Lecture Notes to Accompany

Scientific Computing
An Introductory Survey
Second Edition

by Michael T. Heath

Chapter 5

Nonlinear Equations

Copyright © 2001. Reproduction permitted only for noncommercial, educational use in conjunction with the book.
Nonlinear Equations

Given function f, we seek value x for which

$$f(x) = 0$$

Solution x is root of equation, or zero of function f

Problem known as root finding or zero finding

Two important cases:

1. Single nonlinear equation in one unknown,

$$f : \mathbb{R} \rightarrow \mathbb{R}$$

Solution is scalar x for which $f(x) = 0$

2. System of n coupled nonlinear equations in n unknowns,

$$f : \mathbb{R}^n \rightarrow \mathbb{R}^n$$

Solution is vector x for which all components of f are zero simultaneously
Examples: Nonlinear Equations

Example of nonlinear equation in one dimension:

\[x^2 - 4 \sin(x) = 0, \]

for which \(x = 1.9 \) is one approximate solution.

Example of system of nonlinear equations in two dimensions:

\[
\begin{align*}
x_1^2 - x_2 + 0.25 &= 0, \\
-x_1 + x_2^2 + 0.25 &= 0,
\end{align*}
\]

for which \(x = [0.5 \ 0.5]^T \) is solution vector.
Existence and Uniqueness

Existence and uniqueness of solutions more complicated for nonlinear equations than for linear equations

For function $f: \mathbb{R} \rightarrow \mathbb{R}$, *bracket* is interval $[a, b]$ for which sign of f differs at endpoints

If f continuous and $\text{sign}(f(a)) \neq \text{sign}(f(b))$, then Intermediate Value Theorem implies there is $x^* \in [a, b]$ such that $f(x^*) = 0$

No simple analog for n dimensions
Examples

Nonlinear equations can have any number of solutions:

- \(\exp(x) + 1 = 0 \) has no solution
- \(\exp(-x) - x = 0 \) has one solution
- \(x^2 - 4 \sin(x) = 0 \) has two solutions
- \(x^3 + 6x^2 + 11x - 6 = 0 \) has three solutions
- \(\sin(x) = 0 \) has infinitely many solutions
Example

\[x_1^2 - x_2 + \gamma = 0 \]
\[-x_1 + x_2^2 + \gamma = 0 \]

\[\gamma = 0.5 \]
\[\gamma = 0.25 \]
\[\gamma = -0.5 \]
\[\gamma = -1.0 \]
Multiple Root

Nonlinear equation may have *multiple* root, where both function *and* derivative are zero, i.e., \(f(x) = 0 \) and \(f'(x) = 0 \)

Examples:

\[
\begin{align*}
 x^2 - 2x + 1 &= 0 \\
 x^3 - 3x^2 + 3x - 1 &= 0
\end{align*}
\]
Sensitivity and Conditioning

Conditioning of root finding problem opposite to that for evaluating function

Absolute condition number of root finding problem for root x^* of $f : \mathbb{R} \rightarrow \mathbb{R}$ is $1/|f'(x^*)|$

Root ill-conditioned if tangent line nearly horizontal

In particular, multiple root ill-conditioned

Absolute condition number of root finding problem for root x^* of $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is $\|J_f^{-1}(x^*)\|$, where J_f is *Jacobian* matrix of f,

$$\{J_f(x)\}_{ij} = \partial f_i(x) / \partial x_j$$

Root ill-conditioned if Jacobian matrix nearly singular
Sensitivity and Conditioning

well-conditioned ill-conditioned
Sensitivity and Conditioning

What do we mean by approximate solution \hat{x} to nonlinear system,

$$\|f(\hat{x})\| \approx 0 \quad \text{or} \quad \|\hat{x} - x^*\| \approx 0?$$

First corresponds to “small residual,” second measures closeness to (usually unknown) true solution x^*

Solution criteria not necessarily “small” simultaneously

Small residual implies accurate solution only if problem well-conditioned
Convergence Rate

For general iterative methods, define error at iteration k by

$$e_k = x_k - x^*,$$

where x_k is approximate solution and x^* is true solution.

For methods that maintain interval known to contain solution, rather than specific approximate value for solution, take error to be length of interval containing solution.

Sequence converges with rate r if

$$\lim_{k \to \infty} \frac{\|e_{k+1}\|}{\|e_k\|^r} = C'$$

for finite nonzero constant C'.
Convergence Rate, continued

Some particular cases of interest

\[r = 1: \text{linear} \quad (C < 1) \]

\[r > 1: \text{superlinear} \]

\[r = 2: \text{quadratic} \]

<table>
<thead>
<tr>
<th>Convergence rate</th>
<th>Digits gained per iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>constant</td>
</tr>
<tr>
<td>superlinear</td>
<td>increasing</td>
</tr>
<tr>
<td>quadratic</td>
<td>double</td>
</tr>
</tbody>
</table>
Interval Bisection Method

Bisection method begins with initial bracket and repeatedly halves its length until solution has been isolated as accurately as desired

\[
\textbf{while } ((b - a) > \text{tol}) \textbf{ do} \\
\quad m = a + (b - a)/2 \\
\quad \textbf{if } \text{sign}(f(a)) = \text{sign}(f(m)) \textbf{ then} \\
\quad \quad a = m \\
\quad \textbf{else} \\
\quad \quad b = m \\
\quad \textbf{end} \\
\textbf{end}
\]
Example: Bisection Method

\[f(x) = x^2 - 4\sin(x) = 0 \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>-2.365884</td>
<td>3.000000</td>
<td>8.435520</td>
<td></td>
</tr>
<tr>
<td>1.000000</td>
<td>-2.365884</td>
<td>2.000000</td>
<td>0.362810</td>
<td></td>
</tr>
<tr>
<td>1.500000</td>
<td>-1.739980</td>
<td>2.000000</td>
<td>0.362810</td>
<td></td>
</tr>
<tr>
<td>1.750000</td>
<td>-0.873444</td>
<td>2.000000</td>
<td>0.362810</td>
<td></td>
</tr>
<tr>
<td>1.875000</td>
<td>-0.300718</td>
<td>2.000000</td>
<td>0.362810</td>
<td></td>
</tr>
<tr>
<td>1.875000</td>
<td>-0.300718</td>
<td>1.937500</td>
<td>0.019849</td>
<td></td>
</tr>
<tr>
<td>1.906250</td>
<td>-0.143255</td>
<td>1.937500</td>
<td>0.019849</td>
<td></td>
</tr>
<tr>
<td>1.921875</td>
<td>-0.062406</td>
<td>1.937500</td>
<td>0.019849</td>
<td></td>
</tr>
<tr>
<td>1.929688</td>
<td>-0.021454</td>
<td>1.937500</td>
<td>0.019849</td>
<td></td>
</tr>
<tr>
<td>1.933594</td>
<td>-0.000846</td>
<td>1.937500</td>
<td>0.019849</td>
<td></td>
</tr>
<tr>
<td>1.933594</td>
<td>-0.000846</td>
<td>1.935547</td>
<td>0.009491</td>
<td></td>
</tr>
<tr>
<td>1.933594</td>
<td>-0.000846</td>
<td>1.934570</td>
<td>0.004320</td>
<td></td>
</tr>
<tr>
<td>1.933594</td>
<td>-0.000846</td>
<td>1.934082</td>
<td>0.001736</td>
<td></td>
</tr>
<tr>
<td>1.933594</td>
<td>-0.000846</td>
<td>1.933838</td>
<td>0.000445</td>
<td></td>
</tr>
<tr>
<td>1.933716</td>
<td>-0.000201</td>
<td>1.933838</td>
<td>0.000445</td>
<td></td>
</tr>
</tbody>
</table>
Bisection Method, continued

Bisection method makes no use of magnitudes of function values, only their signs.

Bisection certain to converge, but does so slowly.

At each iteration, length of interval containing solution reduced by half, so method linearly convergent, with \(r = 1 \) and \(C = 0.5 \).

One bit of accuracy gained in approximate solution for each iteration of bisection.

Given starting interval \([a, b]\), length of interval after \(k\) iterations is \((b-a)/2^k\), so achieving error tolerance of \(tol\) requires

\[
\left\lceil \log_2 \left(\frac{b-a}{tol} \right) \right\rceil
\]

iterations, regardless of function \(f\) involved.
Fixed-Point Problems

Fixed point of given function $g : \mathbb{R} \rightarrow \mathbb{R}$ is value x such that

$$x = g(x)$$

Many iterative methods for solving nonlinear equations use iteration scheme of form

$$x_{k+1} = g(x_k),$$

where g is function whose fixed points are solutions for $f(x) = 0$

Scheme called *fixed-point iteration* or *functional iteration*, since function g applied repeatedly to initial starting value x_0

For given equation $f(x) = 0$, may be many equivalent fixed-point problems $x = g(x)$ with different choices for g
Example: Fixed-Point Problems

If

\[f(x) = x^2 - x - 2, \]

then fixed points of each of functions

\[g(x) = x^2 - 2 \]
\[g(x) = \sqrt{x + 2} \]
\[g(x) = 1 + 2/x \]
\[g(x) = \frac{x^2 + 2}{2x - 1} \]

are solutions to equation \(f(x) = 0 \)
Example: Fixed-Point Problems

\[y = \frac{x^2 + 2}{2x - 1} \]
\[y = \sqrt{x + 2} \]
\[y = 1 + \frac{2}{x} \]
\[y = x \]
\[y = x^2 - 2 \]
Example: Fixed-Point Iteration

\[y = x^2 - 2 \]

\[y = x \]
Example: Fixed-Point Iteration

\[y = \sqrt{x + 2} \]

\[y = x \]
Example: Fixed-Point Iteration

\[y = 1 + \frac{2}{x} \]

\[y = x \]
Example: Fixed-Point Iteration

\[y = x \]

\[y = \frac{x^2 + 2}{2x - 1} \]
Convergence of Fixed-Point Iteration

If $x^* = g(x^*)$ and $|g'(x^*)| < 1$, then there is interval containing x^* such that iteration

$$x_{k+1} = g(x_k)$$

converges to x^* if started within that interval.

If $|g'(x^*)| > 1$, then iterative scheme diverges.

Asymptotic convergence rate of fixed-point iteration usually linear, with constant $C = |g'(x^*)|$

But if $g'(x^*) = 0$, then convergence rate at least quadratic
Newton’s Method

Truncated Taylor series

\[f(x + h) \approx f(x) + f'(x)h \]

is linear function of \(h \) approximating \(f \) near \(x \)

Replace nonlinear function \(f \) by this linear function, whose zero is \(h = -\frac{f(x)}{f'(x)} \)

Zeros of original function and linear approximation not identical, so repeat process, giving Newton’s method

\[x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]
Newton’s Method, continued

Newton’s method approximates nonlinear function f near x_k by tangent line at $f(x_k)$.
Example: Newton’s Method

Use Newton’s method to find root of

\[f(x) = x^2 - 4 \sin(x) = 0 \]

Derivative is

\[f'(x) = 2x - 4 \cos(x), \]

so iteration scheme is

\[x_{k+1} = x_k - \frac{x_k^2 - 4 \sin(x_k)}{2x_k - 4 \cos(x_k)} \]

Taking \(x_0 = 3 \) as starting value, we obtain

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.000000</td>
<td>8.435520</td>
<td>9.959970</td>
<td>-0.846942</td>
</tr>
<tr>
<td>2.153058</td>
<td>1.294772</td>
<td>6.505771</td>
<td>-0.199019</td>
</tr>
<tr>
<td>1.954039</td>
<td>0.108438</td>
<td>5.403795</td>
<td>-0.020067</td>
</tr>
<tr>
<td>1.933972</td>
<td>0.001152</td>
<td>5.288919</td>
<td>-0.000218</td>
</tr>
<tr>
<td>1.933754</td>
<td>0.000000</td>
<td>5.287670</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Convergence of Newton’s Method

Newton’s method transforms nonlinear equation $f(x) = 0$ into fixed-point problem $x = g(x)$, where

$$g(x) = x - f(x)/f'(x),$$

and hence

$$g'(x) = f(x)f''(x)/(f'(x))^2$$

If x^* is simple root (i.e., $f(x^*) = 0$ and $f'(x^*) \neq 0$), then $g'(x^*) = 0$

Convergence rate of Newton’s method for simple root is quadratic, $r = 2$

But must start close enough to root to converge
Newton's Method, continued

For multiple root, Newton’s method linearly convergent (with constant $C = 1 - (1/m)$, where m is multiplicity)

Both cases illustrated below

<table>
<thead>
<tr>
<th>k</th>
<th>$f(x) = x^2 - 1$</th>
<th>$f(x) = x^2 - 2x + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>1.025</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>1.0003</td>
<td>1.125</td>
</tr>
<tr>
<td>4</td>
<td>1.000000005</td>
<td>1.0625</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>1.03125</td>
</tr>
</tbody>
</table>
Secant Method

Newton’s method requires evaluation of both function and derivative at each iteration.

Evaluating derivative may be inconvenient or expensive, so replace it by finite difference approximation using two successive iterates,

\[x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \]

Secant method normally superlinearly convergent, with \(r \approx 1.618 \)
Secant Method, continued

Secant method approximates nonlinear function f by secant line through previous two iterates.
Example: Secant Method

Use secant method to find root of

\[f(x) = x^2 - 4 \sin(x) = 0 \]

Taking \(x_0 = 1 \) and \(x_1 = 3 \) as starting guesses, we obtain

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>-2.365884</td>
<td></td>
</tr>
<tr>
<td>3.000000</td>
<td>8.435520</td>
<td>-1.561930</td>
</tr>
<tr>
<td>1.438070</td>
<td>-1.896774</td>
<td>0.286735</td>
</tr>
<tr>
<td>1.724805</td>
<td>-0.977706</td>
<td>0.305029</td>
</tr>
<tr>
<td>2.029833</td>
<td>0.534305</td>
<td>-0.107789</td>
</tr>
<tr>
<td>1.922044</td>
<td>-0.061523</td>
<td>0.011130</td>
</tr>
<tr>
<td>1.933174</td>
<td>-0.003064</td>
<td>0.000583</td>
</tr>
<tr>
<td>1.933757</td>
<td>0.000019</td>
<td>-0.000004</td>
</tr>
<tr>
<td>1.933754</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Higher-Degree Interpolation

Secant method uses linear interpolation to approximate function whose zero is sought.

Higher convergence rate can be obtained by using higher-degree polynomial interpolation.

Quadratic interpolation (Muller’s method) has convergence rate of $r \approx 1.839$, for example.

Unfortunately,

- interpolating polynomial may not have real roots
- roots may not be easy to compute
- choice of root to use as next iterate may not be obvious
Inverse Interpolation

Good alternative is *inverse interpolation*, where \(x_k \) are interpolated as function of \(y_k = f(x_k) \) by polynomial \(p(y) \), so next approximate solution is \(p(0) \)

Most commonly used for root finding is inverse quadratic interpolation
Inverse Quadratic Interpolation

Given approximate solution values a, b, c, with function values f_a, f_b, f_c, next approximate solution found by fitting quadratic polynomial to a, b, c as function of f_a, f_b, f_c, then evaluating polynomial at 0.

We compute

$$u = \frac{f_b}{f_c}, \quad v = \frac{f_b}{f_a}, \quad w = \frac{f_a}{f_c},$$

$$p = v(w(u - w)(c - b) - (1 - u)(b - a)),$$

$$q = (w - 1)(u - 1)(v - 1),$$

then new approximate solution is $b + \frac{p}{q}$

Convergence rate normally $r \approx 1.839$
Example: Inverse Quadratic Interpolation

Use inverse quadratic interpolation to find root of

\[f(x) = x^2 - 4 \sin(x) = 0 \]

Taking \(x = 1, 2, \) and \(3 \) as starting values, we obtain

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>-2.365884</td>
<td></td>
</tr>
<tr>
<td>2.000000</td>
<td>0.362810</td>
<td></td>
</tr>
<tr>
<td>3.000000</td>
<td>8.435520</td>
<td></td>
</tr>
<tr>
<td>1.886318</td>
<td>-0.244343</td>
<td>-0.113682</td>
</tr>
<tr>
<td>1.939558</td>
<td>0.030786</td>
<td>0.053240</td>
</tr>
<tr>
<td>1.933742</td>
<td>-0.000060</td>
<td>-0.005815</td>
</tr>
<tr>
<td>1.933754</td>
<td>0.000000</td>
<td>0.000011</td>
</tr>
<tr>
<td>1.933754</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>
Linear Fractional Interpolation

Interpolation using rational fraction of form

\[\phi(x) = \frac{x - u}{vx - w} \]

especially useful for finding zeros of functions having horizontal or vertical asymptotes

\(\phi \) has zero at \(x = u \), vertical asymptote at \(x = w/v \), and horizontal asymptote at \(y = 1/v \)

Given approximate solution values \(a \), \(b \), \(c \), with function values \(f_a \), \(f_b \), \(f_c \), next approximate solution is \(c + h \), where

\[
h = \frac{(a - c)(b - c)(f_a - f_b)f_c}{(a - c)(f_c - f_b)f_a - (b - c)(f_c - f_a)f_b}
\]

Convergence rate normally \(r \approx 1.839 \), same as for quadratic interpolation (inverse or regular)
Example: Linear Fractional Interpolation

Use linear fractional interpolation to find root of

\[f(x) = x^2 - 4 \sin(x) = 0 \]

Taking \(x = 1, 2, \) and \(3 \) as starting values, we obtain

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000000</td>
<td>-2.365884</td>
<td></td>
</tr>
<tr>
<td>2.000000</td>
<td>0.362810</td>
<td></td>
</tr>
<tr>
<td>3.000000</td>
<td>8.435520</td>
<td></td>
</tr>
<tr>
<td>1.906953</td>
<td>-0.139647</td>
<td>-1.093047</td>
</tr>
<tr>
<td>1.933351</td>
<td>-0.002131</td>
<td>0.026398</td>
</tr>
<tr>
<td>1.933756</td>
<td>0.000013</td>
<td>-0.000406</td>
</tr>
<tr>
<td>1.933754</td>
<td>0.000000</td>
<td>-0.000003</td>
</tr>
</tbody>
</table>
Safeguarded Methods

Rapidly convergent methods for solving nonlinear equations may not converge unless started close to solution, but safe methods are slow.

Hybrid methods combine features of both types of methods to achieve both speed and reliability.

Use rapidly convergent method, but maintain bracket around solution.

If next approximate solution given by fast method falls outside bracketing interval, perform one iteration of safe method, such as bisection.
Safeguarded Methods, continued

Fast method can then be tried again on smaller interval with greater chance of success

Ultimately, convergence rate of fast method should prevail

Hybrid approach seldom does worse than safe method, and usually does much better

Popular combination is bisection and inverse quadratic interpolation, for which no derivatives required
Zeros of Polynomials

For polynomial \(p(x) \) of degree \(n \), one may want to find all \(n \) of its zeros, which may be complex even if coefficients are real.

Several approaches available

- Use root-finding method such as Newton’s or Muller’s method to find one root, deflate it out, and repeat.
- Form companion matrix of polynomial and use eigenvalue routine to compute all its eigenvalues.
- Use method designed specifically for finding all roots of polynomial, such as Jenkins-Traub.
Solving systems of nonlinear equations much more difficult than scalar case because

- Wider variety of behavior possible, so determining existence and number of solutions or good starting guess much more complex

- No simple way, in general, to guarantee convergence to desired solution or to bracket solution to produce absolutely safe method

- Computational overhead increases rapidly with dimension of problem
Fixed-Point Iteration

Fixed-point problem for \(g: \mathbb{R}^n \rightarrow \mathbb{R}^n \) is to find vector \(x \) such that

\[
x = g(x)
\]

Corresponding fixed-point iteration is

\[
x_{k+1} = g(x_k),
\]
given starting vector \(x_0 \)

If

\[
\rho(G(x^*)) < 1,
\]
where \(\rho \) is *spectral radius* and \(G(x) \) is Jacobian matrix of \(g \) evaluated at \(x \), then fixed-point iteration converges if started close enough to solution

Smaller spectral radius yields faster convergence rate

If \(G(x^*) = O \), then convergence rate quadratic
Newton’s Method

In n dimensions Newton’s method has form

$$x_{k+1} = x_k - J(x_k)^{-1}f(x_k),$$

where $J(x)$ is Jacobian matrix of f,

$$\{J(x)\}_{ij} = \frac{\partial f_i(x)}{\partial x_j}$$

In practice, do not explicitly invert $J(x_k)$, but instead solve linear system

$$J(x_k)s_k = -f(x_k),$$

for Newton step s_k, then take as next iterate

$$x_{k+1} = x_k + s_k$$
Example: Newton’s Method

Use Newton’s method to solve nonlinear system

\[f(x) = \begin{bmatrix} x_1 + 2x_2 - 2 \\ x_1^2 + 4x_2^2 - 4 \end{bmatrix} = 0 \]

Jacobian matrix is \(J_f(x) = \begin{bmatrix} 1 & 2 \\ 2x_1 & 8x_2 \end{bmatrix} \)

If we take \(x_0 = [1 \ 2]^T \), then

\[f(x_0) = \begin{bmatrix} 3 \\ 13 \end{bmatrix}, \quad J_f(x_0) = \begin{bmatrix} 1 & 2 \\ 2 & 16 \end{bmatrix} \]

Solving system

\[\begin{bmatrix} 1 & 2 \\ 2 & 16 \end{bmatrix} s_0 = \begin{bmatrix} -3 \\ -13 \end{bmatrix} \]

gives \(s_0 = [-1.83 \ -0.58]^T \), and hence

\[x_1 = x_0 + s_0 = \begin{bmatrix} -0.83 \\ 1.42 \end{bmatrix}, \]
Example Continued

\(f(x_1) = \begin{bmatrix} 0 \\ 4.72 \end{bmatrix}, \quad J_f(x_1) = \begin{bmatrix} 1 & 2 \\ -1.67 & 11.3 \end{bmatrix} \)

Solving system

\[
\begin{bmatrix} 1 & 2 \\ -1.67 & 11.3 \end{bmatrix} s_1 = \begin{bmatrix} 0 \\ -4.72 \end{bmatrix}
\]

gives \(s_1 = [0.64 \quad -0.32]^T \), and hence

\[
x_2 = x_1 + s_1 = \begin{bmatrix} -0.19 \\ 1.10 \end{bmatrix},
\]

\(f(x_2) = \begin{bmatrix} 0 \\ 0.83 \end{bmatrix}, \quad J_f(x_2) = \begin{bmatrix} 1 & 2 \\ -0.38 & 8.76 \end{bmatrix} \)

Iterations continue until convergence to solution \(x^* = [0 \quad 1]^T \)
Convergence of Newton’s Method

Differentiating corresponding fixed-point operator

\[g(x) = x - J(x)^{-1} f(x) \]

and evaluating at solution \(x^* \) gives \(G(x^*) = \)

\[I - (J(x^*)^{-1} J(x^*) + \sum_{i=1}^{n} f_i(x^*) H_i(x^*)) = O, \]

where \(H_i(x) \) is component matrix of derivative of \(J(x)^{-1} \)

Convergence rate of Newton’s method for non-linear systems is normally quadratic, provided Jacobian matrix \(J(x^*) \) is nonsingular

Must be started close enough to solution to converge
Cost of Newton’s Method

Cost per iteration of Newton’s method for dense problem in n dimensions is substantial

- Computing Jacobian matrix costs n^2 scalar function evaluations
- Solving linear system costs $O(n^3)$ operations
Secant Updating Methods

Secant updating methods reduce cost of Newton’s method by

- Using function values at successive iterates to build approximate Jacobian and avoiding explicit evaluation of derivatives
- Updating factorization of approximate Jacobian rather than refactoring it each iteration

Most secant updating methods have superlinear but not quadratic convergence rate; often cost less overall than Newton’s method
Broyden’s Method

Broyden’s method is typical secant updating method

\[x_0 = \text{initial guess} \]

\[B_0 = \text{initial Jacobian approximation} \]

for \(k = 0, 1, 2, \ldots \)

Solve \(B_k s_k = -f(x_k) \) for \(s_k \)

\[x_{k+1} = x_k + s_k \]

\[y_k = f(x_{k+1}) - f(x_k) \]

\[B_{k+1} = B_k + ((y_k - B_k s_k) s_k^T) / (s_k^T s_k) \]

end
Broyden’s Method, continued

Motivation for formula for B_{k+1} is to make least change to B_k subject to satisfying secant equation

$$B_{k+1}(x_{k+1} - x_k) = f(x_{k+1}) - f(x_k)$$

In practice, factorization of B_k updated instead of updating B_k directly, so total cost per iteration is only $O(n^2)$
Example: Broyden’s Method

Use Broyden’s method to solve nonlinear system

\[f(x) = \begin{bmatrix} x_1 + 2x_2 - 2 \\ x_2^2 + 4x_2^2 - 4 \end{bmatrix} = 0 \]

If \(x_0 = [1 \ 2]^T \), then \(f(x_0) = [3 \ 13]^T \), and we choose

\[B_0 = J_f(x_0) = \begin{bmatrix} 1 & 2 \\ 2 & 16 \end{bmatrix} \]

Solving system

\[\begin{bmatrix} 1 & 2 \\ 2 & 16 \end{bmatrix} s_0 = \begin{bmatrix} -3 \\ -13 \end{bmatrix} \]

gives \(s_0 = [-1.83 \ -0.58]^T \), and hence

\[x_1 = x_0 + s_0 = \begin{bmatrix} -0.83 \\ 1.42 \end{bmatrix} , \]
Example Continued

\[f(x_1) = \begin{bmatrix} 0 \\ 4.72 \end{bmatrix}, \quad y_0 = \begin{bmatrix} -3 \\ -8.28 \end{bmatrix} \]

From updating formula, we obtain

\[B_1 = \begin{bmatrix} 1 & 2 \\ 2 & 16 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ -2.34 & -0.74 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -0.34 & 15.3 \end{bmatrix} \]

Solving system

\[\begin{bmatrix} 1 & 2 \\ -0.34 & 15.3 \end{bmatrix} s_1 = \begin{bmatrix} 0 \\ -4.72 \end{bmatrix} \]

gives \(s_1 = \begin{bmatrix} 0.59 \\ -0.30 \end{bmatrix}^T \), and hence

\[x_2 = x_1 + s_1 = \begin{bmatrix} -0.24 \\ 1.120 \end{bmatrix}, \]
Example Continued

\[f(x_2) = \begin{bmatrix} 0 \\ 1.08 \end{bmatrix}, \quad y_1 = \begin{bmatrix} 0 \\ -3.64 \end{bmatrix} \]

From updating formula, we obtain

\[B_2 = \begin{bmatrix} 1 & 2 \\ -0.34 & 15.3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1.46 & -0.73 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1.12 & 14.5 \end{bmatrix} \]

Iterations continue until convergence to solution \(x^* = [0 \quad 1]^T \)
Robust Newton-Like Methods

Newton’s method and its variants may fail to converge when started far from solution.

Safeguards can enlarge region of convergence of Newton-like methods.

Simplest precaution is damped Newton method, in which new iterate is

\[x_{k+1} = x_k + \alpha_k s_k, \]

where \(s_k \) is Newton (or Newton-like) step and \(\alpha_k \) is scalar parameter chosen to ensure progress toward solution.

Parameter \(\alpha_k \) reduces Newton step when it is too large, but \(\alpha_k = 1 \) suffices near solution and still yields fast asymptotic convergence rate.
Trust-Region Methods

Another approach is to maintain estimate of trust region where Taylor series approximation, upon which Newton’s method is based, is sufficiently accurate for resulting computed step to be reliable.

Adjusting size of trust region to constrain step size when necessary usually enables progress toward solution even starting far away, yet still permits rapid converge once near solution.

Unlike damped Newton method, trust region method may modify direction as well as length of Newton step.

More details on this approach in Chapter 6.