
Modifying Kernels Using Label Information Improves SVM Classification
Performance

Renqiang Min and Anthony Bonner
Department of Computer Science

University of Toronto
Toronto, ON M5S3G4, Canada

minrq@cs.toronto.edu

Zhaolei Zhang
Banting and Best Department of

Medical Research, University of Toronto
Toronto, ON M5G1L6

Zhaolei.Zhang@utoronto.ca

Abstract

Kernel learning methods based on kernel alignment with
semidefinite programming (SDP) are often memory inten-
sive and computationally expensive, thus often impractical
for problems with large-size dataset. We propose a method
using label information to modify kernels based on SVD
and a linear mapping. As a result, the new kernel ma-
trix reflects the label-dependent separability of the data in
a better way than the original kernel matrix. In addition,
our experimental results on USPS handwritten digits and
the SCOP dataset, show that the SVM classifier based on
the improved kernels has better performance than the SVM
classifier based on the original kernels; moreover, SVM
based on the improved Profile kernel with pull-in homologs
(see experiment section for explanations) produced the best
results for remote homology detection on the SCOP dataset
compared to the published results.

1. Introduction

Protein sequence classification and fold recognition is
still a challenging task in the bioinformatics research com-
munity. Generative models (e.g., profile HMMs [3] and [4])
and discriminative models (e.g., kernel SVMs [1] and [6])
have been applied to solve this problem.

It has been shown that the kernel SVM method has bet-
ter classification and prediction performance on protein se-
quence data than some other methods (see [1] and [6]).
Several kernels such as pairwise-sequence-similarity-score
based kernels and mismatch-string kernels, which are es-
pecially suitable for protein sequence data that consists of
a limited number of letters from the amino acid alphabet,
are frequently used in sequence classification and structure
prediction. However, the label information of labeled se-
quences (the class membership of the data points; in a bi-

nary classification problem, the label of a data point is 1
or 0) is completely or partly ignored in the construction
process of these kernels, and the available information be-
tween pairwise unlabeled sequences is also ignored both in
the training phase and in the testing phase. In this paper, we
will incorporate the label information of training data into
the construction process of a new kernel, hoping that the
obtained kernel reflects the real neighborhood property of
the data in a better way than the original kernel. We believe
this helps classification in most situations.

In this paper, we solve protein remote homology detec-
tion problem and handwritten digit classification problem
to evaluate the performance of our proposed approach. We
will use RBF kernels as base kernels for handwritten digit
classification and two mismatch-string kernels as base ker-
nels [6] for protein classification. We present our experi-
mental results for digit classification and protein homology
detection on the SCOP dataset in Section 5. In Section 6,
we conclude the paper with some discussions.

2 SVM based on mismatch-string kernel

In kernel SVM, by constructing a kernel function, we
can map every data point, xi, to a high-dimensional feature
space, in which an SVM can be used to generate a separat-
ing hyperplane. Moreover, we can solve the dual problem
of the original optimization problem and then perform all
the calculations using the kernel trick.

Kernel function can map sequences consisting of letters
to a high-dimensional numerical space. For example, sup-
pose that A is an alphabet with � symbols (� = 20 for pro-
tein sequences). A k-mer string kernel maps every sequence
in A to a �k-dimensional feature space in which coordinates
are indexed by all possible sub-sequences of length k (k-
mers). The mismatch string kernel extends this idea with
a tolerance of at most m mismatches when counting the
number of occurrences of a k-mer in an input sequence. A

Profile Kernel [2] extends the mismatch-string kernel by us-
ing additional profile information of each sequence, that is,
the emission probability of every amino acid at each posi-
tion in respective sequences. Instead of treating all k-mers
with less than m mismatches the same like the mismatch-
string kernel, the profile-kernel examines these k-mers fur-
ther by looking at the emission probabilities at the mismatch
positions and only tolerates some types of mismatches by
thresholding. Note that all entries in these kernel matrices
are non-negative. In fact, for a wide range of applications
including protein classification and handwritten digit classi-
fication, the components of the constructed kernels are pos-
itive. In our method, we require the kernel entries be posi-
tive.

3 Related methods

A kernel matrix K with K(i, j) = Φ(i)T Φ(j) can be
used to derive a similarity matrix based on square Euclidean
distances between any pairwise data points, i and j, in the
feature space, as follows:

Dist2(i, j) = K(i, i) + K(j, j)− 2K(i, j) (1)

Although SVM generates the optimal separating hyperplane
in the feature space given a specific kernel, it does not adjust
the given kernel and make it more discriminative. There-
fore, it leaves room for improvement as we can apply the
aforementioned idea of preserving neighbor identity to con-
struct new kernels in order to achieve better separability in
the new feature space. Instead of computing more discrim-
inative features of data points explicitly, we can construct
a more discriminative kernel directly and all the computa-
tions needed by training and classification can be cast onto
the new kernel matrix. As discussed in [7] and [8], a linear
combination of some predefined kernels is used to gener-
ate new kernels, and the mixing coefficients are calculated
by aligning the training part of the combined kernel to the
training part of an optimal kernel K as follows:

K =
[

Kopt
tr Ktt

T

Ktt unused

]
(2)

Kopt
tr (i, j) =

{
+1 if label(i) = label(j)
−1 otherwise

(3)

where i and j index data points in the training set, and tr and
tt respectively denote the training part and the test part (this
rule applies to all the denotations in the paper). If there are
n training data points and m test data points, Ktr is an n-by-
n block sub-matrix and Ktt is an m-by-n block sub-matrix
in K. In fact, doing kernel alignment is to make the con-
structed kernel approximate the neighbor identity and data
separability reflected by the optimal kernel. From Equation

(1), we can easily find that the optimal kernel makes the dis-
tances between pairwise data points having the same label
be 0 and the distances between pairwise data points having
the different labels be 2. That is to say, the kernel alignment
algorithms actually use the label information to construct a
new kernel to achieve good data potability. However, do-
ing the alignment to calculate the mixing coefficients costs
a lot of memory and is very computationally expensive or
impossible for handling large datasets for combining many
kernels. In [9], label information is used to learn a linear
transformation matrix in a high-dimensional feature space
to generate a new distance metric using kernels. However,
linear transformation in original feature space cannot im-
prove linear classifiers like SVM. Therefore, their method
essentially differs from our method for improving SVM.

In this paper, we propose another efficient approach for
constructing new kernels using label information, which is
based on scaling, matrix decomposition, and a linear map-
ping, to achieve better data separability as discussed above.
The approach is easy to implement and easy to extend to
many types of kernels.

4 Improved kernels using label information

Suppose that we have a dataset as described in Section 2
(we only consider the two-class problem here) and a given
mapping from the input data space to a high dimensional
feature space. We can then construct a kernel K based on
the mapping.

Given the constructed kernel K with K(i, j) =
Φ(i)T Φ(j) and the label information of training data, we
want a new kernel that better reflects the neighbor identity
and separability of the data consistent to the current labels
of training data. If two arbitrary data points in the train-
ing set, i and j, have the same label, we multiply the inner
product of their feature vectors by a scaling factor, γ (see
Section 5 for detailed discussion about choosing γ), which
is greater than 1, to get a new kernel matrix K̂ as follows:

K̂ =
[

K̂tr K̂T
tt

K̂tt unused

]
(4)

where

K̂tr(i, j) =
{

γKtr(i, j) if label(i) = label(j)
Ktr(i, j) otherwise

(5)

The resulting kernel matrix K̂ have larger kernel
alignment score (KAS) than K [7]. KAS(K̂tr) =∑

ij
K̂ijyiyj

n

√∑
ij

K̂2
ij

> KAS(Ktr), where n is the size of the train-

ing set, yi, yj ∈ {+1,−1}, and i, j = 1, . . . , n. This in-
equality can be easily proved by dividing the numerator and

+
+

+
+

+
+

+ −
− − −
− − −

+ + +

+ + +

− − −

 − − −

+

−

Figure 1. The data distribution in the original
feature space and in the new feature space.
’+’ means positive and ’-’ means negative.

the denominator of KAS(K̂tr) by γ. Note that we only use
the label information of the training set to modify the train-
ing part of the kernel matrix here. This modification will
affect both the training part and the test part of K. The test
part K̂tt of the new kernel matrix K̂ is calculated using ker-
nel extrapolation, which is based on a linear mapping. The
matrix K̂tr is positive semidefinite. The distances between
pairwise data points in the new feature space corresponding
to K̂tr are as follows:

ˆDist
2

tr(i, j) =

γDist2(i, j) if label(i) = label(j)
γDist2(i, j)+ otherwise.
2(γ − 1)Ktr(i, j) γ > 1

(6)
Here Dist2(i, j) is defined in Equation (1), and i and j in-
dex the data points in the training set. We see from Equa-
tion (6) that, in the new feature space, the distance between
points having the same label is increased by a factor of γ.
Moreover, since γ > 1 and Ktr(i, j) is non-negative, the
distance between points having different labels is increased
even further by the additional term 2(γ − 1)Ktr(i, j). That
is to say, in the feature space defined by K̂tr, data points
with the same label stay relatively close together, while data
points with different labels move relatively further apart.
Figure 1 illustrates the separation of data points in feature
spaces corresponding to Ktr and K̂tr.

We can also interpret the similarity between a pair of
data points, i and j, in terms of the angle between their
feature vectors, Φ(i) and Φ(j), which is given by θ =
arccos[K(i, j)/

√
K(i, i)K(j, j)]. The angle between two

points with the same label is the same in the new feature
space and the original feature space, while the angle be-
tween two points with different labels is larger in the new
feature space than in the original feature space. This can
also be seen in Figure 1.

After the training part, K̂tr, of the new kernel is con-
structed, we need to estimate the testing part, K̂tt. That
is, to classify a test case by an SVM based on K̂, we need
to estimate the inner products of the new feature vector of
the test case and the new feature vectors of all the train-
ing cases. This can be done by approximating all the high-

dimensional feature vectors by lower, N -dimensional fea-
ture vectors, where N is the size of the training set. To do
this, we decompose the training part of K and K̂, denoted
by Ktr and K̂tr, respectively, into SVD form as follows:

KtrVtr = VtrDtr (7)

Ktr = VtrDtrVtr
T = Wtr

T Wtr (8)

where
Wtr = (Vtr

√
Dtr)T (9)

Similarly,

K̂trV̂tr = V̂trD̂tr (10)

K̂tr = V̂trD̂trV̂
T
tr = ŴT

trŴtr (11)

where

Ŵtr = (V̂tr

√
D̂tr)T (12)

In these equations, the columns of Vtr are orthogonal eigen-
vectors of K2

tr, and Dtr is a diagonal matrix containing the
corresponding eigenvalues. Likewise for V̂tr, K̂tr and D̂tr.
Wtr and Ŵtr are n-by-n matrices, where n is the size of the
training set.

We can view Wtr as a compressed representation of the
high-dimensional feature vectors of the training data in a
lower dimensional space. Note that this representation pre-
serves all the inner products. We can interpret Ŵtr in the
same way. Moreover, the new kernel, K̂tr, can be calcu-
lated from Ŵtr, which in turn can be computed by apply-
ing a linear transformation to Wtr, as the following lemma
shows:

Lemma 1 AWtr = Ŵtr, where A =
√

D̂trV̂
T
tr Vtr

1√
Dtr

Here, the expression 1√
D

means the inverse of the diagonal

matrix
√

D. The lemma itself follows immediately from
equations (9) and (12). We interpret this lemma as follows:
Ktr and K̂tr, respectively, corresponds to feature space F
and F̂ with Wtr lying in F and Ŵtr lying in F̂ ; there ex-
ists a linear transformation between F and F̂ . We shall use
the linear transformation, A, to estimate the matrix K̂tt, the
testing part of K̂. This involves the following assumption:

Assumption 1 The linear relation shown in Lemma 1 can
be extended to A[Wtr;Wtt] = [Ŵtr; Ŵtt], where Wtt and
Ŵtt are m-by-n matrices which satisfy WT

tt Wtr = Ktt and
ŴT

tt Ŵtr = K̂tt, n and m are respectively the size of the
training set and the test set.

In this assumption, we assume that: Wtt lies in F and
Ŵtt lies in F̂ ; applying the linear transformation A to Wtt

will result in the n-dimensional feature vectors of test data
Ŵtt in the reduced feature space F̂ , which better reflects the
label-dependent separability of the test data points as A does

to Wtr. The value of this assumption is tested empirically in
Section 5, where we show that the resulting kernel leads to
an SVM classifier with significantly improved performance.

Note that Wtt and Ŵtt are N -dimensional feature vec-
tors representing the test data points1. Using Lemma 1 and
Assumption 1, we can calculate K̂tt. First, from the defini-
tions of K and W ,

WT
tt Wtr = Ktt (13)

and so by equation (9),

Wtt =
1√
Dtr

V T
tr KT

tt (14)

According to Assumption 1, we have

K̂tt = ŴT
tt Ŵtr = Ktt(Vtr

1
Dtr

V T
tr)K̂tr = KttK

−1
tr K̂tr

(15)
When calculating K̂tt, we need to calculate K−1

tr first,
and then we can obtain K̂tt easily by Equation (15). Note
that we need not perform SVD at all and the inverse of Ktr

can be computed in Matlab very fast (it takes less than 10
seconds to get the inverse of a 2620-by-2620 kernel ma-
trix in our machine with 3.0GHz CPU and 4.0GB mem-
ory)2. After the new kernel is constructed, we can apply
machine learning techniques based on the kernel to classifi-
cation, clustering, or regression problems.

5 Experimental results

5.1 Experiments on handwritten digit classifica-
tion

We use USPS handwritten digits to perform binary clas-
sification to test the performance of our proposed approach.
In the dataset, there are 1100 images with 256 gray-scale
pixels for each of the ten digits. We choose some similar
digits to compose pairs for binary classification to increase
the difficulty of the tasks. For each binary classification
task, we randomly choose 600 images for training and 500
images for testing for each image; then we test the perfor-
mance of the base kernel and the modified kernel on this
dataset; and we repeat this procedure 5 times. In the ex-
periments, RBF kernels are used as base kernels, in which
the free parameter σ is chosen using 5-fold Cross Validation
(CV). The free parameter C in SVM and the free parameter

1Note that our method is not transductive and has wider applicability in
practice than transductive methods.

2Equation (15) requires Ktr is non-singular, and if it is singular, it
means that some rows in Ktr corresponding to some training data points
can be expressed as the linear combination of some other rows in Ktr , we
can simply remove the redundant rows to get a non-singular Ktr or set
Ktr to be Ktr + εI .

USPS handwritten digit classification results
run1 run2 run3 run4 run5

8vs9 11 11 11 12 12
8vs9 + 8 8 7 6 7
0vs6 6 7 6 7 6
0vs6 + 4 4 4 4 3
4vs6 13 13 11 12 13
4vs6 + 11 10 7 9 11

Table 1. ’8vs9’ and ’8vs9+’ represent the bi-
nary classification task for the pair ’8’ versus
’9’. Similarly, the rest rows correspond to the
results for other different pairs. The rows with
’+’ correspond to the modified kernels us-
ing label information and the rest rows corre-
spond to the base kernels (RBF). The integer
numbers in the right five columns inside the
table are the number of mis-classifications.
Different runs denote different random split-
tings of the dataset for training and testing.

γ are also chosen using 5-fold CV. We used a greedy ap-
proach to choose the free parameters to avoid a grid search.
The results are summarized in Table 5.1. We can see that
the modified kernels consistently give better performance
than the original RBF kernels.

5.2 Experiments on protein remote homology de-
tection

We also determine the classification performance of the
new kernels against the original kernels by comparing their
ability to detect protein remote homology. A benchmark
dataset, which was derived by Jaakkola from the SCOP
database (see [5] and [1]), is used here. In SCOP, pro-
tein sequences are classified into a 4-level hierarchy: class,
fold, superfamily, and family, starting from the top. Re-
mote homology is simulated by choosing all the members
of a family as positive test data, some family (or families)
in the same superfamily of the test data as positive train-
ing data, all sequences outside the fold of the test data as
either negative training data or negative test data, and se-
quences that are neither in the training set nor in the test
set are considered as unlabelled data. This data splitting
scheme has been used in several previous papers (see [1]
and [6]). We used the same training and test data split as
those used in [6]. The version 1.59 of the SCOP dataset
from http://astral.berkeley.edu is used, in which no pair of
sequences share more than 95% identity.

In the experiments, there are 54 target test families alto-
gether classified into four classes: alpha proteins, beta pro-
teins, alpha and beta proteins, and small proteins. In the

Profile Kernel on family 2.28.1.1

training data

te
st

 d
at

a

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 2. A block sub-matrix in Ktt of the
original Profile Kernel[PSIBLAST] on family
2.28.1.1 (Legume lectins). See the text for ex-
planation.

data splits, for most experiments, there are only several pos-
itive test cases but hundreds or even thousands of negative
test cases. The maximum number of positive test cases is
below 30, but the maximum number of negative test cases
is above 2600. The minimum number of positive test case
is 1, but the minimum number of negative test cases is still
above 250. So, in the experiments with a very limited num-
ber of positive test cases and a large number of negative test
cases, we can almost ignore the ranking of positive cases
below 50 negative cases. In such situations, we consider
that the ROC50 score is much more important than the ROC
score. Here, a ROC curve plots the rate of true positives as
a function of the rate of false positives at different decision
thresholds, the ROC score is the area under the curve, and
the ROC50 score is the ROC score computed up to the first
50 false positives. Thus, in our experiments, we only com-
pare the ROC50 scores corresponding to different kernels.

Because our approach to generating new kernels based
on label information is independent of given kernels, we
choose two representative kernels, which were, respec-
tively, a ‘Mismatch kernel + homologs [PSI-BLAST]’ as
described in [6] and a ‘Profile kernel’ as described in [2]
also ‘plus homologs [PSI-BLAST]’ as base kernels. ‘ker-
nels + homologs [PSI-BLAST]’ refers to a semi-supervised
learning method: prior to training SVM, close homologs of
the training data in the unlabelled set found by PSI-BLAST
with E-value less than 0.05 are added to the positive train-
ing set, and are labeled as positive (we call this ‘pull-in ho-
mologs’). We choose the first kernel because it gives the
best results on remote homology detection among the ker-
nels that don’t use the profile information; and we choose
the second kernel because it produced the best results on
SCOP among all the kernels (we don’t consider transduc-
tive learning in this paper). To perform SVM classifica-
tion based on the kernels, we used the SVM classifier in the
freely available Spider Matlab machine learning package.

We compared the methods using the mismatch kernel

Improved Profile Kernel on family 2.28.1.1

training data

te
st

 d
at

a

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 3. A block sub-matrix in K̂tt of the
improved Profile Kernel[PSIBLAST] on fam-
ily 2.28.1.1 (Legume lectins). See the text for
explanation.

Mean ROC50 scores over different protein classes
Alpha Beta Alpha and Small
Proteins Proteins Beta Proteins Proteins

K1 0.4874 0.5208 0.5798 0.5905
ImproK1 0.5395 0.5283 0.5933 0.6010
K2 0.7909 0.8156 0.8924 0.8687
ImproK2 0.8172 0.8276 0.9075 0.8808

Table 2. ‘K1’ represents ‘Mismatch kernel
+ [PSI-BLAST]’, ‘ImproK1’ represents ‘Im-
proved Mismatch kernel + [PSI-BLAST]’, ‘K2’
represents ‘Profile Kernel + [PSI-BLAST]’,
and ‘ImproK2’ represents ‘Improved Profile
Kernel + [PSI-BLAST]’.

with k = 5 and m = 1 and the profile kernel with k = 5
and σ = 7.5, and the γ is set by CV. In the experiments in
which the number of positive training cases is greater than
or equal to 5, we respectively generated a random permuta-
tion of the positive training cases and of the negative train-
ing cases, then we divided the two permutations into 5 folds
denoted by Pi and Ni, i = 1, · · · , 5. We form a new set
M = {{Pi, Ni}|i = 1, · · · , 5}, then we did 5-fold CV on
M and chose γ corresponding to the biggest mean ROC50

score from a predefined list. In the experiments in which the
number of the positive training cases is less than 5, we used
a similar strategy as above but we divided the positive train-
ing set and the negative training set into 2 folds, and we did
2-fold CV on the newly formed set M to choose γ. In the
experiments, the free parameters C for SVM and the free
parameter γ are chose using Cross Validation as discussed
above. Before training SVM, the kernel was normalized us-
ing K(i, j)← K(i,j)√

K(i,i)K(j,j)
.

Table 2 gives the mean ROC50 scores on different pro-
tein classes in several classes corresponding to the original
kernels and the modified kernels. From Table 2, we see that:

modified kernels using label information gave better perfor-
mance than the original kernels.

To determine whether the improvement given by the
modified kernels is statistically significant, we performed
a Wilcoxon Matched-Pairs Signed-Ranks Test on the dif-
ferences. The resulting p-value for the improvement over
the Mismatch+homologs [PSI-BLAST] kernel is 2.19e −
04, and the p-value for the improvement over the Pro-
file+homologs [PSI-BLAST] kernel is 0.0162.

To show our algorithm improves the original kernels in
more detail, in Figure 2 and Figure 3, we respectively plot
a block sub-matrix of the test part of the normalized origi-
nal Profile + [PSIBLAST] and of the normalized improved
Profile +[PSIBLAST] matrix on family 2.28.1.1 (Legume
lectins). In the two figures, the first three rows correspond
to all the positive test sequences in the test set, and the re-
mainder rows correspond to some randomly selected nega-
tive test sequences. The first nine columns correspond to
some randomly selected positive training sequences, and
the last column corresponds to a randomly selected nega-
tive training sequence. The whiter the blobs in the figures,
the larger the corresponding similarity scores. Comparing
Figure 2 to Figure 3, we can see that the similarity scores
between the positive test data and the positive training data
in the improved kernel is increased (the block on the upper
left corner becomes whiter in the improved kernel matrix).

6 Discussion

We described an approach to modify kernels using la-
bel information of training data based on SVD and a lin-
ear mapping. The modified kernel is more discriminative
than the original kernel. We also showed that, unlike Kernel
Alignment with SDP, the test part of the modified kernel can
be calculated very efficiently in practice. We tested the per-
formance of the modified kernel by performing handwritten
digit classification and detecting protein remote homology.
Experimental results show that the improvement given by
the new kernel is significant, although one more free pa-
rameter γ is introduced.

We believe that the modified kernel will not overfit the
training data, because the label information is only used to
modify the training part of kernel matrix and the degree of
the modification is controlled by CV. The experimental re-
sults in the paper show that the generalization is good. The
approach discussed in the paper is general and can be read-
ily applied to many problems. In the future work, we plan
to apply the approach discussed to gene function prediction
problems.

Acknowledgment

This project was funded by a start-up fund from Univer-
sity of Toronto to Zhaolei Zhang, an NSERC grant to An-
thony Bonner, and a grant from Genome Canada through
the Ontario Genomics Institute.

References

[1] Jaakkola, T., Diekhans, M., and Haussler, D.: A dis-
criminative framework for detecting remote protein ho-
mologies. Journal of Computational Biology. 7 (2000)
Numbers 1/2, 95-114.

[2] Kuang, R., Ie, E., Wang, K., Wang, K., Siddiqi, M.,
Freund, Y., and Leslie C.: Profile-based String Kernels
for Remote Homology Detection and Motif Extraction.
Journal of Bioinformatics and Computational Biology.
3 (2005) No. 3 527-550.

[3] Krogh, A., Brown, M., Mian, I., Sjolander, K., and
Haussler, D.: Hidden markov models in computational
biology: Applications to protein modeling. Journal of
Molecular Biology. 235 (1994) 1501-1531.

[4] Baldi, P., Chauvin, Y., Hunkapiller, T., and McClure,
M.A.: Hidden markov models of biological primary se-
quence information. PNAS, 91(3) (1994) 1059-1063.

[5] Murzin A. G., Brenner S. E., Hubbard T., Chothia C.:
SCOP: a structural classification of proteins database
for the investigation of sequences and structures. J. Mol.
Biol. 247 (1995) 536-540.

[6] Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A.
and Noble, W.S.: Semi-Supervised Protein Classifica-
tion using Cluster Kernels. Bioinformatics. 21 (2005)
3241-3247.

[7] Zhu, X., Kandola, J., Ghahramani, Z., and Lafferty, J.:
Nonparametric Transforms of Graph Kernels for Semi-
Supervised Learning. Advances in Neural Information
Processing Systems. 17 (2005).

[8] Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui,
L. and Jordan, M.: Learning the kernel matrix with
semidefinite programming. Journal of Machine Learn-
ing Research. 5 (2004) 27-72.

[9] Kwok, T., Tsang, I.W.: Learning with idealized kernels.
Proceedings of the Twentieth International Conference
on Machine Learning (ICML), (2003) pp. 400-407.

