and 1H , n is the sample size the p-value was 
computed from, which is 3 in our case, and L is recovered 
from the p-value using the following approximation:

11

0

( | )
2 log (1 )

( | )
P D HL F p
P D H

�� � �           (2)

where p is the reported p-value, and F is the cumulative 
2� distribution with one degree of freedom. The costs of 

edge existence are then computed as follows: 
0( ) log(1 (1 ))ijc x � � � �   and    1( ) log( (1 ))ijc x � � �� � . 

Calculating costs for knock-out effect assumables
The likelihood of a knock-out interaction can be recovered 
using the same approximation mentioned above. If the like-
lihood of the knock-out effect kak between genes kg and ag
is � , then the cost of assuming no knock-out effect is

0( ) log(1 (1 ))kac k �� � � �� . 
The cost of assuming a positive knock-out effect kak � is

log( (1 ))      0
( )

log( (1 ))     0
ka

ka
ka

if o
c ck

if o
�

� ��

� � � ��
� �� � � ��

� �
�

              (3)

The cost of assuming a negative knock-out effect kak � is

log( (1 ))      0
( )

log( (1 ))     0
ka

ka
ka

if o
c ck

if o
�

� ��

� � � ��
� �� � � ��

� �
�

             (4)

Here, kao is the observed effect of the knock-out on the ex-
pression level of gene ag , and � is a very small real num-
ber representing the possibility that the effect is due to 
something other than the knock-out experiment.  

4 Results 
We used integer linear programming (ILP) to solve the re-
sultant CBA system. In particular, we used the popular pub-
lic domain LP-solve to solve the CBA system after convert-
ing it to an equivalent ILP program.

In addition to toy examples like Figure 1, we applied our 
method to the well-studied Yeast pheromone pathway. The 
skeleton graph consisted of 37 protein-DNA interactions 
and 30 protein-protein interactions. We tried upper bounds
of up to 10 nodes per path. In all cases, the paths discovered
to explain the knock-out effects satisfied the valid path con-
straints mentioned above. Table 1 summarizes the result for 
different upper bounds: 

Path length 2 3 4 5 6 7 8
Hypotheses 346 463 534 826 895 951 897
Rules 297 420 509 935 1281 1421 1465
ILP itera-
tions 

448 642 769 1538 1959 2237 2002

Potentially 
valid paths

31 40 48 159 582 1687 3911

Table 1: This table illustrates the effect of increasing path length 
on the size and complexity of the CBA instance created.
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4.1 Comparison 
Many of the elements of our work are based on [Yeang, 

et al., 2004], which uses a probabilistic approach to infer a 
GRN of Yeast from multiple biological datasets. They use
the same datasets as we do and create what they call a phys-
ical network model. The main difference is that they use
factor graphs instead of CBA, and they compute MAP in-
stead of LCP. We found that the CBA approach produced
better results for the pheromone pathway. For instance, their
method was only able to find approximate MAP configura-
tions, while CBA was able to find an exact LCP. Moreover, 
while they used a maximum path length of 5, CBA could
easily handle paths of length 10. Finally, because CBA 
computes the exact LCP, the solution does not have variant 
parts as in models that compute approximate MAPs. 

A complete discussion and comparison of biological re-
sults is beyond the scope of the present paper. However,
using CBA, we did recover almost all the confirmed signal 
transduction directionalities in the pheromone pathway, 
including STE11� STE7, {STE5,STE7}� FUS3 and
{FUS3,KSS1}� STE12. The 21 direct regulations of 
STE12 were also detected. Neither FUS3 nor KSS1 violated 
any path constraints. We recovered a consistent relation 
between STE12 and MCM1 in both signals and directionali-
ties.

The next section elaborates on interesting features of the 
size of the CBA system produced by our build algorithm. 
These features explain why our model can handle path 
lengths longer than other probabilistic models.      

4.2 CBA Size Features

It is easy to verify that apart from the goal rule, our CBA 
builder will always produce rules that consist of at most 5
variables, including the consequent. This fixed length guar-
antees that the complexity of the graph will never cause an 
unexpectedly long constraint when using ILP or an unex-
pectedly high-order edge when using NN. This short rule 
length also makes the job of the CBA solver easier. Howev-

er, the difficulty of a CBA instance depends on more than 
just rule length. Other factors include solution depth, the 
ratio of assumables to provables, and the ratio of the number 
of hypotheses to the number of rules.

In the probabilistic approach of  [Yeang, et al., 2004], the 
size of the factor graph depends on the number of paths in
the GRN. In contrast, in the approach described here, the 
size of the CBA system depends only on the number of 
edges in the GRN. This is possible because, as a logical 
formalism, CBA very naturally deals with both AND and 
OR constraints and with constraints based on paths and sub-
networks in a graph.  Consequently, the hypotheses and 
rules for an edge are created only once, and reused for each 
path that the edge belongs to. As a result, increasing the 
number of paths or increasing path length does not result in 
an exponential increase in the size of the CBA system. Fig-
ure 2 illustrates the relation between path length and other 
aspects of CBA complexity for the pheromone pathway. 

5 Concluding Remarks and Future Work
We applied CBA to the modeling of genetic regulatory net-
works (GRN). CBA can easily integrate biological data
from multiple sources and explain the effects of gene knock-
out experiments. The size of the CBA instance does not 
increase exponentially with problem size. Our results sug-
gest that CBA can be a useful tool for computational biolo-
gy in general and for GRN modeling in particular. We tested
our algorithm on the pheromone pathway in Yeast. In addi-
tion to testing our model on other pathways and larger 
GRNs, future work includes further optimization of the
CBA instance. We need, for instance, to make the path 
enumeration phase more efficient, either by building the 
CBA rules directly from the edges without any path enume-
ration or by using a more efficient algorithm than recursive 
breadth-first search. It will also be interesting to use the 
node ordering of the CBA instance to create an equivalent 
BN and compare performance. Finally, because we use an 
ILP solver, we can study the characteristics of the resulting
constraint matrix and check whether it meets the CBA poly-
nomial-solvability conditions determined by Santos.  
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