
## CSC 411: Lecture 03: Linear Classification

#### Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto



What digit is this?



Is this a dog?



what about this one?



Am I going to pass the exam?



Do I have diabetes?

- What do all these problems have in common?
- Categorical outputs, called labels (eg, yes/no, dog/cat/person/other)
- Assigning each input vector to one of a finite number of labels is called classification
- Binary classification: two possible labels (eg, yes/no, 0/1, cat/dog)
- Multi-class classification: multiple possible labels
- We will first look at binary problems, and discuss multi-class problems later in class

- Linear Classification (binary)
- Key Concepts:
  - Classification as regression
  - Decision boundary
  - Loss functions
  - Metrics to evaluate classification

- We are interested in mapping the input  $\mathbf{x} \in \mathcal{X}$  to a *label*  $t \in \mathcal{Y}$
- In regression typically  $\mathcal{Y}=\Re$
- Now  $\mathcal{Y}$  is categorical

# Classification as Regression

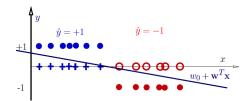
- Can we do this task using what we have learned in previous lectures?
- Simple hack: Ignore that the output is categorical!
- Suppose we have a binary problem,  $t \in \{-1, 1\}$
- Assuming the standard model used for (linear) regression

$$y(\mathbf{x}) = f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

- How can we obtain w?
- Use least squares,  $\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$ . How is  $\mathbf{X}$  computed? and  $\mathbf{t}$ ?
- Which loss are we minimizing? Does it make sense?

$$\ell_{square}(\mathbf{w},t) = \frac{1}{N} \sum_{n=1}^{N} (t^{(n)} - \mathbf{w}^{T} \mathbf{x}^{(n)})^{2}$$

• How do I compute a label for a new example? Let's see an example


# Classification as Regression

• One dimensional example (input x is 1-dim)



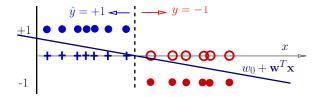
• The colors indicate labels (a blue plus denotes that  $t^{(i)}$  is from the first class, red circle that  $t^{(i)}$  is from the second class)

### **Decision Rules**



• Our classifier has the form

$$f(\mathbf{x}, \mathbf{w}) = w_o + \mathbf{w}^T \mathbf{x}$$


• A reasonable decision rule is

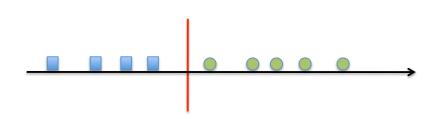
$$y = egin{cases} 1 & ext{if } f(\mathbf{x}, \mathbf{w}) \geq 0 \ -1 & ext{otherwise} \end{cases}$$

• How can I mathematically write this rule?

$$y(\mathbf{x}) = \operatorname{sign}(w_0 + \mathbf{w}^T \mathbf{x})$$

• What does this function look like?




• How can I mathematically write this rule?

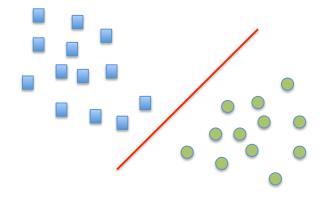
$$y(\mathbf{x}) = \operatorname{sign}(w_0 + \mathbf{w}^T \mathbf{x})$$

• This specifies a linear classifier: it has a linear boundary (hyperplane)

$$w_0 + \mathbf{w}^T \mathbf{x} = 0$$

which separates the space into two "half-spaces"




• The linear classifier has a linear boundary (hyperplane)

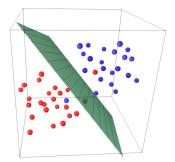
$$w_0 + \mathbf{w}^T \mathbf{x} = 0$$

which separates the space into two "half-spaces"

• In 1D this is simply a threshold

# Example in 2D




• The linear classifier has a linear boundary (hyperplane)

$$w_0 + \mathbf{w}^T \mathbf{x} = 0$$

which separates the space into two "half-spaces"

In 2D this is a line

Zemel, Urtasun, Fidler (UofT)



• The linear classifier has a linear boundary (hyperplane)

$$w_0 + \mathbf{w}^T \mathbf{x} = 0$$

which separates the space into two "half-spaces"

- In 3D this is a plane
- What about higher-dimensional spaces?

## Geometry

 $\mathbf{w}^T \mathbf{x} = 0$  a line passing though the origin and orthogonal to  $\mathbf{w}$  $\mathbf{w}^T \mathbf{x} + w_0 = 0$  shifts it by  $w_0$ 

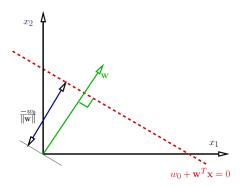
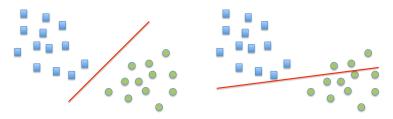




Figure from G. Shakhnarovich

# Learning Linear Classifiers

- Learning consists in estimating a "good" decision boundary
- We need to find  $\mathbf{w}$  (direction) and  $w_0$  (location) of the boundary
- What does "good" mean?
- Is this boundary good?



- We need a criteria that tell us how to select the parameters
- Do you know any?

• Classifying using a linear decision boundary reduces the data dimension to 1

$$y(\mathbf{x}) = \operatorname{sign}(w_0 + \mathbf{w}^T \mathbf{x})$$

- What is the cost of being wrong?
- Loss function: L(y, t) is the loss incurred for predicting y when correct answer is t
- For medical diagnosis: For a diabetes screening test is it better to have false positives or false negatives?
- For movie ratings: The "truth" is that Alice thinks E.T. is worthy of a 4. How bad is it to predict a 5? How about a 2?

• A possible loss to minimize is the zero/one loss

$$L(y(\mathbf{x}), t) = \begin{cases} 0 & \text{if } y(\mathbf{x}) = t \\ 1 & \text{if } y(\mathbf{x}) \neq t \end{cases}$$

• Is this minimization easy to do? Why?

### Other Loss functions

• Zero/one loss for a classifier

$$L_{0-1}(y(\mathbf{x}), t) = \begin{cases} 0 & \text{if } y(\mathbf{x}) = t \\ 1 & \text{if } y(\mathbf{x}) \neq t \end{cases}$$

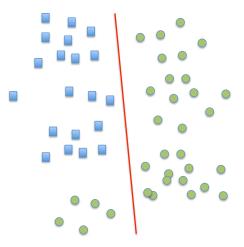
• Asymmetric Binary Loss

$$L_{ABL}(y(\mathbf{x}), t) = \begin{cases} \alpha & \text{if } y(\mathbf{x}) = 1 \land t = 0\\ \beta & \text{if } y(\mathbf{x}) = 0 \land t = 1\\ 0 & \text{if } y(\mathbf{x}) = t \end{cases}$$

• Squared (quadratic) loss

$$L_{squared}(y(\mathbf{x}),t) = (t - y(\mathbf{x}))^2$$

• Absolute Error


$$L_{absolute}(y(\mathbf{x}), t) = |t - y(\mathbf{x})|$$

Zemel, Urtasun, Fidler (UofT)

- What if the movie predictions are used for rankings? Now the predicted ratings don't matter, just the order that they imply.
- In what order does Alice prefer E.T., Amelie and Titanic?
- Possibilities:
  - 0-1 loss on the winner
  - Permutation distance
  - Accuracy of top K movies.

#### Can we always separate the classes?

• If we can separate the classes, the problem is linearly separable



Causes of non perfect separation:

- Model is too simple
- Noise in the inputs (i.e., data attributes)
- Simple features that do not account for all variations
- Errors in data targets (mis-labelings)

Should we make the model complex enough to have perfect separation in the training data?

#### Metrics

How to evaluate how good my classifier is? How is it doing on dog vs no-dog?



TP (True Positive)

FP (False Positive)

FN (False Negative)

Zemel, Urtasun, Fidler (UofT)

CSC 411: 03-Classification

#### Metrics

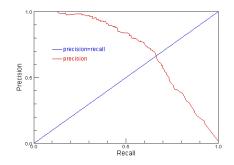
How to evaluate how good my classifier is?

• Recall: is the fraction of relevant instances that are retrieved

$$R = \frac{TP}{TP + FN} = \frac{TP}{\text{all groundtruth instances}}$$

• Precision: is the fraction of retrieved instances that are relevant

$$P = \frac{TP}{TP + FP} = \frac{TP}{\text{all predicted}}$$


• F1 score: harmonic mean of precision and recall

$$F1 = 2\frac{P \cdot R}{P + R}$$

## More on Metrics

How to evaluate how good my classifier is?

- Precision: is the fraction of retrieved instances that are relevant
- Recall: is the fraction of relevant instances that are retrieved
- Precision Recall Curve



• Average Precision (AP): mean under the curve

- Metrics on a dataset is what we care about (performance)
- We typically cannot directly optimize for the metrics
- Our loss function should reflect the problem we are solving. We then hope it will yield models that will do well on our dataset