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Optimization

Given function f:R"™ — R, and set S C R", find
x* € S such that f(x*) < f(x) forall x € S

x* called minimizer or minimum of f

Suffices to consider only minimization, since
maximum of f is minimum of —f

Objective function f usually differentiable, may
be linear or nonlinear

Constraint set S defined by system of equa-
tions and inequalities that may be linear or
nonlinear

Points x € S called feasible points

If S =R", problem is unconstrained



Optimization Problems

General continuous optimization problem:

min f(x) subject to g(x) = o0 and h(x) < o,
where f:R" —- R, g:R" — R™, h:R" — RP

Linear programming:. f, g, and h all linear

Nonlinear programming:. nonlinear objective or
nonlinear constraints, or both



Examples: Optimization Problems

Minimize weight of structure subject to con-
straint on its strength, or maximize its strength
subject to constraint on its weight

Minimize cost of diet subject to nutritional
constraints

Minimize surface area of cylinder subject to
constraint on its volume:

min f(z1,2x2) = 2nx1(z1 + 22)
L1,T

subject to g(x1,z2) = WﬁC%QZ‘Q -V =0,

where x1 and x5 are radius and height of cylin-
der, and V is required volume



Local vs Global Optimization

x* € S is global minimum if f(x*) < f(x) for
all x € S

x* € S is local minimum if f(x*) < f(ax) for all
feasible x in some neighborhood of x*

|

local minimum

|

global minimum



Global Optimization

Finding, or even verifying, global minimum is
difficult, in general

Most optimization methods designed to find
local minimum, which may or may not be global
minimum

If global minimum desired, can try several widely
separated starting points and see if all produce
same result

For some problems, such as linear program-
ming, global optimization tractable



Existence of Minimum

If f is continuous on closed and bounded set
S C R™, then f has global minimum on S

If S is not closed or is unbounded, then f may
have no local or global minimum on S

Continuous function f on unbounded set S C
R™ is coercive if

im  f(z) = +oo,

]| =00

i.e., f(x) must be large whenever ||x|| is large

If f coercive on closed, unbounded set S C R",
then f has global minimum on S



Level Sets

Level set for function f:S C R" — R is set
of all points in § for which f has some given
constant value (also called contour line)

For given v € R, sublevel set is

Ly={xzcS: f(x) <~}

If continuous function f on S C R™ has nonempty
sublevel set that is closed and bounded, then
f has global minimum on S

If S is unbounded, then f is coercive on S if,
and only if, all its sublevel sets are bounded



Uniqueness of Minimum

Set S C R" is convex if it contains line segment
between any two of its points

Function f:S C R" — R is convex on convex
set S if its graph along any line segment in
S lies on or below chord connecting function
values at endpoints of segment

Any local minimum of convex function f on
convex set S C R™ is global minimum of f on
S

Any local minimum of strictly convex function
f on convex set S C R" is unique global mini-
mum of f on S



First-Order Optimality Condition

For function of one variable, find extremum by
differentiating function and setting derivative
to zero

Generalization to function of n variables is to
find critical point, i.e., solution of nonlinear
system

Vfi(x)=o,

where V f(x) is gradient vector of f, whose ith
component is 0f(x)/0x;

For continuously differentiable f. S C R" — R,
any interior point * of S at which f has local
minimum must be critical point of f

But not all critical points are minima: can also
be maximum or saddle point
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Second-Order Optimality Condition

For twice continuously differentiable f: S C R" —
R, can distinguish among critical points by con-
sidering Hessian matrix H ;(z) defined by

0% f (x)
8a:i8:nj ’

{H¢(x)}i; =

which is symmetric
At critical point x*, if H;(x*) is

e positive definite, then x* is minimum of f
e negative definite, then x* is maximum of f
e indefinite, then x* is saddle point of f

e Singular, then various pathological situa-

tions possible
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Saddle Point of z = x? - y?




Constrained Optimality

If problem is constrained, need be concerned
only with feasible directions

For equality-constrained problem

min f(x) subject to g(x) = o,

where f:R"™ — R and g:R" — R™, with m < n,
necessary condition for feasible point ™ to be
solution is that negative gradient of f lie in
space spanned by constraint normals, i.e.,

—Vf(a*) = JJ (@),
where Jg is Jacobian matrix of g, and A is vec-

tor of Lagrange multipliers

T his condition says we cannot reduce objective
function without violating constraints
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Constrained Optimality, continued

L agrangian function £:R"t™ — R, defined by
L(z, ) = f(x) + A g(x),

and its gradient and Hessian given by

and
_ [B(z,A) Jl(x)
HE(CB,A)—[ Jg(a:) gO ’
where

B(x,\) = H(x) + i NiHg ()
1=1

Together, necessary condition and feasibility
imply critical point of Lagrangian function,

V@) +Jg (@A] _

VL(x,\) = ()
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Constrained Optimality, continued

Hessian of Lagrangian is symmetric, but not
positive definite, so critical point of L is saddle
point rather than minimum or maximum

Critical point (x*, A*) of £ is constrained min-
imum of f if B(x*, A\*) is positive definite on
null space of Jy(x*)

If columns of Z form basis for null space, then
test projected Hessian Z1' BZ for positive def-
initeness

If inequalities present, then KKT optimality
conditions also require nonnegativity of Lagrange
multipliers corresponding to inequalities, and
complementarity condition
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Sensitivity and Conditioning

Although problems of minimizing function and
solving equation are closely related, their sen-
sitivities differ

In one dimension, absolute condition number
of root z* of equation f(z) = 0 is 1/|f(z*)],
so if |f(z)| < ¢, then |z — x*| may be as large

as e/|f'(z*)|

For minimizing f, Taylor series expansion
f(z) f(z™ 4+ h)

f@*) + F(@)h+ 3 f(@*)h? + O(h3)
shows that, since f/(z*) = 0, if |f(Z) — f(z*)| <
e, then |z —z*| may be as large as \/26/|f”(:1:*)|

Thus, based on function values alone, minima
can be computed to only about half precision
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Unimodality

For minimizing function of one variable, need
“pbracket’” for solution analogous to sign change
for nonlinear equation

Real-valued function f is unimodal on inter-
val [a,b] if there is unique z* € [a,b] such that
f(x*) is minimum of f on [a,b], and [ is strictly
decreasing for x < zx*, strictly increasing for
¥ < x

This property enables discarding portions of in-
terval based on sample function values, analo-
gous to interval bisection
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Golden Section Search

Suppose f is unimodal on [a,b], and let 1 and
xo be two points within interval, with 1 < x5

Evaluating and comparing f(xz1) and f(z»),
can discard either (zo,b] or [a,z1), with mini-
mum known to lie in remaining subinterval

To repeat process, need to compute only one
new function evaluation

To reduce length of interval by fixed fraction
at each iteration, each new pair of points must
have same relationship with respect to new in-
terval that previous pair had with respect to
previous interval

17



Golden Section Search, continued

To accomplish this, choose relative positions
of two points as 7 and 1 — 7, where 2 =1 — T,
soT=(v5-1)/2~0.618 and 1 — 7 ~ 0.382

Whichever subinterval is retained, its length
will be 7 relative to previous interval, and inte-
rior point retained will be at position either
or 1 — 7 relative to new interval

Need to compute only one new function value,
at complementary point, to continue iteration

T his choice of sample points called golden sec-
tion search

Golden section search is safe but convergence
rate only linear, with constant C = 0.618
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Golden Section Search, continued

T=(v/5-1)/2
r1=a+ (1 —-7)(0b—a)
fi= f(z1)

xo=a—+7(b—a) g

f2a = f(x2) a

while ((b —a) > tol) do
iIf (f1 > f») then

a = xq
CU]_:CCQ
fi=12 _
o =a+ 7(b—a) 1
a I1IT2 P
fo = f(x2) T
else | | | |
a r1 X2 b
b= x> I
1—7
Tp = 21 ————
r1x b
Jo=n o

x1=a+ (1 —-7)(b—a)
f1=f(z1)
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Example: Golden Section Search

Use golden section search to minimize

f(z) = 0.5 — zexp(—z2)

L1

J1

L2

J2

0.764
0.472
0.764
0.652
0.584
0.652
0.695
0.679
0.695
0.705

0.074
0.122
0.074
0.074
0.085
0.074
0.071
0.072
0.071
0.071

1.236
0.764
0.944
0.764
0.652
0.695
0.721
0.695
0.705
0.711

0.232
0.074
0.113
0.074
0.074
0.071
0.071
0.071
0.071
0.071
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Successive Parabolic Interpolation

Fit quadratic polynomial to three function val-
ues

Take minimum of quadratic to be new approx-
imation to minimum of function

New point replaces oldest of three previous
points and process repeated until convergence

Convergence rate of successive parabolic inter-
polation is superlinear, with »r = 1.324
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Example: Successive Parabolic
Interpolation

Use successive parabolic interpolation to min-
imize

f(z) = 0.5 — zexp(—z2)

v,  f(zg)

0.000 0.500
0.600 0.081
1.200 0.216
0.754 0.073
0.721 0.071
0.692 0.071
0.707 0.071
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Newton’s Method

Another local quadratic approximation is trun-
cated Taylor series

fz+h) ~ f(@) + (= >h+f ()2

By differentiation, minimum of this quadratic
function of h is given by h = —f/(z)/f"(x)

Suggests iteration scheme

Tp+1 =z — f (@) /[ (xp),
which is Newton’'s method for solving nonlinear
equation f/(z) =0

Newton’'s method for finding minimum nor-
mally has quadratic convergence rate, but must
be started close enough to solution
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Example: Newton’s Method

Use Newton’'s method to minimize

f(z) = 0.5 — zexp(—z2)
First and second derivatives of f are given by
f'(z) = (22° — 1) exp(—z?)
and
(z) = 22(3 — 22°) exp(—z2),
so Newton iteration for zero of f’ given by
Th1 = o — (22 — 1)/ (224(3 — 227))
Using starting guess xzg = 1, obtain
rr,  f(=zg)
1.000 0.132
0.500 0.111

0.700 0.071
0.707 0.071

24



Safeguarded Methods

As with nonlinear equations in one dimension,
slow-but-sure and fast-but-risky optimization
methods can be combined to provide both safety
and efficiency

Most library routines for one-dimensional opti-
mization based on hybrid approach

Popular combination is golden section search
and successive parabolic interpolation, for which
no derivatives required

25



Direct Search Methods

Direct search methods for multidimensional op-
timization make no use of function values other
than comparing them

For minimizing function f of n variables, Nelder-
Mead method begins with n+ 1 starting points,
forming simplex in R™

Then move to new point along straight line
from current point having highest function value
through centroid of points

New point replaces worst point, and process
repeated

Direct search methods useful for nonsmooth
functions or for small n, but expensive for larger

n

26



Steepest Descent Method

Let f: R™ — R be real-valued function of n real
variables

At any point x where gradient vector is nonzero,
negative gradient, —V f(x), points downhill to-
ward lower values of function f

In fact, —V f(x) is locally direction of steepest
descent: function decreases more rapidly along
direction of negative gradient than along any
other

Steepest descent method: starting from ini-
tial guess xg, successive approximate solutions
given by

Tp41 = T — oV f(xg),

where «y is line search parameter that deter-
mines how far to go in given direction
27



Steepest Descent, continued

Given descent direction, such as negative gra-
dient, determining appropriate value for a; at
each iteration is one-dimensional minimization
problem

min f(xy — apVf(xy))

that can be solved by methods already dis-
cussed

Steepest descent method is very reliable: can
always make progress provided gradient is nonzero

But method is myopic in its view of function’s
behavior, and resulting iterates can zigzag back
and forth, making very slow progress toward
solution

In general, convergence rate of steepest de-
scent is only linear, with constant factor that
can be arbitrarily close to 1

28



Example: Steepest Descent

Use steepest descent method to minimize

f(x) = 0.52% 4 2.5x3

Gradient is given by

Vi(z) = [ ‘1 ]

5z

Taking xg = [51)] we have V f(xg) = [Z]

Performing line search along negative gradient
direction, i.e.,

rr(lion f(xg — oV f(xg)),

exact minimum along line is given by ag = 1/3,
SO next approximation is

. _[ 3333
1= | _o0.667
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Example Continued

z) Fm) | V()
5.000 1.000 | 15.000 | 5.000 5.000
3.333 -0.667 6.667 | 3.333 -3.333
2.222 0.444 2.963 | 2.222 2.222
1.481 -0.296 1.317 | 1.481 -1.481
0.988 0.198 0.585 | 0.988 0.988
0.658 -0.132 0.260 | 0.658 -0.658
0.439 0.088 0.116 | 0.439 0.439
0.293 -0.059 0.051 | 0.293 -0.293
0.195 0.039 0.023 1 0.195 0.195
0.130 -0.026 0.010 | 0.130 -0.130
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Newton’s Method

Broader view can be obtained by local quadratic
approximation, which is equivalent to Newton's

method

In multidimensional optimization, we seek zero
of gradient, so Newton iteration has form

Tpy1 = a — Hp Nz )V f (2y),

where H¢(x) is Hessian matrix of second par-
tial derivatives of f,

0% f ()

{H¢(x)}ij =

31



Newton’s Method, continued

Do not explicitly invert Hessian matrix, but in-
stead solve linear system

H(xp)s, = —Vf(xy)

for si, then take as next iterate

Tp41 = T + S

Convergence rate of Newton’'s method for min-
imization is normally quadratic

As usual, Newton’'s method is unreliable unless
started close enough to solution

32



Example: Newton’s Method

Use Newton’'s method to minimize

f(x) = 0.52% + 2.523
Gradient and Hessian are given by

L1

] and Hf(w)zll O]

Vi) = [ .

5z

Taking xg = E , we have Vf(xg) = [2]

Linear system for Newton step is

1 0] _
o 5|97

SO next approximate solution is
5 -5 0

which is exact solution for this problem, as ex-
pected for quadratic function

931=i'30+30=[

33



Newton’s Method, continued

Line search parameter unnecessary with New-
ton’s method, since quadratic model deter-
mines length, as well as direction, of step to
next approximate solution

When started far from solution, however, it
may still be advisable to perform line search
along direction of Newton step s, to make
method more robust (damped Newton)

Once iterations near solution, then o = 1
should suffice for subsequent iterations

34



Newton’s Method, continued

If objective function f has continuous second
partial derivatives, then Hessian matrix H; is
symmetric, and near minimum it is positive
definite

Thus, linear system for step to next iterate can
be solved in only about half of work required
for LU factorization

Far from minimum, H((x;) may not be posi-
tive definite, so Newton step s; may not even
be descent direction for function, i.e., we may
not have

Vi(xp) sp <0

In this case, alternative descent direction can
be computed, such as negative gradient or di-
rection of negative curvature, and line search
performed

35



Trust Region Methods

Alternative to line search is trust region method,
in which approximate solution is constrained to
lie within region where quadratic model is suf-
ficiently accurate

If current trust radius is binding, minimizing
quadratic model function subject to this con-
straint may modify direction as well as length
of Newton step

Accuracy of quadratic model is assessed by
comparing actual decrease in objective func-
tion with that predicted by quadratic model,
and trust radius is increased or decreased ac-
cordingly

36



Trust Region Methods, continued

trust
radius

L

contours o
quad. model

neg. grad. dir.
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Quasi-Newton Methods

Newton’s method costs @(n3) arithmetic and
O(n?) scalar function evaluations per iteration
for dense problem

Many variants of Newton’'s method improve re-
liability and reduce overhead

Quasi-Newton methods have form

Tptr1 = T — By TV (),

where «y is line search parameter and By is
approximation to Hessian matrix

Many quasi-Newton methods are more robust
than Newton’'s method, superlinearly conver-
gent, and have |lower overhead per iteration,
which often more than offsets their slower con-
vergence rate

38



Secant Updating Methods

Could use Broyden’'s method to seek zero of
gradient, but this would not preserve symmetry
of Hessian matrix

Several secant updating formulas have been
developed for minimization that not only pre-
serve symmetry in approximate Hessian matrix,
but also preserve positive definiteness

Symmetry reduces amount of work required by
about half, while positive definiteness guaran-
tees that quasi-Newton step will be descent
direction

39



BFGS Method

One of most effective secant updating meth-
ods for minimization is BFGS:

xo = initial guess
Bp = initial Hessian approximation
for k=0,1,2,...

Solve Bk S = —Vf(ibk) for Sk

Tp41 = Tk T Sk

Y = Vf(xp41) — V()

Bj+1 = B+ (yxyi )/ (yi si)

— (Bysysi By)/ (s}, Bysy)

end

40



BFGS Method, continued

In practice, factorization of B, is updated rather
than B, itself, so linear system for s; can be
solved at cost of @(n?) rather than O(n3) work

Unlike Newton’s method for minimization, no
second derivatives are required

Can start with Bg = I, so initial step is along
negative gradient, and then second derivative
information is gradually built up in approximate
Hessian matrix over successive iterations

BFGS normally has superlinear convergence rate,
even though approximate Hessian does not nec-
essarily converge to true Hessian

Line search can be used to enhance effective-
ness of method
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Example: BFGS Method

Use BFGS to minimize

f(x) = 0.52% + 2.523
Gradient is given by
1
vrw= ]
x2
Taking g =[5 1]7 and By = I, initial step
IS negative gradient, so
5 -5 0
n=sotso= |7+ T5) =] 3
Updating approximate Hessian using BFGS for-
mula, obtain
_10.667 0.333
17 10.333 0.667

Then new step is computed and process is re-
peated
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Example: BFGS Method

Ty, f(xg) Vf(xg)
5.000 1.000 | 15.000 | 5.000 5.000
0.000 -4.000 | 40.000| 0.000 -20.000
-2.222 0.444 2.963 | -2.222 2.222

0.816 0.082 0.350 | 0.816 0.408
-0.009 -0.015 0.001 | -0.009 -0.077
-0.001 0.001 0.000 | -0.001 0.005

Increase in function value can be avoided by us-
ing line search, which generally enhances con-
vergence

For quadratic objective function, BFGS with
exact line search finds exact solution in at most
n iterations, where n is dimension of problem
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Conjugate Gradient Method

Another method that does not require explicit
second derivatives, and does not even store
approximation to Hessian matrix, is conjugate
gradient (CG) method

CG generates sequence of conjugate search
directions, implicitly accumulating information
about Hessian matrix

For quadratic objective function, CG is theo-
retically exact after at most n iterations, where
n iS dimension of problem

CGQG is effective for general unconstrained min-
imization as well

44



Conjugate Gradient Method, continued

xo = initial guess

go = V f(xp)
S0 = —9g0
for k=0,1,2,...

Choose aj to minimize f(xp + apsi)
Tp4+1 = T+ Sk
9k+1 = VI(xp41)
Bk+1 = (94 19k+1)/ (9L 9r)
Sk+1 = —9k+1 T Br+15k
end

Alternative formula for G4 1 is

Bra1 = (grt1 — 9x) grr1)/ (g 9r)
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Example: Conjugate Gradient Method

Use CG method to minimize

f(x) = 0.52% 4 2.5x3
Gradient is given by
Vi(z) = [ -’ ]
5z

Taking g = [5 1]7, initial search direction
IS negative gradient,

—5
Exact minimum along line is given by ag = 1/3,
so next approximationis x; = [3.333 —O.667]T,
and we compute new gradient,

3.333]

so = —go = —Vf(®g) = [_5]

g1 =Vf(x1) = [_3.333
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Example Continued

So far there is no difference from steepest de-
scent method

At this point, however, rather than search along
new negative gradient, we compute instead

81 = (91 91)/(gdgo) = 0.444,

which gives as next search direction

—3.333 —5
= — 0.444
S1 g1+ B1so [ 3.333] + [ 5]

_ [-5.556
| 1111

Minimum along this direction is given by a1 =
0.6, which gives exact solution at origin, as
expected for quadratic function
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Truncated Newton Methods

Another way to reduce work in Newton-like
methods is to solve linear system for Newton
step by iterative method

Small number of iterations may suffice to pro-
duce step as useful as true Newton step, es-
pecially far from overall solution, where true
Newton step may be unreliable anyway

Good choice for linear iterative solver is CG
method, which gives step intermediate between
steepest descent and Newton-like step

Since only matrix-vector products are required,
explicit formation of Hessian matrix can be
avoided by using finite difference of gradient
along given vector
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Nonlinear Least Squares

Given data (¢;,y;), find vector x of parameters
that gives ‘“best fit" in least squares sense to
model function f(t,x)

If we define components of residual function

ri(e) =y; — ft,x), i=1,...,m,

then we want to minimize ¢(z) = ir! (z)r(x)

Gradient vector of ¢ is

Vo(x) = I (2)r(=),

and Hessian matrix is

Hy(z) = J (z)J(z) + > ri(z)Hi(z),
1=1

where J(x) is Jacobian of r(x), and H;(x) is
Hessian of r;(x)

49



Nonlinear Least Squares, continued

Linear system for Newton step is

(JT(in)J(CUk) + Z Ti(wk)Hi(wk)) Si, =

=1

—J L (z)r(zy)

m Hessian matrices H; are usually inconvenient
and expensive to compute

Moreover, in H¢ each H; is multiplied by resid-
ual component r;, which is small at solution if
fit of model function to data is good

50



Gauss-Newton Method

This motivates Gauss-Newton method for non-
linear least squares, in which second-order term
IS dropped and linear system

T (x)J (z1) s, = —J L (zp)r(2p)

is solved for approximate Newton step s, at
each iteration

This is system of normal equations for linear
least squares problem

J(xy)s, = —r(xy),

which can be solved more reliably by orthogo-
nal factorization

Next approximate solution is then given by

Tp41 = Tk + S,

and process is repeated until convergence
51



Example: Gauss-Newton Method

Use Gauss-Newton method to fit nonlinear model
function

f(t,x) = z1 exp(xot)
to data

t10.0 1.0 2.0 3.0
y |20 07 03 0.1

For this model function, entries of Jacobian
matrix of residual function r are given by

{J(x)}i1 = 87;5:11:) = —exp(z2t;),
{J(x)}io = Ori(x) _ —x1t;exp(xat;)

0xo
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Example Continued

If we take g = [1 0]!, then Gauss-Newton
step sg Is given by linear least squares problem

—1 0 —1
-1 -1 ~ | 0.3
S0 = ;
-1 =2 0.7
-1 -3 1 0.9
L 0.69
whose solution is sg =
—0.61

Then next approximate solution is given by
xr1 = xo + So, and process is repeated until
convergence

z (2113
1.000 0.000 2.390
1.690 -0.610 0.212
1.975 -0.930 0.007
1.994 -1.004 0.002
1.995 -1.009 0.002
1.995 -1.010 0.002
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Gauss-Newton Method, continued

Gauss-Newton method replaces nonlinear least
squares problem by sequence of linear least
squares problems whose solutions converge to
solution of original nonlinear problem

If residual at solution is large, then second-
order term omitted from Hessian is not negligi-
ble, and Gauss-Newton method may converge
slowly or fail to converge

In such “large-residual” cases, it may be best
to use general nonlinear minimization method
that takes into account true full Hessian matrix
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Levenberg-Marquardt Method

Levenberg-Marquardt method is another use-
ful alternative when Gauss-Newton approxima-
tion is inadequate or yields rank deficient linear
least squares subproblem

In this method, linear system at each iteration
is of form

(T (@) I (@) + ppD)sp = =T (@p)r(2p),
where pu; IS scalar parameter chosen by some
strategy

Corresponding linear least squares problem is

[J(Cﬂk)] ~ —T(wk)]
\/_I o

With suitable strategy for choosing ug, this
method can be very robust in practice, and it
forms basis for several effective software pack-
ages
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Equality-Constrained Optimization

For equality-constrained minimization problem

min f(x) subject to g¢g(x) = o,

where f:R"™ — R and g:R" — R™, with m < n,
we seek critical point of Lagrangian

Applying Newton’s method to nonlinear sys-
tem

V(2 \) = [Vf(w) + JgT(wM] —

g(x)

obtain linear system
B(xz,\) Jl(x) [3] :_[Vf(a:)—l—JgT(a:))\]
Jy(x) O 0 g(x)

for Newton step (s,d) in (x,\) at each itera-
tion
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Sequential Quadratic Programming

Foregoing block 2 x 2 linear system equiva-
lent to quadratic programming problem, so this
approach known as sequential quadratic pro-
gramming

Types of solution methods include:
e Dijrect solution methods, in which entire

block 2 x 2 system is solved directly

e Range space methods, based on block elim-
ination in block 2 x 2 linear system

e Null space methods, based on orthogonal
factorization of matrix of constraint nor-
mals, JI (x)
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Merit Function

Once Newton step (s, d) determined, need merit
function to measure progress toward overall
solution for use in line search or trust region

Popular choices include penalty function

dp(x) = f(x) + Lpg(z) g(x)
and augmented Lagrangian function

Lo(x,A) = f(x) +A'g(@) +Lpg(x) g(o),

where parameter p > 0 determines weighting
of optimality vs feasibility

Given starting guess xg, good starting guess
for Ag can be obtained from least squares prob-
lem

I (z0) Ao = —V f(x0)
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Inequality-Constrained Optimization

Methods just outlined for equality constraints
can be extended to handle inequality constraints
by using active set strategy

Inequality constraints are provisionally divided
into those that are satisfied already (and can
therefore be temporarily disregarded) and those
that are violated (and are therefore temporarily
treated as equality constraints)

This division of constraints is revised as it-
erations proceed until eventually correct con-
straints are identified that are binding at solu-
tion
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Penalty Methods

Merit function can also be used to convert
equality-constrained problem into sequence of
unconstrained problems

If m;’; is solution to

min ¢p(x) = f(x) +1pg(x) g(z),
then under appropriate conditions

lim :1:;; =
p—00

This enables use of unconstrained optimization
methods, but problem becomes increasingly ill-
conditioned for large p, so solve sequence of
problems with increasing values of p
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Barrier Methods

For inequality-constrained problems, another
alternative is barrier function, such as

1
hi(x)

p
du(@) = f(x) —p )
1=1

or

p
du(@) = f(z) —p ) 10g(—hi(x)),
1=1

which increasingly penalize feasible points as
they approach boundary of feasible region

Again, solutions of unconstrained problem ap-
proach x* as u — 0, but problems increasingly
ill-conditioned, so solve sequence of problems
with decreasing values of u

Barrier functions are basis for interior point
methods for linear programming
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Example: Constrained Optimization

Consider quadratic programming problem
min f(x) = 0.527 + 2.5z5,
subject to
g(r) =z1 —220—-1=0,

with Lagrangian function given by
L(z,\) = f(z) + Ag(x)

= 0.53:% + 2.5w% + XMz —a20—1)

Since
Vf(x) = [53;12] and  Jg(xz)=[1 -1],
we have

_ T |z 1
Val(z,\) = V() +I] (x)A = [5x2]+/\ [_1]
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Example Continued

So system to be solved for critical point of
LLagrangian is

1+ )\ = O,
5o — A = 0,
r1 — Iy — 17

which in this case is linear system

1 O 17 [xq1] [ O ]
0 5 -1 |xzo| =10
1 -1 O] L A 1]

Solving this system, we obtain solution

1 =0.833, 2o =-0.167, \= —0.833
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Example Continued

1.0 —

contours of 0.5z% + 2.5x3 constraint z1 —zo =1

X
N—

‘/ 1.5

—1.0 =
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Linear Programming

One of most important and common constrained
optimization problems is linear programming

One standard form for such problems is

T

min f(x) = ¢ x subject to Az = b and = > o,

where m <n, A € RM™*" b e R™, and ¢,x € R®

Feasible region is convex polyhedron in R", and
Mminimum must occur at one of its vertices

Simplex method moves from vertex to vertex
until minimum point is found
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Linear Programming, continued

Simplex method is reliable and normally effi-
cient, able to solve problems with thousands
of variables, but can require time exponential
in size of problem in worst case

Interior point methods for linear programming
developed in recent years have polynomial worst
case solution time

These methods move through interior of fea-
Sible region, not restricting themselves to in-
vestigating only its vertices

Although interior point methods have signifi-
cant practical impact, simplex method is still
predominant method in standard packages for
linear programming, and its effectiveness in
practice is excellent
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Examp

le: Linear Programming

To illustrate linear programming, consider

min
Xr

T

=c x=-—-8x1— 1llxo

subject to linear inequality constraints

S5x1+4xr <40, —x1+32 <12, 1 >0, z0 >0

Minimum valu

e must occur at vertex of feasible

region, in this case at 1 = 3.79, o = 5.26,
where objective function has value —88.2

x2

521 + 4x> = 40

—x1 + 3> =12

0

x1

DU NN

—27 —46 —66 —88.2
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