CSC 2547: Machine Learning for Vision as Inverse Graphics

Anthony Bonner
www.cs.toronto.edu/~bonner
Convolutional Neural Nets

• Achieved astounding breakthroughs in machine vision (and other areas).
• Require vast amounts of data for learning.
• Make silly mistakes.
• Do not understand what they see.
• Limitations have been extensively studied.
• Not full Artificial Intelligence.
Scene Understanding

• Much more than just classification.
• Needs a rich 3-dimensional representation of the world.
• Objects, shape, position, orientation, appearance, category, composition, …
• Relationships between objects. (part-of, next-to, on-top-of, …)
• Illumination, camera angle, …
Inverse Graphics

• Computer graphics represents the world this way internally.

• Inverse problems:
 – Graphics generates a 2D image from a 3D representation.
 – Scene understanding generates a 3D representation from a 2D image.
After inferring a 3D representation of an image:

• Could answer many common-sense questions about the image.
• Could (approximately) regenerate the image with a graphics program.
• Deviations from the original image show the accuracy of the representation (useful for learning).
• Could modify the representation:
 – move, rotate, recolor objects
 – change illumination, camera position
• Generate modified images.
Inverting the Graphics process

• A difficult, non-deterministic problem.
• Loss of information in the graphics process.
• Many 3D representations have the same image (due to occlusion, shadows, etc.)
• Which one is right?
This Course

• Addresses the problem of inverse graphics with machine learning.
• Learn how to infer (a distribution of) representations of a scene.
• Often use (or learn) a graphics program (or neural net) to regenerate the image (a generative model).
• Used to test the accuracy of a representation, and provide feedback for learning.
Course Structure

• Seminar course with a major project.
• Study papers from the literature.
• First 3 classes: lectures on background material.
• Next 7 classes: student presentations of papers.
• Last 2 classes: project presentations
Paper Presentations

- Each week will focus on one topic, as listed on the course web page (soon).
- You can vote for your choice of topic/week (soon).
- I will assign you to a week (soon).
- Papers on each topic will be listed on the course web page.
- If you have a particular paper you would like to add to the list, please let me know.
Paper Presentations

• Goal: high quality, accessible tutorials.
• 7 weeks and 44 students = 6 or 7 students per week and about 15 minutes per student.
• 2-week planning cycle:
 – 2 weeks before your presentation, meet me after class to discuss and assign papers.
 – The following week, meet the TA for a practice presentation (required).
 – Present in class under strict time constraints.
Team Presentatations

• Papers may be presented in teams of two or more with longer presentations (15 minutes per team member).

• Unless a paper is particularly difficult or long, a team will be expected to cover more than one paper (one paper per team member).

• A team may cover one of the listed papers and one or more of its references (but see me first).
Tentative Topics

• Generative and discriminative models of vision
• Variational inference and autoencoders
• Capsule networks
• Group symmetries and equivariance
• Visual attention mechanisms
• Differentiable renderers
• Applications
Marking Scheme

• Paper presentation: 20%
• Course project Proposal: 20%
• Project presentation: 20%
• Project report and code: 40%
Prerequisites

• Solid introduction to machine learning (eg, grad or senior undergrad course)
• Familiarity with the basics of neural nets
• Solid background in linear algebra
• Basics of multivariate calculus and probability
• Programming skills (eg, Tensorflow or Pytorch if you plan an implementation project)
• Mathematical maturity will be assumed.
More information

• See the course website.
• Accessible through my home page.
• www.cs.toronto.edu/~bonner